首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
F Faustinella  L C Smith  L Chan 《Biochemistry》1992,31(32):7219-7223
Lipoprotein lipase (LPL), hepatic lipase, and pancreatic lipase show high sequence homology to one another. The crystal structure of pancreatic lipase suggests that it contains a trypsin-like Asp-His-Ser catalytic triad at the active center, which is shielded by a disulfide bridge-bounded surface loop that must be repositioned before the substrate can gain access to the catalytic residues. By sequence alignment, the homologous catalytic triad in LPL corresponds to Asp156-His241-Ser132, absolutely conserved residues, and the homologous surface loop to residues 217-238, a poorly conserved region. To verify these assignments, we expressed in vitro wild-type LPL and mutant LPLs having single amino acid mutations involving residue Asp156 (to His, Ser, Asn, Ala, Glu, or Gly), His241 (to Asn, Ala, Arg, Gln, or Trp), or Ser132 (to Gly, Ala, Thu, or Asp) individually. All 15 mutant LPLs were totally devoid of enzyme activity, while wild-type LPL and other mutant LPLs containing substitutions in other positions were fully active. We further replaced the 22-residue LPL loop which shields the catalytic center either partially (replacing 6 of 22 residues) or completely with the corresponding hepatic lipase loop. The partial loop-replacement chimeric LPL was found to be fully active, and the complete loop-replacement mutant had approximately 60% activity, although the primary sequence of the hepatic lipase loop is quite different. In contrast, replacement with the pancreatic lipase loop completely inactivated the enzyme. Our results are consistent with Asp156-His241-Ser132 being the catalytic triad in lipoprotein lipase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
We are studying naturally occurring mutations in the gene for lipoprotein lipase (LPL) to advance our knowledge about the structure/function relationships for this enzyme. We and others have previously described 11 mutations in human LPL gene and until now none of these directly involves any of the residues in the proposed Asp156-His241-Ser132 catalytic triad. Here we report two separate probands who are deficient in LPL activity and have three different LPL gene haplotypes, suggesting three distinct mutations. Using polymerase chain reaction cloning and DNA sequencing we have identified that proband 1 is a compound heterozygote for a G----A transition at nucleotide 721, resulting in a substitution of asparagine for aspartic acid at residue 156, and a T----A transversion, resulting in a substitution of serine for cysteine at residues 216. Proband 2 is homozygous for an A----G base change at nucleotide 722, leading to a substitution of glycine for aspartic acid at residue 156. The presence of these mutations in the patients and available family members was confirmed by restriction analysis of polymerase chain reaction-amplified DNA. In vitro site-directed mutagenesis and subsequent expression in COS cells have confirmed that all three mutations result in catalytically defective LPL. The two naturally occurring mutations, which both alter the same aspartic acid residue in the proposed Asp156-His241-Ser132 catalytic triad of human LPL, indicate that Asp156 plays a significant role in LPL catalysis. The Cys216----Ser mutation destroys a conserved disulfide bridge that is apparently critical for maintaining LPL structure and function.  相似文献   

4.
In this study, the essential serine residue and 2 other amino acids in human pancreatic triglyceride lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) were tested for their contribution to the enzyme's catalytic site or interfacial binding site. By site-specific mutagenesis of the cDNA for human pancreatic lipase, amino acid substitutions were made at Ser153, His264, and Asp177. The mutant cDNAs were expressed in transfected COS-1 cells. Both the medium and the cells were examined for the presence of pancreatic lipase by Western blot analysis. The activity of the expressed proteins against triolein and the interfacial binding was measured. Proteins with mutations in Ser153 were secreted by the cells and bound to interfaces but had no detectable activity. Changing His264 to a leucine or Asp177 to an asparagine also produced inactive lipase. Substituting glutamic acid for Asp177 produced an active protein. These results demonstrate that Ser153 is involved in the catalytic site of pancreatic lipase and is not crucial for interfacial binding. Moreover, the essential roles of His264 and Asp177 in catalysis were demonstrated. A Ser-His-Asp catalytic triad similar to that present in serine proteases is present in human pancreatic lipase.  相似文献   

