首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Oxidized phospholipids, including 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) and 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), typically present in minimally modified low density lipoprotein, have been found in atherosclerotic lesions. These compounds are gaining increasing importance as inducers of different cellular responses (inflammation, proliferation, or cell death). It was the aim of this study to understand their impact on intracellular signal transduction pathways that are responsible for these biological effects. We found that in arterial smooth muscle cells, PGPC and POVPC activated sphingomyelinases, in particular the acid isoform, which is known to participate in the very early phase of apoptotic stress responses. In addition, mitogen-activated protein kinases, which are involved in induction of stress response and apoptosis were phosphorylated (activated). Finally, activation of caspase 3 was observed, showing that stimulation of smooth muscle cells with POVPC and PGPC is associated with apoptosis. Stimulation of all these enzymes by the oxidized phospholipids almost perfectly matched their activation by minimally modified LDL. Consequently, these phospholipids seem to be responsible for the effect of this particle on cell signaling. Survival and proliferation pathways including NF-kappa B or AKT kinase were not induced by POVPC and PGPC. Experiments with a specific inhibitor of acid sphingomyelinase named NB6 showed that this enzyme plays a central role in mediating the apoptotic effects of the oxidized lipids. Thus, we conclude that modified phospholipids induce signaling cascades via activation of acid sphingomyelinase finally leading to apoptosis of smooth muscle cells, which is a detrimental process in the development of atherosclerosis.  相似文献   

2.
The omega-3 fatty acid, alpha linolenic acid (ALA) found in plant-derived foods induces significant cardiovascular benefits when ingested. ALA may be cardioprotective during ischemia; however, the mechanism(s) responsible for this effect is unknown. Isolated adult rat cardiomyocytes were exposed to medium containing ALA for 24 h and then exposed to non-ischemic (control), simulated ischemia (ISCH), or simulated ischemia/reperfusion (IR) conditions. Cardiomyocyte phospholipids were extracted and analyzed by an HPLC/electrospray ionization tandem mass spectrometry system. Pre-treatment of cells with ALA resulted in a significant incorporation of ALA within cardiomyocyte phosphatidylcholine. Cell death, DNA fragmentation and caspase-3 activity increased during ischemia and ischemia/reperfusion. Two pro-apoptotic oxidized phosphatidylcholine (OxPC) species, 1-palmitoyl-2-(5′-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) were significantly increased during both ischemia and ischemia/reperfusion. Pre-treatment of the cells with ALA resulted in a significant reduction in cell death during ischemia and ischemia/reperfusion challenge. Apoptosis was also inhibited during ischemia and ischemia/reperfusion as shown by reduced DNA fragmentation and decreased caspase activation. ALA pre-treatment significantly decreased the production of POVPC and PGPC during ischemia and ischemia/reperfusion. ALA pre-treatment also significantly increased in resting Ca2+ during ischemia or ischemia/reperfusion but did not improve Ca2+ transients. ALA protects the cardiomyocyte from apoptotic cell death during simulated ISCH and IR by inhibiting the production of specific pro-apoptotic OxPC species. OxPCs represent a viable interventional target to protect the heart during ischemic challenge.  相似文献   

