首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The therapeutic properties of plasminogen activators are dictated by their mechanism of action. Unlike staphylokinase, a single domain protein, streptokinase, a 3-domain (alpha, beta, and gamma) molecule, nonproteolytically activates human (h)-plasminogen and protects plasmin from inactivation by alpha(2)-antiplasmin. Because a streptokinase-like mechanism was hypothesized to require the streptokinase gamma-domain, we examined the mechanism of action of a novel two-domain (alpha,beta) Streptococcus uberis plasminogen activator (SUPA). Under conditions that quench trace plasmin, SUPA nonproteolytically generated an active site in bovine (b)-plasminogen. SUPA also competitively inhibited the inactivation of plasmin by alpha(2)-antiplasmin. Still, the lag phase in active site generation and plasminogen activation by SUPA was at least 5-fold longer than that of streptokinase. Recombinant streptokinase gamma-domain bound to the b-plasminogen.SUPA complex and significantly reduced these lag phases. The SUPA-b.plasmin complex activated b-plasminogen with kinetic parameters comparable to those of streptokinase for h-plasminogen. The SUPA-b.plasmin complex also activated h-plasminogen but with a lower k(cat) (25-fold) and k(cat)/K(m) (7.9-fold) than SK. We conclude that a gamma-domain is not required for a streptokinase-like activation of b-plasminogen. However, the streptokinase gamma-domain enhances the rates of active site formation in b-plasminogen and this enhancing effect may be required for efficient activation of plasminogen from other species.  相似文献   

2.
A cDNA that encodes the human plasminogen (HPg) amino acid sequence has been inserted adjacent to the polyhedrin promoter in the genome of the baculovirus, Autographa californica nuclear polyhedrosis virus, which was then used to infect cultured cells of the farm armyworm, Spodoptera frugiperda. Under the conditions of cell growth employed, recombinant (rec)-HPg was secreted into the medium after 24 h postinfection (p.i.), at which point virtually no rec-HPg antigen remained inside the cells. At 48 h p.i., a maximal level of intact rec-HPg was present in the medium, which underwent substantial proteolytic digestion after that time. The rec-HPg produced by this expression system possessed a molecular weight equivalent to that of plasma [Glu1]-plasminogen. In addition, the rec-HPg adsorbed to Sepharose-lysine, and was eluted with epsilon-aminocaproic acid (EACA). The recombinant protein also interacted with polyclonal antibodies generated to plasma HPg, as well as with a monoclonal antibody directed against a distinct region (kringle 1-3) of the plasma HPg molecule. Finally, the insect-expressed rec-HPg was activatable to plasmin (HPm) by urokinase. The results demonstrate that this expression system produces a full-length functional single-chain rec-HPg, which can be isolated intact from the culture medium, with some consideration for the temporal events that occur in secretion and longer-term degradation of the protein. The fact that this rec-HPg was converted to HPm with a plasminogen activator, and that it interacted with anti-plasma HPg polyclonal and monoclonal antibodies, as well as with the ligand, EACA, indicates that the molecule retains many of its important functional properties and is folded in an integral manner.  相似文献   

3.
Binding of streptokinase (SK) to plasminogen (Pg) induces conformational activation of the zymogen and initiates its proteolytic conversion to plasmin (Pm). The mechanism of coupling between conformational activation and Pm formation was investigated in kinetic studies. Parabolic time courses of Pg activation by SK monitored by chromogenic substrate hydrolysis had initial rates (v(1)) representing conformational activation and subsequent rates of activity increase (v(2)) corresponding to the rate of Pm generation determined by a specific discontinuous assay. The v(2) dependence on SK concentration for [Lys]Pg showed a maximum rate at a Pg to SK ratio of approximately 2:1, with inhibition at high SK concentrations. [Glu]Pg and [Lys]Pg activation showed similar kinetic behavior but much slower activation of [Glu]Pg, due to an approximately 12-fold lower affinity for SK and an approximately 20-fold lower k(cat)/K(m). Blocking lysine-binding sites on Pg inhibited SK.Pg* cleavage of [Lys]Pg to a rate comparable with that of [Glu]Pg, whereas [Glu]Pg activation was not significantly affected. The results support a kinetic mechanism in which SK activates Pg conformationally by rapid equilibrium formation of the SK.Pg* complex, followed by intermolecular cleavage of Pg to Pm by SK.Pg* and subsequent cleavage of Pg by SK.Pm. A unified model of SK-induced Pg activation suggests that generation of initial Pm by SK.Pg* acts as a self-limiting triggering mechanism to initiate production of one SK equivalent of SK.Pm, which then converts the remaining free Pg to Pm.  相似文献   

