首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Identification of genes encoding type III polyketide synthase (PKS) superfamily members in the industrially useful filamentous fungus, Aspergillus oryzae, revealed that their distribution is not specific to plants or bacteria. Among other Aspergilli (Aspergillus nidulans and Aspergillus fumigatus), A. oryzae was unique in possessing four chalcone synthase (CHS)-like genes (csyA, csyB, csyC, and csyD). Expression of csyA, csyB, and csyD genes was confirmed by RT-PCR. Comparative genome analyses revealed single putative type III PKS in Neurospora crassa and Fusarium graminearum, two each in Magnaporthe grisea and Podospora anserina, and three in Phenarocheate chrysosporium, with a phylogenic distinction from bacteria and plants. Conservation of catalytic residues in the CHSs across species implicated enzymatically active nature of these newly discovered homologs.  相似文献   

5.
6.
7.
8.
A previously unidentified set of genes encoding a modular polyketide synthase (PKS) has been sequenced in Saccharopolyspora erythraea, producer of the antibiotic erythromycin. This new PKS gene cluster (pke) contains four adjacent large open reading frames (ORFs) encoding eight extension modules, flanked by a number of other ORFs which can be plausibly assigned roles in polyketide biosynthesis. Disruption of the pke PKS genes gave S. erythraea mutant JC2::pSBKS6, whose growth characteristics and pattern of secondary metabolite production did not apparently differ from the parent strain under any of the growth conditions tested. However, the pke PKS loading module and individual pke acyltransferase domains were shown to be active when used in engineered hybrid PKSs, making it highly likely that under appropriate conditions these biosynthetic genes are indeed expressed and active, and synthesize a novel polyketide product.  相似文献   

9.
利玛原甲藻中聚酮合酶基因克隆与分析   总被引:1,自引:0,他引:1  
为探讨聚酮合酶 (polyketide synthase, PKS)基因与藻毒素合成的关系,揭示PKS基因在赤潮毒素合成中的作用,采用兼并引物,通过PCR技术获得利玛原甲藻(Prorocentrum lima)可能存在的I型PKS基因;并对所获得PKS基因的同源性进行了分析,构建了基于PKS氨基酸序列的系统进化树;采用RT-PCR技术分析了PKS基因在利玛原甲藻中的表达状况;并通过多聚腺苷酸RNA的扩增、细菌的分离鉴定、限制性内切酶酶切、Southern blotting等技术对PKS基因进行了分析.结果表明,利玛原甲藻中PKS基因与海洋原甲藻聚为一支,在利玛原甲藻中有显著表达;以Oligo(T)引物进行RT-PCR扩增时,可出现18S rRNA和PKS基因相应条带;限制性内切酶酶切和Southern blotting结果显示,该基因中存在明显的甲基化;16S rRNA基因序列分析显示,从利玛原甲藻培养液中分离到的细菌与海洋放线菌假诺卡氏菌属(Pseudonocardia)基因序列同源性达到99%,该菌株中并不存在PKS基因.结果显示,所获得的PKS基因是利玛原甲藻聚酮合酶基因,基因序列已提交GenBank (EF521601);PKS可能在腹泻性贝毒合成中起着关键作用.  相似文献   

10.
Aims:  To obtain bacteria with PKS (polyketide synthase) genes and antimicrobial activity from sponges.
Methods and Results:  Eighteen bacteria with KS (ketosynthase) genes were identified by polymerase chain reaction (PCR) screening of 98 isolates from South China Sea sponges, Stelletta tenuis , Halichondria rugosa , Dysidea avara and Craniella australiensis . 16S rRNA gene-based B last analysis indicated that 15 isolates belonged to the phylum Firmicutes , among which 14 isolates were closely related to genus Bacillus , and 1 to Staphylococcus lentus . Two isolates were identified as actinomycetes, and one as Alcaligenes sp. in the phylum Proteobacteria . The 18 KS domains belong to trans-AT type I PKS and match PKS of marine bacterial symbionts. The 18 bacteria exhibited broad-spectrum antimicrobial activities against fungi, gram-positive and gram-negative bacteria. A 21·8-kb PKS gene cluster fragment containing five modules was isolated from the Staphylococcus lentus isolate A75 by screening of a fosmid library.
Conclusions:  The PKS gene diversity and different antimicrobial spectra indicate the potential of bacteria associated with South China Sea sponges for diverse polyketide production.
Significance and Impact of the Study:  Combined with bioactivity assay the PKS gene-based approach can be applied to efficient screening of strains of pharmaceutical value and the prediction of related compounds.  相似文献   