3.
4.
5.
There is ample evidence that both acid (ASMase) and neutral (NSMase) sphingomyelinases play a role in cell death so inhibitors of either enzyme could have significant value as protectors against neurodegeneration. We used a fluorogenic sphingomyelinase substrate, 6-hexadecanoylamino-4-methylumbelliferyl-phosphorylcholine, and a [(14)C]choline-labeled sphingomyelin substrate to screen large numbers of phosphocompounds for inhibition of ASMase in extracts of human oligodendroglioma cells (HOG) and neonatal rat oligodendrocytes. Non-competitive inhibition was observed with inorganic phosphate and AMP, which was a more potent inhibitor of ASMase than cyclic AMP, ADP or ATP. However, other nucleotide phosphates, sugar phosphates, nucleotide sugars and glycerol phosphate did not inhibit ASMase. Our key finding was that phosphatidyl-myo-inositol 3,4,5-triphosphate [PtdIns (3,4,5)P(3)] was a much more potent inhibitor of ASMase than lysophosphatidic acid or phosphatidyl-myo-inositol 4,5-diphosphate [PtdIns(4,5)P(2)]. When PtdIns(3,4,5)P(3) was added to cultured cells we observed 50% inhibition of ASMase but no inhibition of other lysosomal hydrolases. After transfection of HOG cells with the tumor supressor phosphatase and tensin homolog protein (PTEN), which hydrolyses PtdIns(3,4,5)P(3) to PtdIns(4,5)P(2), we observed a two-fold increase in ASMase activity. Furthermore, the phosphatidylinositol-3-kinase inhibitor wortmannin (which reduces PtdIns(3,4,5)P(3) levels) also resulted in activation of ASMase. We propose that the small amount of ASMase activity associated with detergent-resistant cell membranes (Rafts) is regulated by PtdIns(3,4,5)P(3) and is most likely involved in receptor clustering and capping.  相似文献   

6.
Increased synthesis of hyaluronic acid (HA) is often associated with increased metastatic potential and invasivity of tumor cells. 4-Methylumbelliferone (MU) is an inhibitor of HA synthesis, and has been studied as a potential anti-tumor drug to inhibit the growth of primary tumors and distant metastasis of tumor cells. Although several studies reported that the anticancer effects of MU are mediated by inhibition of HA signaling, the mechanism still needs to be clarified. In a previous study we demonstrated the regulation of HA synthesis by ceramide, and now show how MU activated neutral sphingomyelinase2 (NSMase2) generates ceramides and mediates MU induced inhibition of HA synthesis, cell migration and invasion, and apoptosis of tumor cells. Using a HA enriched mouse oligodendroglioma cell line G26-24 we found that MU elevated the activity of NSMase2 and increased ceramide levels, which in turn increased phosphatase PP2A activity. Further, the activated PP2A reduced phosphorylation of Akt, decreased activities of HA synthase2 (HAS2) and calpains, and inhibited both the synthesis of HA, and the migration and invasion of G26-24 tumor cells. In addition, MU mediated ceramide stimulated activation of p53 and caspase-3, reduced SIRT1 expression and decreased G26-24 viability. The mechanism of the MU anticancer therefore initially involves NSMase2/ceramide/PP2A/AKT/HAS2/caspase-3/p53/SIRT1 and the calpain signaling pathway, suggesting that ceramides play a key role in the ability of a tumor to become aggressively metastatic and grow.  相似文献   

7.
Fibroblasts from the fro/fro mouse, with a deletion in the Smpd3 gene coding for the active site of neutral sphingomyelinase 2 (NSMase2), secreted increased amounts of hyaluronan (HA). This was reversed by transfection with the Smpd3 gene, suggesting a connection between sphingolipid and glycosaminoglycan metabolism. The deficiency of NSMase2 resulted in storage of sphingomyelin (SM) and cholesterol with a 50% reduction in ceramides (Cer). RT-PCR and Western blot analysis showed that increased HA secretion resulted from increased hyaluronan synthase 2 (HAS2) activity localized to sphingolipid-enriched lipid rafts. Although cholesterol levels were also elevated in lipid rafts from mouse fibroblasts deficient in lysosomal acid SMase activity (deletion of the Smpd1(-/-) gene), there was no increase in HA secretion. We then showed that in fro/fro fibroblasts, the reduced ceramide was associated with decreased phosphorylation of protein phosphatase 2A (PP2A) and increased phosphorylation of its substrate Akt-p, together with PI3K, PDK1, mTOR (mammalian target of rapamycin), and p70S6K, although PTEN was unaffected. Exogenous ceramide, as well as inhibitors of Akt (Akt inhibitor VIII), PI 3-kinase (LY294002 and wortmannin), and mTOR (rapamycin) reduced secretion of HA, whereas the NSMase2 inhibitor GW4869 increased HA synthesis and secretion. We propose that NSMase2/Cer are the key mediators of the regulation of HA synthesis, via microdomains and the Akt/mTOR pathway.  相似文献   