4.
Streptokinase (SK) is a potent clot dissolver but lacks fibrin clot specificity as it activates human plasminogen (HPG) into human plasmin (HPN) throughout the system leading to increased risk of bleeding. Another major drawback associated with all thrombolytics, including tissue plasminogen activator, is the generation of transient thrombin and release of clot-bound thrombin that promotes reformation of clots. In order to obtain anti-thrombotic as well as clot-specificity properties in SK, cDNAs encoding the EGF 4,5,6 domains of human thrombomodulin were fused with that of streptokinase, either at its N- or C-termini, and expressed these in Pichia pastoris followed by purification and structural-functional characterization, including plasminogen activation, thrombin inhibition, and Protein C activation characteristics. Interestingly, the N-terminal EGF fusion construct (EGF-SK) showed plasmin-mediated plasminogen activation, whereas the C-terminal (SK-EGF) fusion construct exhibited ‘spontaneous’ plasminogen activation which is quite similar to SK i.e. direct activation of systemic HPG in absence of free HPN. Since HPN is normally absent in free circulation due to rapid serpin-based inactivation (such as alpha-2-antiplasmin and alpha-2-Macroglobin), but selectively present in clots, a plasmin-dependent mode of HPG activation is expected to lead to a desirable fibrin clot-specific response by the thrombolytic. Both the N- and C-terminal fusion constructs showed strong thrombin inhibition and Protein C activation properties as well, and significantly prevented re-occlusion in a specially designed assay. The EGF-SK construct exhibited fibrin clot dissolution properties with much-lowered levels of fibrinogenolysis, suggesting unmistakable promise in clot dissolver therapy with reduced hemorrhage and re-occlusion risks.  相似文献   

5.
Streptokinase (SK) and staphylokinase form cofactor-enzyme complexes that promote the degradation of fibrin thrombi by activating human plasminogen. The unique abilities of streptokinase to nonproteolytically activate plasminogen or to alter the interactions of plasmin with substrates and inhibitors may be the result of high affinity binding mediated by the streptokinase beta-domain. To examine this hypothesis, a chimeric streptokinase, SKbetaswap, was created by swapping the SK beta-domain with the homologous beta-domain of Streptococcus uberis Pg activator (SUPA or PauA, SK uberis), a streptokinase that cannot activate human plasminogen. SKbetaswap formed a tight complex with microplasminogen with an affinity comparable with streptokinase. The SKbetaswap-plasmin complex also activated human plasminogen with catalytic efficiencies (k(cat)/K(m) = 16.8 versus 15.2 microm(-1) min(-1)) comparable with streptokinase. However, SKbetaswap was incapable of nonproteolytic active site generation and activated plasminogen by a staphylokinase mechanism. When compared with streptokinase complexes, SKbetaswap-plasmin and SKbetaswap-microplasmin complexes had altered affinities for low molecular weight substrates. The SKbetaswap-plasmin complex also was less resistant than the streptokinase-plasmin complex to inhibition by alpha(2)-antiplasmin and was readily inhibited by soybean trypsin inhibitor. Thus, in addition to mediating high affinity binding to plasmin(ogen), the streptokinase beta-domain is required for nonproteolytic active site generation and specifically modulates the interactions of the complex with substrates and inhibitors.  相似文献   

