首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T M Fischer 《Blood cells》1988,13(3):377-396
Membrane cross bonding--an adhesion between opposing areas of the cytoplasmic face of the red cell membrane--was achieved by treating red cells with heat, diamide, N-ethymaleimide, urea, or by ATP depletion in conjunction with cell shrinking. Membrane cross bonding could be recognized by the shape of the cells upon swelling. Quantitated by the percentage of cross-bonded red cells the effectivity of the treatments decreased in the order given above. Cross bonding was hardly reversible by reducing the diamide-induced S-S bonds with dithioerythritol. The effect of heat and urea treatment as well as ATP depletion was partly reversible. Transmission electron micrographs of the cross-bonded region showed basically parallel membranes. The distance between the respective phospholipid bilayers varied between 40 and 120 nm from cell to cell. Hb-free ghosts prepared from diamide-treated red cells could also be cross bonded. The following conclusions are drawn: spectrin provides the molecular cross link in membrane cross bonding. Aggregation and enrichment of spectrin in the cross-bonded region are probably involved in membrane cross bonding.  相似文献   

2.
When red blood cells are osmotically shrunk, opposing regions of the inner membrane surface touch each other in the dimple area. In normal red cells such a mechanical contact is undone by reswelling the cells. When the cells are treated with the SH reagents diamide or N-ethylmaleimide, or simply heated to temperatures between 42 and 48 degrees C such a mechanical contact can be made permanent by a process termed 'membrane cross bonding'. Cross bonding also occurred when the cells were treated before mechanical contact was established. The bridge between the two cross-bonded membrane regions may be assumed to be formed by membrane skeletal material. Membrane bridges become visible microscopically when the cells are swollen. These bridges are strong enough to resist the membrane tensions occurring at osmotic lysis. Bridged red cells can be a useful tool in rheology, since they are deformable but cannot adapt to shear flows by membrane tank treading.  相似文献   

3.
Membrane transporters precisely regulate which molecules cross the plasma membrane and when they can cross. In many cases it is also important to regulate where substances can cross the plasma membrane. Consequently, cells have evolved mechanisms to confine and stabilize membrane transport proteins within specific subdomains of the plasma membrane. A number of different transporters (including ion pumps, channels and exchangers) are known to physically associate with the spectrin cytoskeleton, a submembrane complex of spectrin and ankyrin. These proteins form a protein scaffold that assembles within discrete subdomains of the plasma membrane in polarized cells. Recent genetic studies in humans and model organisms have provided the opportunity to test the hypothesis that the spectrin cytoskeleton has a direct role in restricting transporters to specialized domains. Remarkably, genetic defects in spectrin and ankyrin can produce effects on cell physiology that are comparable to knockouts of the transporters themselves.  相似文献   

4.
Spectrin strengthens the red cell membrane through its direct association with membrane lipids and through protein-protein interactions. Spectrin loss reduces the membrane stability and results in various types of hereditary spherocytosis. However, less is known about acquired spectrin damage. Here, we showed that α- and β-spectrin in human red cells are the primary targets of the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) by immunoblotting and mass spectrometry analyses. The level of HNE adducts in spectrin (particularly α-spectrin) and several other membrane proteins was increased following the HNE treatment of red cell membrane ghosts prepared in the absence of MgATP. In contrast, ghost preparation in the presence of MgATP reduced HNE adduct formation, with preferential β-spectrin modification and increased cross-linking of the HNE-modified spectrins. Exposure of intact red cells to HNE resulted in selective HNE-spectrin adduct formation with a similar preponderance of HNE-β-spectrin modifications. These findings indicate that HNE adduction occurs preferentially in spectrin at the interface between the skeletal proteins and lipid bilayer in red cells and suggest that HNE-spectrin adduct aggregation results in the extrusion of damaged spectrin and membrane lipids under physiological and disease conditions.  相似文献   