8.
Neurons (both primary cultures of 3-day rat hippocampal neurons and embryonic chick neurons) rapidly converted exogenous NBD-sphingomyelin (SM) to NBD-Cer but only slowly converted NBD-Cer to NBD-SM. This was confirmed by demonstrating low in vitro sphingomyelin synthase (SMS) and high sphingomyelinase (SMase) activity in neurons. Similar results were observed in a human neuroblastoma cell line (LA-N-5). In contrast, primary cultures of 3-day-old rat oligodendrocytes only slowly converted NBD-SM to NBD-Cer but rapidly converted NBD-Cer to NBD-SM. This difference was confirmed by high in vitro SMS and low SMase activity in neonatal rat oligodendrocytes. Similar results were observed in a human oligodendroglioma cell line. Mass-Spectrometric analyses confirmed that neurons had a low SM/Cer ratio of (1.5 : 1) whereas oligodendroglia had a high SM/Cer ratio (9 : 1). Differences were also confirmed by [3H]palmitate-labeling of ceramide, which was higher in neurons compared with oligodendrocytes. Stable transfection of human oligodendroglioma cells with neutral SMase, which enhanced the conversion of NBD-SM to NBD-Cer and increased cell death, whereas transfection with SMS1 or SMS2 enhanced conversion of NBD-Cer to NBD-SM and was somewhat protective against cell death. Thus, SMS rather than SMases may be more important for sphingolipid homeostasis in oligodendrocytes, whereas the reverse may be true for neurons.  相似文献   

9.
Oxidized phospholipids (OxPLs), including 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) and 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphocholine (POVPC) are among several biologically active derivatives that are generated during oxidation of low-density lipoproteins (LDLs). These OxPLs are factors contributing to pro-atherogenic effects of oxidized LDLs (OxLDLs), including inflammation, proliferation and death of vascular cells. OxLDL also elicits formation of the lipid messenger ceramide (Cer) which plays a pivotal role in apoptotic signaling pathways. Here we report that both PGPC and POVPC are cytotoxic to cultured macrophages and induce apoptosis in these cells which is associated with increased cellular ceramide levels after several hours. In addition, exposure of RAW 264.7 cells to POVPC and PGPC under the same conditions resulted in a significant increase in ceramide synthase activity, whereas, acid or neutral sphingomyelinase activities were not affected. PGPC is not only more toxic than POVPC, but also a more potent inducer of ceramide formation by activating a limited subset of CerS isoforms. The stimulated CerS activities are in line with the C16-, C22-, and C24:0-Cer species that are generated under the influence of the OxPL. Fumonisin B1, a specific inhibitor of CerS, suppressed OxPL-induced ceramide generation, demonstrating that OxPL-induced CerS activity in macrophages is responsible for the accumulation of ceramide. OxLDL elicits the same cellular ceramide and CerS effects. Thus, it is concluded that PGPC and POVPC are active components that contribute to the capacity of this lipoprotein to elevate ceramide levels in macrophages.  相似文献   