6.
Native Glu-human plasminogen (Mr approximately 92,000 with NH2-terminal glutamic acid) is able to combine directly with streptokinase in an equivalent molar ratio, to yield a stoichiometric complex. The plasminogen moiety in the complex then undergoes streptokinase-induced conformational changes. As a result of such, an active center develops in the plasminogen moiety of the complex. This proteolytically active complex then activates plasminogen in the complex to plasmin and at least two peptide bonds are cleaved in the process. The data presented in this paper reveal that initially an internal peptide bond of plasminogen (in the complex) is cleaved to yield a two-chain, disulfide-linked plasmin molecule. The heavy chain (Mr approximately 67,000 with NH2-terminal glutamic acid) of this plasmin molecule has an identical NH2-terminal amico acid as the native plasminogen. The light chain (Mr approximately 25,000 with NH2-terminal valine) of plasmin is known to be derived from the COOH-terminal portion of the parent plasminogen molecule. A second peptide is then cleaved from the NH2-terminal end of the heavy chain of plasmin producing a proteolytically modified heavy chain (Mr =60.000 with NH2-terminal lysine). This cleavage of the NH2-terminal peptide from the heavy chain of plasmin is shown to be mediated by the dissociated free plasmin present in the activation mixture. Plasmin in the streptokinase-plasmin complex is unable to cleave this NH2-terminal peptide. This same NH2-terminal peptide can also be cleaved from native Glu-plasminogen or from the Glu-plasminogen-streptokinase complex by free plasmin and not by a complex of streptokinase-plasmin. From these studies we conclude (a) in the streptokinase-plasminogen complex, the NH2-terminal peptide need not be released prior to the cleavage of the essential Arg-Val peptide bond which leads to the formation of a two chain plasmin molecule and (b) that this peptide is cleaved from the native plasminogen or from the heavy chain of the initially formed plasmin in the streptokinase complex by free plasmin and not by the plasmin associated with streptokinase. In agreement with this, plasmin associated with streptokinase was unable to cleave the NH2-terminal peptide from the isolated native heavy chain possessing glutamic acid as the NH2-terminal amino acid; whereas free plasmin readily cleaved this peptide from the same isolated Glu-heavy chain.  相似文献   

7.
Several indirect plasminogen (Pg) activators are known including streptokinase and the monoclonal antibody IV-Ic, whose mechanism of activation is well studied. To characterize thermodynamically the activation of Pg by streptokinase (SK) and the monoclonal antibody (mAB) IV-Ic, the activation energies were calculated for various reaction stages. Activation energy of 7.4 kcal/mol was determined for the interaction of the chromogenic substrate S-2251 with plasmin (Pm) and activated equimolar complexes Pm-SK and Pg*SK at the steady-state reaction stage, and 18.7 kcal/mol with the complexes Pg*IV-Ic. A 2.5-fold increase in the energy of activation for the Pg*IV-Ic complex suggests a more intricate mechanism of its interaction with the substrate. At the stage of increasing active center concentrations and the formation of activated complexes Pg*SK and Pg*mAB IV-Ic, the activation energy was found to be 10.5 and 38 kcal/mol, respectively. At this reaction stage the conformational rearrangement of Pg molecule with the formation of active center is the limiting stage determining the reaction rate. Unexpectedly high energy of activation at the second stage of interaction between mAB IV-Ic and Pg suggests several simultaneous reactions and complexity of conformation rearrangement in the Pg molecule in activated complexes, thus requiring large energy expense. Formation of the active center is probably accompanied by its transition within a narrow temperature range into another conformation state with the change in activation parameters of the reaction. Quantitative evaluation of the studied reactions from the perspective of thermodynamics of the enzymatic reactions gives more comprehensive characteristics of the activation mechanism.  相似文献   

8.
D P Kosow 《Biochemistry》1975,14(20):4459-4465
A method of determining the initial rate of plasminogen activation has been developed. The method has been used to investigate the mechanism of activation of human plasminogen by streptokinase. Plasmin formation follows saturation kinetics. Inhibition of plasmin formation by epsilon-aminocaproic acid is uncompetitive with a Ki of 0.6 mM. A model consistent with the data is that streptokinase induces a conformational change in the plasminogen molecule, producing an active center which cleaves an internal peptide bond to produce plasmin. Thus, streptokinase functions as a catalytic allosteric effector.  相似文献   