11.
Brünker P  McKinney K  Sterner O  Minas W  Bailey JE 《Gene》1999,227(2):125-135
Streptomyces arenae produces the aromatic polyketide naphthocyclinone, which exhibits activity against Gram-positive bacteria. A cosmid clone containing the putative naphthocyclinone gene cluster was isolated from a genomic library of S. arenae by hybridization with a conserved region from the actinorhodin PKS of S. coelicolor. Sequence analysis of a 5.5-kb DNA fragment, which hybridizes with the actI probe, revealed three open reading frames coding for the minimal polyketide synthase. A strong sequence similarity was found to several previously described ketosynthases, chain length factors and acyl carrier proteins from other polyketide gene clusters. An additional open reading frame downstream of the PKS genes of S. arenae showed 53% identity to act VII probably encoding an aromatase. Another open reading frame was identified in a region of 1.436 bp upstream of the PKS genes, which, however, had no similarity to known genes in the database. Approximately 8 kb upstream of the PKS genes, a DNA fragment was identified that hybridizes to an actVII--actIV specific probe coding for a cyclase and a putative regulatory protein, respectively. Disruption of the proposed naphthocyclinone gene cluster by insertion of a thiostrepton resistance gene completely abolished production of naphthocyclinones in the mutant strain, showing that indeed the naphthocyclinone gene cluster had been isolated. Heterologous expression of the minimal PKS genes in S. coelicolor CH999 in the presence of the act ketoreductase led to the production of mutactin and dehydromutactin, indicating that the S. arenae polyketide synthase forms a C-16 backbone that is subsequently dimerized to build naphthocyclinone. The functions of the proposed cyclase and aromatase were examined by coexpression with genes from different polyketide core producers.  相似文献   

12.
13.
Numerous polyketides are known from bacteria, plants, and fungi. However, only a few have been isolated from basidiomycetes. Large scale genome sequencing projects now help anticipate the capacity of basidiomycetes to synthesize polyketides. In this study, we identified and annotated 111 type I and three type III polyketide synthase (PKS) genes from 35 sequenced basidiomycete genomes. Phylogenetic analysis of PKS genes suggests that all main types of fungal iterative PKS had already evolved before the Ascomycota and Basidiomycota diverged. A comparison of genomic and metabolomic data shows that the number of polyketide genes exceeds the number of known polyketide structures by far. Exploiting these results to design degenerate PCR primers, we amplified and cloned the complete sequence of armB, a PKS gene from the melleolide producer Armillaria mellea. We expect this study will serve as a guide for future genomic mining projects to discover structurally diverse mushroom-derived polyketides.  相似文献   

14.
A 108-kb genomic DNA region of Saccharopolyspora spinosa NRRL 18395, producer of the agriculturally important insecticidal antibiotics spinosyns, has been cloned, sequenced and analyzed to reveal clustered genes encoding a type I polyketide synthase (PKS) complex. The genes for the PKS are flanked by genes encoding homologs of enzymes that are involved in the urea cycle, valine, leucine and isoleucine biosynthesis and energy metabolism. While the disruption of the PKS genes by insertional inactivation was not expected to abolish the production of spinosyns, no differences were found in the antibacterial, antifungal, or insecticidal activities either of the parental and the knockout mutant strains under the growth conditions tested. Deduction of the most likely structure of the polyketide core of the cryptic metabolite, termed obscurin, from the predicted modules and domains of the PKS suggests the formation of a highly unsaturated substituted C22 carboxylic acid that might undergo further processing after its release from the PKS.  相似文献   