5.
Spectrin, an important component of the mammalian erythrocyte membrane skeleton, is a heterodimeric protein with alpha and beta subunits of 280 and 246 kDa, respectively. Spectrin-like proteins have also been demonstrated in a wide variety of nonerythroid cells. To examine the hypothesis that nonerythroid beta spectrins may be encoded by the "erythroid" beta spectrin gene, we have isolated cDNA clones from a human fetal skeletal muscle library by hybridization to a previously described red cell beta spectrin cDNA. Detailed comparison of muscle and erythroid beta spectrin cDNAs has revealed sequence identity over the majority of their lengths, confirming that they are the product of the same gene. However, there is a sharp divergence in sequence at their 3' ends. A consequence of this divergence is the replacement of the carboxyl terminus of erythroid beta spectrin with a different, longer carboxyl-terminal domain in skeletal muscle. We hypothesize that tissue-specific differential polyadenylation leads to the selective activation of a donor splice site within the beta spectrin coding sequence, splicing downstream nonerythroid exons into the mature muscle beta spectrin mRNA. We predict that replacement, in nonerythroid cells, of the beta spectrin carboxyl terminus, known to participate in spectrin self-association and phosphorylation, has significant functional consequences. These data may explain previously reported nonerythroid beta spectrin isoforms that resemble red cell beta spectrin by immunochemical analysis.  相似文献   

6.
The interaction of two adenine nucleotides with the red cell membrane was investigated using highly sensitive differential scanning calorimetry. It was found that ADP and AMP-PNP (an ATP analogue) preferentially modify the A transition, which has been shown to involve the unfolding of a portion of spectrin, an erythrocyte membrane protein complex. The interaction of ADP with spectrin was shown to be reversible and facilitated by the usual cofactor, Mg2+. The ADP-induced modification, however, is only observed for membrane associated spectrin; ADP has no effect on extracted spectrin. The results presented are consistent with an ADP-induced conformational change in the spectrin complex which leads to a change in the spectrin-membrane interaction. ADP, but not AMP-PNP, is shown to modify an additional calorimetric transition (B2) associated with a structural change in the transmembrane protein band 3. This behavior is characteristic of inhibitors of anion transport in the red cell. ADP is also found to be an inhibitor of anion transport in red cells.  相似文献   

7.
Plasmodium falciparum infection of human erythrocytes is known to result in the modification of the host cell cytoskeleton by parasite-coded proteins. However, such modifications and corresponding implications in malaria pathogenesis have not been fully explored. Here, we probed the gradual modification of infected erythrocyte cytoskeleton with advancing stages of infection using atomic force microscopy (AFM). We reported a novel strategy to derive accurate and quantitative information on the knob structures and their connections with the spectrin network by performing AFM–based imaging analysis of the cytoplasmic surface of infected erythrocytes. Significant changes on the red cell cytoskeleton were observed from the expansion of spectrin network mesh size, extension of spectrin tetramers and the decrease of spectrin abundance with advancing stages of infection. The spectrin network appeared to aggregate around knobs but also appeared sparser at non-knob areas as the parasite matured. This dramatic modification of the erythrocyte skeleton during the advancing stage of malaria infection could contribute to the loss of deformability of the infected erythrocyte.  相似文献   

8.
Human red blood cells contain all of the elements involved in the formation of nonmuscle actomyosin II complexes (V. M. Fowler. 1986. J. Cell. Biochem. 31:1-9; 1996. Curr. Opin. Cell Biol. 8:86-96). No clear function has yet been attributed to these complexes. Using a mathematical model for the structure of the red blood cell spectrin skeleton (M. J. Saxton. 1992. J. Theor. Biol. 155:517-536), we have explored a possible role for myosin II bipolar minifilaments in the restoration of the membrane skeleton, which may be locally damaged by major mechanical or chemical stress. We propose that the establishment of stable links between distant antiparallel actin protofilaments after a local myosin II activation may initiate the repair of the disrupted area. We show that it is possible to define conditions in which the calculated number of myosin II minifilaments bound to actin protofilaments is consistent with the estimated number of myosin II minifilaments present in the red blood cells. A clear restoration effect can be observed when more than 50% of the spectrin polymers of a defined area are disrupted. It corresponds to a significant increase in the spectrin density in the protein free region of the membrane. This may be involved in a more complex repair process of the red blood cell membrane, which includes the vesiculation of the bilayer and the compaction of the disassembled spectrin network.  相似文献   