10.
Chronic exposure of blood vessels to cardiovascular risk factors such as free fatty acids, LDL-cholesterol, homocysteine and hyperglycemia can give rise to endothelial dysfunction, partially due to decreased synthesis and bioavailability of nitric oxide (NO). Many of these same risk factors have been shown to induce endoplasmic reticulum (ER) stress in endothelial cells. The objective of this study was to examine the mechanisms responsible for endothelial dysfunction mediated by ER stress. ER stress elevated both intracellular and plasma membrane (PM) cholesterols in BAEC by ~3-fold, indicated by epifluorescence and cholesterol oxidase methods. Increases in cholesterol levels inversely correlated with neutral sphingomyelinase 2 (NSMase2) activity, endothelial nitric oxide synthase (eNOS) phospho-activation and NO-production. To confirm that ER stress-induced effects on PM cholesterol were a direct consequence of decreased NSMase2 activity, enzyme expression was either enhanced or knocked down in BAEC. NSMase2 over-expression did not significantly affect cholesterol levels or NO-production, but increased eNOS phosphorylation by ~1.7-fold. Molecular knock down of NSMase2 decreased eNOS phosphorylation and NO-production by 50% and 40%, respectively while increasing PM cholesterol by 1.7-fold and intracellular cholesterol by 2.7-fold. Furthermore, over-expression of NSMase2 in ER-stressed BAEC lowered cholesterol levels to within control levels as well as nearly doubled the NO production, restoring it to ~74% and 68% of controls using tunicamycin and palmitate, respectively. This study establishes NSMase2 as a pivotal enzyme in the onset of endothelial ER stress-mediated vascular dysfunction as its inactivation leads to the attenuation of NO production and the elevation of cellular cholesterol.  相似文献   

11.
The generation of oxidized phospholipids in lipoproteins has been linked to vascular inflammation in atherosclerotic lesions. Products of phospholipid oxidation increase endothelial activation; however, their effects on macrophages are poorly understood, and it is unclear whether these effects are regulated by the biochemical pathways that metabolize oxidized phospholipids. We found that incubation of 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) with THP-1-derived macrophages upregulated the expression of cytokine genes, including granulocyte/macrophage colony-stimulating factor (GM-CSF), tumor necrosis factor (TNF)-α, monocyte chemotactic protein 1 (MCP-1), interleukin (IL)-1β, IL-6, and IL-8. In these cells, reagent POVPC was either hydrolyzed to lyso-phosphatidylcholine (lyso-PC) or reduced to 1-palmitoyl-2-(5-hydroxy-valeroyl)-sn-glycero-3-phosphocholine (PHVPC). Treatment with the phospholipase A(2) (PLA(2)) inhibitor, pefabloc, decreased POVPC hydrolysis and increased PHVPC accumulation. Pefabloc also increased the induction of cytokine genes in POVPC-treated cells. In contrast, PHVPC accumulation and cytokine production were decreased upon treatment with the aldose reductase (AR) inhibitor, tolrestat. In comparison with POVPC, lyso-PC led to 2- to 3-fold greater and PHVPC 10- to 100-fold greater induction of cytokine genes. POVPC-induced cytokine gene induction was prevented in bone-marrow derived macrophages from AR-null mice. These results indicate that although hydrolysis is the major pathway of metabolism, reduction further increases the proinflammatory responses to POVPC. Thus, vascular inflammation in atherosclerotic lesions is likely to be regulated by metabolism of phospholipid aldehydes in macrophages.  相似文献   

12.
Carbonic anhydrase (CA) was studied in primary monolayer cultures from neonatal rat cerebral hemispheres with both immunocytochemical and biochemical techniques. In such cultures, which consist predominantly of astrocytes, immunocytochemical staining for CA using antibody raised against the type II enzyme from rat erythrocytes resulted in positive staining of the flat, glial fibrillary acidic protein-positive, astrocytic monolayer. Smaller, process-bearing, round cells that grew on top of the astrocytes stained intensely for CA. We estimated that these cells represented 1% or less of the total cells in the cultures, and they have been identified by others as oligodendrocytes. The intensity of the staining of astrocytes for CA could be increased to that observed in oligodendrocytes when the astrocytes were made to round up and form processes by treatment with 2',3'-dibutyryl cyclic AMP. Enzymatic assays showed that CA activity of the cultures after 3 weeks of growth was 2.5- to 5-fold less than that found for cerebral homogenates from perfused 3-week-old rat brains. However, both activities were totally inhibited by acetazolamide with an I50 of 10(-8) M, confirming that both rat brain and the astrocyte cultures possess the high-activity type II enzyme. CA-II activity was unaffected by treatment of the cultures with a method reported to remove oligodendrocytes. Thus, the immunocytochemical and biochemical studies reported here demonstrate that astroglial cells in primary cultures from neonatal rat brain contain CA-II.  相似文献   