9.
Plasmin, the enzymatically active form of plasminogen, can activate several matrix metalloproteinases (MMPs). In this study, we investigated the activation of MMP-1, one of the major interstitial collagenases, by plasmin which was generated on the surface of Staphylococcus aureus cells. Plasmin bound to plasminogen receptors on S. aureus degraded the major (125)I-labeled 55-kDa proMMP-1 into the 42-kDa form corresponding to the size of active MMP-1. MMP-1 formed by S. aureus-bound plasmin was also enzymatically active as judged by digestion of the synthetic collagenase substrate, DNP-Pro-Leu-Gly-Leu-Trp-Ala-D-Arg-NH(2). The finding that, in MMP-1 molecules generated either by soluble plasmin or by S. aureus-bound plasmin, the amino-terminal amino acid sequences were identical indicated that the activation mechanisms of the two plasmin forms do not differ from each other. The present observations emphasise and broaden the physiological importance of bacterial plasminogen receptors. In addition to direct proteolytic effects on components of the extracellular matrix, receptor-bound plasmin is also capable of initiating an MMP-1-dependent matrix-degrading enzymatic cascade.  相似文献   

10.
Bacterial plasminogen activators differ from each other in their mechanism of plasminogen activation besides their host specificity. Three‐domain streptokinase (SK) and two‐domain PauA generate nonproteolytic active site center in their cognate partner plasminogen but their binary activator complexes are resistant to α2‐antiplasmin (a2AP) inhibition causing nonspecific plasminogen activation in plasma. In contrast, single‐domain plasminogen activator, staphylokinase (SAK), requires proteolytic cleavage of human plasminogen into plasmin for the active site generation, and this activator complex is inhibited by a2AP. The single‐domain plasminogen activator, PadA, from Streptococcus dysgalatiae, having close sequence and possible structure homology with SAK, was recently reported to activate bovine Pg in a nonproteolytic manner similar to SK. We report hereby that the binary activator complex of PadA with bovine plasminogen is inhibited by a2AP and PadA is recycled from this complex to catalyze the activation of plasminogen in the clot environment, where it is completely protected from a2AP inhibition. Catalytic efficiency of the activator complex formed by PadA and bovine plasminogen is amplified several folds in the presence of cyanogen bromide digested fibrinogen but not by intact fibrinogen indicating that PadA may be highly efficient at the fibrin surface. The present study, thus, demonstrates that PadA is a unique single‐domain plasminogen activator that activates bovine plasminogen in a fibrin‐targeted manner like SAK. The sequence optimization by PadA for acquiring the characteristics of both SK and SAK may be exploited for the development of efficient and fibrin‐specific plasminogen activators for thrombolytic therapy.  相似文献   

11.
1. Several hypotheses have been advanced to explain the activating function of streptokinase. The predominant hypothesis suggests a stable equimolar streptokinase-plasmin(ogen) complex, activating free plasminogen by an active centre, which is located in the plasmin(ogen) part of the complex. 2. This hypothesis cannot explain a number of phenomena and certain accumulated experimental data, for example: rabbit and bovine plasminogen activation by streptokinase, not forming stable complexes with these plasminogens; possible activation with pH less than or equal to 2, in the presence of urea, during modification of streptokinase tyrosine residues, i.e. when these two proteins cannot form a stable complex. 3. On the basis of acquired experimental data the following concept is suggested: the activating function of streptokinase is oxygen-dependent and is realised with the help of superoxide radical due to the O(2-.)-generating ability of plasminogen and the O(2-.)-converting ability of streptokinase.  相似文献   

12.
The NH(2) terminus (residues 1-59) of streptokinase (SK) is a molecular switch that permits fibrin-independent plasminogen activation. Targeted mutations were made in recombinant (r) SK1-59 to identify structural interactions required for this process. Mutagenesis established the functional roles of Phe-37and Glu-39, which were projected to interact with microplasmin in the activator complex. Mutation of Leu-42 (rSK1-59(L42A)), a conserved residue in the SK fibronectin motif that lacks interactions with microplasmin, strongly reduced plasminogen activation (k(cat) decreased 50-fold) but not amidolysis (k(cat) decreased 1.5-fold). Otherwise rSK1-59(L42A) and native rSK1-59 were indistinguishable in several parameters. Both displayed saturable and specific binding to Glu-plasminogen or the remaining SK fragment (rSKDelta59). Similarly rSK1-59 and rSK1-59(L42A) bound simultaneously to two different plasminogen molecules, indicating that both plasminogen binding sites were intact. However, when bound to SKDelta59, rSK1-59(L42A) was less effective than rSK1-59 in restructuring the native conformation of the SK A domain, as detected by conformation-dependent monoclonal antibodies. In the light of previous studies, these data provide evidence that SK1-59 contributes to fibrin-independent plasminogen activation through 1) intermolecular interactions with the plasmin in the activator complex, 2) binding interactions with the plasminogen substrate, and 3) intramolecular interactions that structure the A domain of SK for Pg substrate processing.  相似文献   