15.
16.
17.
18.
Sponge-associated bacteria are thought to produce many novel bioactive compounds, including polyketides. PCR amplification of ketosynthase domains of type I modular polyketide synthases (PKS) from the microbial community of the marine sponge Discodermia dissoluta revealed great diversity and a novel group of sponge-specific PKS ketosynthase domains. Metagenomic libraries totaling more than four gigabases of bacterial genomes associated with this sponge were screened for type I modular PKS gene clusters. More than 90% of the clones in total sponge DNA libraries represented bacterial DNA inserts, and 0.7% harbored PKS genes. The majority of the PKS hybridizing clones carried small PKS clusters of one to three modules, although some clones encoded large multimodular PKSs (more than five modules). The most abundant large modular PKS appeared to be encoded by a bacterial symbiont that made up < 1% of the sponge community. Sequencing of this PKS revealed 14 modules that, if expressed and active, is predicted to produce a multimethyl-branched fatty acid reminiscent of mycobacterial lipid components. Metagenomic libraries made from fractions enriched for unicellular or filamentous bacteria differed significantly, with the latter containing numerous nonribosomal peptide synthetase (NRPS) and mixed NRPS-PKS gene clusters. The filamentous bacterial community of D. dissoluta consists mainly of Entotheonella spp., an unculturable sponge-specific taxon previously implicated in the biosynthesis of bioactive peptides.  相似文献   

19.
The structure of the Streptomyces sp. strain C5 daunorubicin type II polyketide synthase (PKS) gene region is different from that of other known type II PKS gene clusters. Directly downstream of the genes encoding ketoacylsynthase alpha and beta (KS alpha, KS beta) are two genes (dpsC, dpsD) encoding proteins of unproven function, both absent from other type II PKS gene clusters. Also in contrast to other type II PKS clusters, the gene encoding the acyl carrier protein (ACP), dpsG, is located about 6.8 kbp upstream of the genes encoding the daunorubicin KS alpha and KS beta. In this work, we demonstrate that the minimal genes required to produce aklanonic acid in heterologous hosts are dpsG (ACP), dauI (regulatory activator), dpsA (KS alpha), dpsB (KS beta), dpsF (aromatase), dpsE (polyketide reductase), and dauG (putative deoxyaklanonic acid oxygenase). The two unusual open reading frames, dpsC (KASIII homolog lacking a known active site) and dpsD (acyltransferase homolog), are not required to synthesize aklanonic acid. Additionally, replacement of dpsD or dpsCD in Streptomyces sp. strain C5 with a neomycin resistance gene (aphI) results in mutant strains that still produced anthracyclines.  相似文献   

20.
Polyketides are known to be used by insects for pheromone communication and defence against enemies. Although in microorganisms (fungi, bacteria) and plants polyketide biogenesis is known to be catalysed by polyketide synthases (PKS), no insect PKS involved in biosynthesis of pheromones or defensive compounds have yet been found. Polyketides detected in insects may also be biosynthesized by endosymbionts. From a chemical perspective, polyketide biogenesis involves the formation of a polyketide chain using carboxylic acids as precursors. Fatty acid biosynthesis also requires carboxylic acids as precursors, but utilizes fatty acid synthases (FAS) to catalyse this process. In the present review, studies of the biosynthesis of insect polyketides applying labelled carboxylic acids as precursors are outlined to exemplify chemical approaches used to elucidate insect polyketide formation. However, since compounds biosynthesised by FAS may use the same precursors, it still remains unclear whether the structures that are formed from e.g. acetate chains (acetogenins) or propanoate chains (propanogenins) are PKS or FAS products. A critical comparison of PKS and FAS architectures and activities supports the hypothesis of a common evolutionary origin of these enzyme complexes and highlights why PKS can catalyse the biosynthesis of much more complex products than can FAS. Finally, we summarise knowledge which might assist researchers in designing approaches for the detection of insect PKS genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号