13.
14.
Chronic exposure of blood vessels to cardiovascular risk factors such as free fatty acids, LDL-cholesterol, homocysteine and hyperglycemia can give rise to endothelial dysfunction, partially due to decreased synthesis and bioavailability of nitric oxide (NO). Many of these same risk factors have been shown to induce endoplasmic reticulum (ER) stress in endothelial cells. The objective of this study was to examine the mechanisms responsible for endothelial dysfunction mediated by ER stress. ER stress elevated both intracellular and plasma membrane (PM) cholesterols in BAEC by ~ 3-fold, indicated by epifluorescence and cholesterol oxidase methods. Increases in cholesterol levels inversely correlated with neutral sphingomyelinase 2 (NSMase2) activity, endothelial nitric oxide synthase (eNOS) phospho-activation and NO-production. To confirm that ER stress-induced effects on PM cholesterol were a direct consequence of decreased NSMase2 activity, enzyme expression was either enhanced or knocked down in BAEC. NSMase2 over-expression did not significantly affect cholesterol levels or NO-production, but increased eNOS phosphorylation by ~ 1.7-fold. Molecular knock down of NSMase2 decreased eNOS phosphorylation and NO-production by 50% and 40%, respectively while increasing PM cholesterol by 1.7-fold and intracellular cholesterol by 2.7-fold. Furthermore, over-expression of NSMase2 in ER-stressed BAEC lowered cholesterol levels to within control levels as well as nearly doubled the NO production, restoring it to ~ 74% and 68% of controls using tunicamycin and palmitate, respectively. This study establishes NSMase2 as a pivotal enzyme in the onset of endothelial ER stress-mediated vascular dysfunction as its inactivation leads to the attenuation of NO production and the elevation of cellular cholesterol.  相似文献   

15.
Deprenyl and benzofenone-type congeners of alpha-mangostin 1 have been synthesized to understand their role for the inhibitory activity against sphingomyelinase (SMase). While removal of the prenyl group of the right side (11 and 12) caused loss of the selectivity between ASMase (acidic sphingomyelinase) and NSMase (neutral sphingomyelinase), the prenyl group of the left side appeared to increase the inhibitory activities (16 and 17).  相似文献   

16.

Background

Probiotics appear to be beneficial in inflammatory bowel disease, but their mechanism of action is incompletely understood. We investigated whether probiotic-derived sphingomyelinase mediates this beneficial effect.

Methodology/Principal Findings

Neutral sphingomyelinase (NSMase) activity was measured in sonicates of the probiotic L. brevis (LB) and S. thermophilus (ST) and the non-probiotic E. coli (EC) and E. faecalis (EF). Lamina propria mononuclear cells (LPMC) were obtained from patients with Crohn''s disease (CD) and Ulcerative Colitis (UC), and peripheral blood mononuclear cells (PBMC) from healthy volunteers, analysing LPMC and PBMC apoptosis susceptibility, reactive oxygen species (ROS) generation and JNK activation. In some experiments, sonicates were preincubated with GSH or GW4869, a specific NSMase inhibitor. NSMase activity of LB and ST was 10-fold that of EC and EF sonicates. LB and ST sonicates induced significantly more apoptosis of CD and UC than control LPMC, whereas EC and EF sonicates failed to induce apoptosis. Pre-stimulation with anti-CD3/CD28 induced a significant and time-dependent increase in LB-induced apoptosis of LPMC and PBMC. Exposure to LB sonicates resulted in JNK activation and ROS production by LPMC. NSMase activity of LB sonicates was completely abrogated by GW4869, causing a dose-dependent reduction of LB-induced apoptosis. LB and ST selectively induced immune cell apoptosis, an effect dependent on the degree of cell activation and mediated by bacterial NSMase.