13.
Boxrud PD  Bock PE 《Biochemistry》2000,39(45):13974-13981
Binding of streptokinase (SK) to plasminogen (Pg) activates the zymogen conformationally and initiates its conversion into the fibrinolytic proteinase, plasmin (Pm). Equilibrium binding studies of SK interactions with a homologous series of catalytic site-labeled fluorescent Pg and Pm analogues were performed to resolve the contributions of lysine binding site interactions, associated changes between extended and compact conformations of Pg, and activation of the proteinase domain to the affinity for SK. SK bound to fluorescein-labeled [Glu]Pg(1) and [Lys]Pg(1) with dissociation constants of 624 +/- 112 and 38 +/- 5 nM, respectively, whereas labeled [Lys]Pm(1) bound with a 57000-fold tighter dissociation constant of 11 +/- 2 pM. Saturation of lysine binding sites with 6-aminohexanoic acid had no effect on SK binding to labeled [Glu]Pg(1), but weakened binding to labeled [Lys]Pg(1) and [Lys]Pm(1) 31- and 20-fold, respectively. At low Cl(-) concentrations, where [Glu]Pg assumes the extended conformation without occupation of lysine binding sites, a 23-fold increase in the affinity of SK for labeled [Glu]Pg(1) was observed, which was quantitatively accounted for by expression of new lysine binding site interactions. The results support the conclusion that the SK affinity for the fluorescent Pg and Pm analogues is enhanced 13-16-fold by conversion of labeled [Glu]Pg to the extended conformation of the [Lys]Pg derivative as a result of lysine binding site interactions, and is enhanced 3100-3500-fold further by the increased affinity of SK for the activated proteinase domain. The results imply that binding of SK to [Glu]Pg results in transition of [Glu]Pg to an extended conformation in an early event in the SK activation mechanism.  相似文献   

14.
Wang S  Reed GL  Hedstrom L 《Biochemistry》1999,38(16):5232-5240
Plasminogen (Plgn) is usually activated by proteolytic cleavage of Arg561-Val562. The new N-terminal amino group of Val562 forms a salt bridge with Asp740, creating the active protease plasmin (Pm). However, streptokinase (SK) binds to Plgn, generating an active protease in a poorly understood, nonproteolytic process. We hypothesized that the N-terminus of SK, Ile1, substitutes for the N-terminal Val562 of Pm, forming an analogous salt bridge with Asp740. SK initially forms an inactive complex with Plgn, which subsequently rearranges to create an active complex; this rearrangement is rate limiting at 4 degrees C. SK.Plgn efficiently hydrolyzes amide substrates at 4 degrees C, although DeltaIle1-SK. Plgn has no amidolytic activity. DeltaIle1-SK prevents formation of wild-type SK.Plgn. These results indicate that DeltaIle1-SK forms the initial inactive complex with plasminogen, but cannot form the active complex. However, when the experiment is performed at 37 degrees C, amidolytic activity is observed when DeltaIle1-SK is added to plasminogen. SDS-PAGE analysis demonstrates that the amidolytic activity results from the formation of DeltaIle1-SK.Pm. To further demonstrate that the activity of DeltaIle1-SK requires the conversion of Plgn to Pm, we characterized the reaction of SK with a mutant microplasminogen, Arg561Ala-microPlgn, that cannot be converted to microplasmin. Amidolytic activity is observed when Arg561Ala-microPlgn is incubated with wild-type SK at 37 degrees C; however, no amidolytic activity is observed in the presence of DeltaIle1-SK. These observations demonstrate that the amidolytic activity of DeltaIle1-SK at 37 degrees C requires the conversion of Plgn to Pm. Our findings indicate that Ile1 of SK is required for the nonproteolytic activation of Plgn by SK and are consistent with the hypothesis that Ile1 of SK substitutes for Val562 of Pm.  相似文献   