9.
This report describes an analysis of the red blood cell proteome by ion trap tandem mass spectrometry in line with liquid chromatography. Mature red blood cells lack all internal cell structures and consist of cytoplasm within a plasma membrane envelope. To maximize outcome, total red blood cell protein was divided into two fractions of membrane-associated proteins and cytoplasmic proteins. Both fractions were divided into subfractions, and proteins were identified in each fraction separately through tryptic digestion. Membrane protein digests were collected from externally exposed proteins, internally exposed proteins, "spectrin extract" mainly consisting of membrane skeleton proteins, and membrane proteins minus spectrin extract. Cytoplasmic proteins were divided into 21 fractions based on molecular mass by size exclusion chromatography. The tryptic peptides were separated by reverse-phase high-performance liquid chromatography and identified by ion trap tandem mass spectrometry. A total of 181 unique protein sequences were identified: 91 in the membrane fractions and 91 in the cytoplasmic fractions. Glyceraldehyde-3-phosphate dehydrogenase was identified with high sequence coverage in both membrane and cytoplasmic fractions. Identified proteins include membrane skeletal proteins, metabolic enzymes, transporters and channel proteins, adhesion proteins, hemoglobins, cellular defense proteins, proteins of the ubiquitin-proteasome system, G-proteins of the Ras family, kinases, chaperone proteins, proteases, translation initiation factors, and others. In addition to the known proteins, there were 43 proteins whose identification was not determined.  相似文献   

10.
Chemically tritiated actin from rabbit skeletal muscle was used to investigate the association of G-actin with the red cell membrane. The tritiated actin was shown to be identical to unmodified actin in its ability to polymerize and to activate heavy meromyosin ATPase. Using sealed and unsealed red cell ghosts we have shown that G-actin binds to the cytoplasmic but not the extracellular membrane surface of ghosts. Inside-out vesicles which have been stripped of endogenous actin and spectrin by low-ionic-strength incubation bind little G-actin. However, when a crude spectrin extract containing primarily spectrin, actin, and band 4.1 is added back to stripped vesicles, subsequent binding of G-actin can be increased up to 40-fold. Further, this crude spectrin extract can compete for and abolish G-actin binding to unsealed ghosts. Actin binding to ghosts increases linearly with added G-actin and requires the presence of magnesium. In addition, actin binding is inhibited by cytochalasin B and DNAase I. Negative staining reveals an abundance of actin filaments formed when G-actin is added to reconstituted inside-out vesicles but none when it is added to unreconstituted vesicles. These observations indicate that added G-actin binds to the red cell membrane via filament formation nucleated by some membrane component at the cytoplasmic surface.  相似文献   

11.
The ionic strength of the medium plays an important role in the structure and conformation of erythroid spectrin. The spectrin dimer is a flexible rod at physiological ionic strength. However, lower ionic strength results in elongation and rigidification (stiffening) of spectrin as shown earlier by electron microscopy and hydrodynamic studies. The ionic strength induced structural transition does not involve any specific secondary structural changes. In this article, we have used a combination of fluorescence spectroscopic approaches that include red edge excitation shift (REES), fluorescence quenching, time-resolved fluorescence measurements, and chemical modification of the spectrin tryptophans to assess the environment and dynamics of tryptophan residues of spectrin under different ionic strength conditions. Our results show that while REES, fluorescence anisotropy, lifetime, and chemical modification of spectrin tryptophans remain unaltered in low and high ionic strength conditions, quenching of tryptophan fluorescence by the aqueous quencher acrylamide (but not the hydrophobic quencher trichloroethanol) and resonance energy transfer to a dansyl-labeled fatty acid show differences in tryptophan environment. These results, which report tertiary structural changes in spectrin upon change in ionic strength, are relevant in understanding the molecular details underlying the conformational flexibility of spectrin.  相似文献   

12.
Summary Hereditary pyropoikilocytosis (HPP) is a severe hemolytic anemia characterized by a material instability of the red cell membrane leading to cell fragmentation. This fragility may be correlated with functional and structural defects of spectrin. Most HPP patients have been black. We now report three HPP patients from a Caucasian family, the proposita and her two maternal uncles. The proposita's mother and daughter presented mild type I hereditary elliptocytosis (HE), while the proposita's father was clinically and hematologically normal. Our studies revealed a defective ability of spectrin to self-associate, resulting in an excess of spectrin dimer in 4°C extracts in the three HPP patients and to a similar extent in HE relatives. Limited tryptic digestion of spectrin showed a molecular variant in the I domain as expressed by a decreased amount of 80 000-dalton peptide with a concomitant increase in the 74 000-dalton peptide. Investigations in the proposita's father revealed no abnormalities of the erythrocyte membrane. The co-transmission of HPP and HE phenotypes in the same lineage might suggest variability in the clinical expression of the same molecular defect and lead us to discuss the hypothesis of a double heterozygosity in HPP patients.  相似文献   