Conclusions

These results suggest that induction of immune cell apoptosis is a mechanism of action of some probiotics, and that NSMase-mediated ceramide generation contributes to the therapeutic effects of probiotics.  相似文献   

17.
The oxidized phospholipids (oxPl) 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) and 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) are cytotoxic components of oxidized LDL (oxLDL). Sustained exposure to oxLDL or isolated oxPl induces apoptotic signaling in vascular cells, which is a hallmark of the late phase of atherosclerosis. Activation of sphingomyelinase, the coordinate formation of ceramide and activation of caspase 3/7 as well as the activation of stress-associated kinases are causally involved in this process. Here, we provide evidence for a role of PKCδ in oxPl cytotoxicity. Silencing of the enzyme by siRNA significantly reduced caspase 3/7 activation in RAW 264.7 macrophages under the influence of oxPl. Concomitantly, PKCδ was phosphorylated as a consequence of cell exposure to PGPC or POVPC. Single molecule fluorescence microscopy provided direct evidence for oxPl-protein interaction. Both oxPl recruited an RFP-tagged PKCδ to the plasma membrane in a concentration-dependent manner. In addition, two color cross-correlation number and brightness (ccN&B) analysis of the molecular motions revealed that fluorescently labeled PGPC or POVPC analogs co-diffuse and are associated with the fluorescent protein kinase in live cells. The underlying lipid-protein interactions may be due to chemical bonding (imine formation between the phospholipid aldehyde POVPC with protein amino groups) and physical association (with POVPC or PGPC). In summary, our data supports the assumption that PKCδ acts as a proapototic kinase in oxPl-included apoptosis of RAW 264.7 macrophages. The direct association of the bioactive lipids with this enzyme seems to be an important step in the early phase of apoptotic signaling.  相似文献   

18.
19.
Astrocytes synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN) an endogenous ligand of both central-type benzodiazepine (CBR) and metabotropic receptors. We have recently shown that ODN exerts a protective effect against hydrogen peroxide (H(2)O(2))-induced oxidative stress in astrocytes. The purpose of the present study was to determine the type of receptor and the transduction pathways involved in the protective effect of ODN in cultured rat astrocytes. We have first observed a protective activity of ODN at very low concentrations that was abrogated by the metabotropic ODN receptor antagonist cyclo(1-8)[DLeu(5)]OP, but not by the CBR antagonist flumazenil. We have also found that the metabotropic ODN receptor is positively coupled to adenylyl cyclase in astrocytes and that the glioprotective action of ODN upon H(2)O(2)-induced astrocyte death is PKA- and MEK-dependent, but PLC/PKC-independent. Downstream of PKA, ODN induced ERK phosphorylation, which in turn activated the expression of the anti-apoptotic gene Bcl-2 and blocked the stimulation by H(2)O(2) of the pro-apoptotic gene Bax. The effect of ODN on the Bax/Bcl-2 balance contributed to abolish the deleterious action of H(2)O(2) on mitochondrial membrane integrity and caspase-3 activation. Finally, the inhibitory effect of ODN on caspase-3 activity was shown to be PKA and MEK-dependent. In conclusion, the present results demonstrate that the potent glioprotective action of ODN against oxidative stress involves the metabotropic ODN receptor coupled to the PKA/ERK-kinase pathway to inhibit caspase-3 activation.  相似文献   

20.
We have previously shown that accumulation of ceramide, triggered by hydrogen peroxide (H(2)O(2)), induces apoptosis of human airway epithelial (HAE) cells. Under oxidant exposure, a lung sphingomyelinase (SMase) is activated and displays continued ceramide generation and pro-apoptotic signaling, thus leading to the pathological apoptosis that causes lung injury. In a search for a specific SMase that is modulated by oxidative stress, we recently cloned nSMase2 from monkey lung tissue and HAE cells. Here, we show that this nSMase2 is up-regulated by an oxidant (H(2)O(2)) and is inhibited by an antioxidant (glutathione (GSH)). Moreover, nSMase2 subcellular localization is governed by oxidant exposure, which leads to its preferential trafficking to the plasma membrane, where it generates ceramide and induces apoptosis. On the other hand, exposure to GSH results in nSMase2 trafficking to the nucleus, where it neither generates ceramide nor induces apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号