15.
The activation of human [Glu1]plasminogen by human single-chain urokinase   总被引:1,自引:0,他引:1  
The activation of human [Glu1]plasminogen ([Glu1]Pg) by single-chain human urokinase (SCUKase) displays a substantial lag phase at physiological levels of [Glu1]Pg. Employing a monoclonal antibody that exhibits a high level of specificity for SCUKase, as compared to two-chain urokinase (TCUKase), we have demonstrated conclusively that during this lag phase a progressive loss of SCUKase occurs, most likely resulting from its conversion to TCUKase, in a reaction catalyzed by plasmin (HPm). The overall activation of [Glu1]Pg by SCUKase is inhibited by physiological levels of Cl- and stimulated by epsilon-amino caproic acid. Kinetic studies demonstrate that both these effects are based on first, the reaction of [Glu1]Pg with the TCUKase that is formed during the activation, and, second, the concomitant rate at which HPm is provided for the conversion of SCUKase to TCUKase. The results indicate that at physiological levels of [Glu1]Pg, its activation in the presence of SCUKase is regulated in one manner by the rate at which SCUKase is converted to TCUKase, in a process that is strongly influenced by physiological levels of Cl-. Finally, and importantly, we show that SCUKase possesses very little, if any, inherent ability to activate [Glu1]Pg at a rate that influences the kinetics of HPm generation under physiological conditions of [Glu1]Pg and Cl- concentrations.  相似文献   

16.
Streptokinase is an extracellular protein produced by several strains of streptococci. It functions in the species-specific conversion of plasminogen to plasmin. In this paper we describe the purification of streptokinase by affinity chromatography on human plasminogen acylated with p'-nitrophenyl p-guanidinobenzoate. The acylated and non-acylated plasminogen and plasmin were coupled to cyanogen bromide-activated Sepharose 4B and evaluated for streptokinase purification. These results show that a homogeneous preparation of streptokinase with high specific activity and high yield can be obtained using acylated plasminogen. This method permits the binding of one milligram of streptokinase per milliliter of swollen gel.  相似文献   

17.
Invasive bacterial pathogens intervene at various stages and by various mechanisms with the mammalian plasminogen/plasmin system. A vast number of pathogens express plasmin(ogen) receptors that immobilize plasmin(ogen) on the bacterial surface, an event that enhances activation of plasminogen by mammalian plasminogen activators. Bacteria also influence secretion of plasminogen activators and their inhibitors from mammalian cells. The prokaryotic plasminogen activators streptokinase and staphylokinase form a complex with plasmin(ogen) and thus enhance plasminogen activation. The Pla surface protease of Yersinia pestis resembles mammalian activators in function and converts plasminogen to plasmin by limited proteolysis. In essence, plasminogen receptors and activators turn bacteria into proteolytic organisms using a host-derived system. In Gram-negative bacteria, the filamentous surface appendages fimbriae and flagella form a major group of plasminogen receptors. In Gram-positive bacteria, surface-bound enzyme molecules as well as M-protein-related structures have been identified as plasminogen receptors, the former receptor type also occurs on mammalian cells. Plasmin is a broad-spectrum serine protease that degrades fibrin and noncollagenous proteins of extracellular matrices and activates latent procollagenases. Consequently, plasmin generated on or activated by Haemophilus influenzae, Salmonella typhimurium, Streptococcus pneumoniae, Y. pestis, and Borrelia burgdorferi has been shown to degrade mammalian extracellular matrices. In a few instances plasminogen activation has been shown to enhance bacterial metastasis in vitro through reconstituted basement membrane or epithelial cell monolayers. In vivo evidence for a role of plasminogen activation in pathogenesis is limited to Y. pestis, Borrelia, and group A streptococci. Bacterial proteases may also directly activate latent procollagenases or inactivate protease inhibitors of human plasma, and thus contribute to tissue damage and bacterial spread across tissue barriers.  相似文献   