13.
It was previously shown in model systems that brain spectrin binds membrane phospholipids. In the present study, we analysed binding of isolated brain spectrin and red blood cell spectrin to red blood or neuronal membranes which had been treated as follows: (1). extracted with low ionic-strength solution, (2). the above membranes extracted with 0.1 M NaOH, and (3). membranes treated as above, followed by protease treatment and re-extraction with 0.1 M NaOH. It was found that isolated, NaOH-extracted, protease-treated neuronal and red blood cell membranes bind brain and red blood cell spectrin with moderate affinities similar to those obtained in model phospholipid membrane-spectrin interaction experiments. Moreover, this binding was competitively inhibited by liposomes prepared from membrane lipids. The presented results indicate the occurrence of receptor sites for spectrins that are extraction- and protease-resistant, therefore most probably of lipidic nature, in native membranes.  相似文献   

14.
Structural and functional analysis of spectrin from neonatal erythrocytes   总被引:1,自引:0,他引:1  
Spectrin was purified by rate zonal sedimentation from low-salt extracts of red cell membranes from neonatal and adult blood. Neonatal and adult spectrin cosedimented in sucrose density gradients, comigrated on SDS gels and displayed identical two-dimensional chymotryptic 125I-labelled peptide maps. Neonatal spectrin and adult spectrin exhibited equivalent affinity for both neonatal and adult ankyrin sites on spectrin-depleted inverted membrane vesicles. Purified spectrin heterodimers from neonatal and adult red cells displayed similar self-association equilibrium constants in a fluid phase dimer-dimer association assay. These results suggest that the unique membrane characteristics of the neonatal erythrocyte are not due to a structural or functional alteration of spectrin. Several alternative hypotheses involving other membrane proteins and their linkages are discussed.  相似文献   

15.
Full-length sequence of the cDNA for human erythroid beta-spectrin   总被引:22,自引:0,他引:22  
Spectrin is the major molecular consituent of the red cell membrane skeleton. We have isolated overlapping human erythroid beta-spectrin cDNA clones and determined 6773 base pairs of contiguous nucleotide sequence. This includes the entire coding sequence of beta-spectrin. The sequence translates into a 2137 amino acid, 246-kDa peptide. beta-Spectrin is found to consist of three distinct domains. Domain I, at the N terminus, is a 272-amino acid region lacking resemblance to the spectrin repetitive motif. Sequences in this region exhibit striking sequence homology, at both nucleotide and amino acid levels, to the N-terminal "actin-binding" domains of alpha-actinin and dystrophin. Between residues 51 and 270 there is 55% amino acid identity to human dystrophin, with only four single amino acid gaps in alignment. Domain II consists of 17 spectrin repeats. Several sequence variations are observed in typical repeat structure. Homology to alpha-actinin extends beyond domain I into the N-terminal portion of domain II. Domain III, 52 amino acid residues at the C terminus, does not adhere to the spectrin repeat motif. Combining knowledge of spectrin primary structure with previously reported functional studies, it is possible to make several inferences regarding structure/function relationships within the beta-spectrin molecule.  相似文献   

16.
In order to elucidate the molecular basis of membrane shear elasticity, the effect of membrane protein modification by SH-reaents on the deformability of human erythrocytes was studied. Deformability was quuantified by measuring the elongation of erythrocytes subjected to viscometric flow in a transparent cone plate viscometer. Impermeable SH-reagents proved to have no mechanical effect. Many, but not all, permeable SH-reagents markedly decreased the elongation. Among these, bifunctional SH-reagents (e.g. diamide, tetrathionate and N, N' -p-phenylenedimaleimide) able to cross-link membrane SH-groups were more effective than monofunctional SH-reagents (e.g. N-ethylmaleimide and ethacrynic acid). The bifunctional SH-reagents produced a 50% decrease of elongation after modification of less than 5% of the membrane SH-groups. In contrast, for a comparable effect, more than 20% of the SH-groups had to be modified by the monofunctional reagents. The effect of SH-oxidizing agents was fully reversible after treatment with disulfide-reducing agents. All bifunctional SH-reagents induced a dimerization of a small fraction of spectrin. Anaalysis of the distribution of the diamide-induced disulfide bonds among the various membrane protein fractions showed that this agent preferentially acts on the spectrin polypeptides. The results provide direct experimental evidence that the native arrangement of spectrin is essential for the shear resistance of the erythrocyte membrane and that introduction of small numbers of intermolecular cross-links as well as modification within the molecule lead to a rapid loss of this function.  相似文献   