18.
The plasminogen activator (PA)/plasminogen/plasmin proteolytic system has begun to be taken into account in the fertilization process. In this study, we demonstrated the presence of plasminogen in the extracellular matrix (ECM) of hamster oocytes by indirect immunofluorescence and immunoperoxidase assays using human anti-plasminogen. Plasminogen appeared first on the zona pellucida (ZP) of ovarian oocytes and later on the plasma membrane (PM) of oviducal eggs. This would suggest that oviducal oocytes modulate the expression of plasminogen binding sites on the PM. Human plasminogen as well as that of other species, known to be activated by streptokinase (SK), is rapidly converted to a plasmin-SK complex. We demonstrated the rapid formation of a SK-plasminogen complex that yields plasmin in the blood plasma of hamsters. Both the in vivo and in vitro SK treatment of eggs from superovulated female hamsters caused a decreased in the ZP dissolution time (ZPdt), probably either due to the proteolytic effect of plasmin or due to the SK-Plasminogen. Extracellular proteolysis assays carried out on agar-casein plates confirmed the proteolytic activity of SK-incubated eggs; the controls, on the contrary, failed to display a halo. These studies show that (1) superovulated hamster eggs contain plasminogen in their ECM, (2) oviducal eggs exhibit plasminogen on their PMs, indicating the presence of their corresponding binding sites, (3) in hamsters, SK, a non-enzymatic exogenous protein would be capable of activating ECM plasminogen to plasmin, and (4) the complex SK-plasminogen and/or the plasmin are capable of changing the ZPdt with alpha-chymotrypsin.  相似文献   

19.
Our previously hypothesized mechanism for the pathway of plasminogen (Pg) activation by streptokinase (SK) was tested by the use of full time course kinetics. Three discontinuous chromogenic substrate initial rate assays were developed with different quenching conditions that enabled quantitation of the time courses of Pg depletion, plasmin (Pm) formation, transient formation of the conformationally activated SK·Pg* catalytic complex intermediate, formation of the SK·Pm catalytic complex, and the free concentrations of Pg, Pm, and SK. Analysis of full time courses of Pg activation by five concentrations of SK along with activity-based titrations of SK·Pg* and SK·Pm formation yielded rate and dissociation constants within 2-fold of those determined previously by continuous measurement of parabolic chromogenic substrate hydrolysis and fluorescence-based equilibrium binding. The results obtained with orthogonal assays provide independent support for a mechanism in which the conformationally activated SK·Pg* complex catalyzes an initial cycle of Pg proteolytic conversion to Pm that acts as a trigger. Higher affinity binding of the formed Pm to SK outcompetes Pg binding, terminating the trigger cycle and initiating the bullet catalytic cycle by the SK·Pm complex that converts the residual Pg into Pm. The new assays can be adapted to quantitate SK-Pg activation in the context of SK- or Pg-directed inhibitors, effectors, and SK allelic variants. To support this, we show for the first time with an assay specific for SK·Pg* that fibrinogen forms a ternary SK·Pg*·fibrinogen complex, which assembles with 200-fold enhanced SK·Pg* affinity, signaled by a perturbation of the SK·Pg* active site.  相似文献   

20.
A direct solid phase chromogenic assay has been developed for the detection of plasmin (EC 3.4.21.7), generated by the interaction of a nitrocellulose-bound plasminogen activator, using the plasmin specific tripeptide substrate, H-D-valyl-leucyl-lysine - p-nitroaniline. para-Nitroaniline released by the cleavage of the lysine - p-nitroaniline bound by plasmin was derivatized to its diazonium salt and subsequently coupled to N-1-napthylethylenediamine in situ to form a diazoamino of an intense red color at the site of the plasminogen activator. This method was used to assay for the streptococcal plasminogen activator, streptokinase, not only in crude bacterial supernatants, but also to detect streptokinase secreted by individual bacterial colonies. In addition, this solid phase assay was used to identify monoclonal antibodies specific for streptokinase which could inhibit the activation of human plasminogen by streptokinase. This method also permitted simultaneous immunological and biochemical identification of the plasminogen activator, thus permitting unequivocal comparative observations. This assay is quantitative and sensitive to nanogram amounts of activator comparable to those obtained with soluble assays. This method may also be applicable for the detection of other plasminogen activators, such as tissue plasminogen activator, urokinase, and staphylokinase, and also for the detection of immobilized proteases which can cleave other substrates derivatized with p-nitroaniline. The reagents used in this assay are inexpensive and easy to prepare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号