17.
Restriction enzymes are well known as reagents widely used by molecular biologists for genetic manipulation and analysis, but these reagents represent only one class (type II) of a wider range of enzymes that recognize specific nucleotide sequences in DNA molecules and detect the provenance of the DNA on the basis of specific modifications to their target sequence. Type I restriction and modification (R-M) systems are complex; a single multifunctional enzyme can respond to the modification state of its target sequence with the alternative activities of modification or restriction. In the absence of DNA modification, a type I R-M enzyme behaves like a molecular motor, translocating vast stretches of DNA towards itself before eventually breaking the DNA molecule. These sophisticated enzymes are the focus of this review, which will emphasize those aspects that give insights into more general problems of molecular and microbial biology. Current molecular experiments explore target recognition, intramolecular communication, and enzyme activities, including DNA translocation. Type I R-M systems are notable for their ability to evolve new specificities, even in laboratory cultures. This observation raises the important question of how bacteria protect their chromosomes from destruction by newly acquired restriction specifities. Recent experiments demonstrate proteolytic mechanisms by which cells avoid DNA breakage by a type I R-M system whenever their chromosomal DNA acquires unmodified target sequences. Finally, the review will reflect the present impact of genomic sequences on a field that has previously derived information almost exclusively from the analysis of bacteria commonly studied in the laboratory.  相似文献   

18.
Plasmodium falciparum parasites express and traffick numerous proteins into the red blood cell (RBC), where some associate specifically with the membrane skeleton. Importantly, these interactions underlie the major alterations to the modified structural and functional properties of the parasite-infected RBC. P. falciparum Erythrocyte Membrane Protein 3 (PfEMP3) is one such parasite protein that is found in association with the membrane skeleton. Using recombinant PfEMP3 proteins in vitro, we have identified the region of PfEMP3 that binds to the RBC membrane skeleton, specifically to spectrin and actin. Kinetic studies revealed that residues 38-97 of PfEMP3 bound to purified spectrin with moderately high affinity (K(D(kin))=8.5 x 10(-8) M). Subsequent deletion mapping analysis further defined the binding domain to a 14-residue sequence (IFEIRLKRSLAQVL; K(D(kin))=3.8 x 10(-7) M). Interestingly, this same domain also bound to F-actin in a specific and saturable manner. These interactions are of physiological relevance as evidenced by the binding of this region to the membrane skeleton of inside-out RBCs and when introduced into resealed RBCs. Identification of a 14-residue region of PfEMP3 that binds to both spectrin and actin provides insight into the potential function of PfEMP3 in P. falciparum-infected RBCs.  相似文献   

19.
The effect of the intracellular level of ATP and of the state of spectrin on the critical cell volume of bovine erythrocyte was studied. The state of spectrin was changed by thermal denaturation, which for the bovine red cell took place at similar temperature as for the human erythrocyte. The increase of the ATP level and the spectrin denaturation increased the critical cell volume, while metabolic starvation decreased it. The changes of the ATP level did not influence the critical volume after the denaturation of spectrin. The results suggest that the ATP-dependent effect on the critical cell volume was caused by an alteration of the membrane extensibility due to the change of the membrane skeleton-lipid bilayer interaction(s).  相似文献   

20.
Spectrin, a major protein constituent of mammalian red blood cell membrane preparations, has been localized on the inner surface of human red blood cell membranes by techniques that utilized specific ferritin-conjugated antibodies and fixation of membranes shortly after hemolysis so as to allow penetration of the ferritin-antibody labels. The labeling of spectrin was shown to be specific by the following criteria. (a) Nonhomologous ferritin-conjugated antibodies did not specifically bind to either membrane surface. (b) Blocking the membrane-bound spectrin with excess unconjugated antispectrin antibodies prevented ferritin-antibody labeling. (c) Removal of spectrin by treating the membrane preparation with a low ionic strength buffer containing ethylenediaminetetraacetate and β-mercaptoethanol prevented labeling by specific ferritin-conjugated antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号