5.
Human hepatic lipase is an important enzyme in high density lipoprotein (HDL) metabolism, being implicated in the conversion of HDL2 to HDL3. Three human hepatic lipase cDNA clones were identified in two lambda gt11 libraries from human liver. The cDNA-derived amino acid sequence predicts a protein of 476 amino acid residues, preceded by a 23-residue signal peptide. Four potential N-glycosylation sites are identified, two of which are conserved in rat hepatic lipase. On alignment with human, mouse, and bovine lipoprotein lipase, the same two sites were also conserved in lipoprotein lipase in all three species. Stringent conservation of the cysteine residues was also evident. Comparative analysis of amino acid sequences shows that hepatic lipase evolves at a rapid rate, 2.07 x 10(-9) substitutions/site/year, about four times that in lipoprotein lipase and half that in pancreatic lipase. Further, hepatic lipase and pancreatic lipase appear to be evolutionarily closer to each other than either of them is to lipoprotein lipase. Southern blot analysis revealed high frequency restriction fragment length polymorphisms of the hepatic lipase gene for the enzymes HindIII and MspI. these polymorphisms will be useful for haplotype and linkage analysis of the hepatic lipase gene. Using cloned human hepatic lipase cDNA as a hybridization probe, we performed Southern blot analysis of a panel of 13 human-rodent somatic cell hybrids. Concordance analysis of the various hybrid clones indicates that the hepatic lipase gene is located on the long arm of human chromosome 15. Analysis of hybrids containing different translocations of chromosome 15 localized the gene to the region 15q15----q22.  相似文献   

6.
A chemical modification approach was used in this study to identify the active site serine residue of human pancreatic lipase. Purified human pancreatic lipase was covalently modified by incubation with [3H], [14C] tetrahydrolipstatin (THL), a potent inhibitor of pancreatic lipase. The radiolabeled lipase was digested with thermolysin, and the peptides were separated by HPLC. A single THL-peptide-adduct was obtained which was identical to that obtained earlier from porcine pancreatic lipase. This pentapeptide with the sequence VIGHS is covalently bound to a THL molecule via the side chain hydroxyl group of the serine unit corresponding to Ser-152 of the lipase. The selective cleavage of the THL-serine bond by mild acid treatment resulted in the formation of the delta-lactone Ro 40-4441 in high yield and clearly proves that THL is attached via an ester bond and with retention of stereochemistry at all chiral centers to the side chain hydroxyl group of Ser-152 of the lipase. The results obtained for human pancreatic lipase corroborate the inhibition mechanism of THL found on the porcine enzyme, and are in full agreement with the identification of the Ser-152 ... His-263 ... Asp-176 catalytic triad in the X-ray structure of human pancreatic lipase.  相似文献   

7.
Khayat R  Batra R  Massariol MJ  Lagacé L  Tong L 《Biochemistry》2001,40(21):6344-6351
Herpesvirus proteases belong to a new class of serine proteases and contain a novel Ser-His-His catalytic triad, while classical serine proteases have an acidic residue as the third member. To gain a better understanding of the molecular basis for the functional role of the third-member His residue, we have carried out structural and biochemical investigations of human cytomegalovirus (HCMV) protease that bears mutations of the His157 third member. Kinetic studies showed that all the mutants have reduced catalytic activity. Structural studies revealed that a solvent molecule is hydrogen-bonded to the His63 second member and Ser134 in the H157A mutant, partly rescuing the activity of this mutant. This is confirmed by our kinetic and structural observations on the S134A/H157A double mutant, which showed further reductions in the catalytic activity. The structure of the H157A mutant is also in complex with the PMSF inhibitor. The H157E mutant has the best catalytic activity among the mutants; its structure, however, showed conformational readjustments of the His63 and Ser132 residues. The Ser132-His63 diad of HCMV protease has similar activity as the diads in classical serine proteases, whereas the contribution of the His157 third member to the catalysis is much smaller. Finally, structural comparisons revealed the presence of two conserved structural water molecules at the bottom of the S(1) pocket, suggesting a possible new direction for the design of HCMV protease inhibitors.  相似文献   

8.
A 106-residue region of high similarity between lipoprotein/pancreatic/hepatic lipases and Drosophila vitellogenins encompasses four beta-strands with all residues but one strictly conserved or conservatively replaced between the structures, and enclosing the putative active site Ser-152. The properties suggest a common folding pattern but the region probably does not function as an 'interface recognition site' in the lipases, although it might well bind fatty acid esters of ecdysteroids or single lipid molecules in the vitellogenins. C-terminally of this 106-residue region, a surface loop ('flap') covers the active site. No residue within this loop is conserved through all lipases, but adjacent segments exhibit 60-70% residue identity. Hepatic and lipoprotein lipases probably hydrolyze both soluble and emulsified substrates at the same site. They lack residues corresponding to a second active site postulated in pancreatic lipase to account for hydrolysis of soluble substrates. In addition, due to structural differences the flap could prevent entry of soluble substrate molecules into the active site of pancreatic lipase.  相似文献   

9.
Structure and evolution of the lipase superfamily.   总被引:11,自引:0,他引:11  
The lipase superfamily includes three vertebrate and three invertebrate (dipteran) proteins that show significant amino acid sequence similarity to one another. The vertebrate proteins are lipoprotein lipase (LPL), hepatic lipase (HL), and pancreatic lipase (PL). The dipteran proteins are Drosophila yolk proteins 1, 2, and 3. We review the relationships among these proteins that have been established according to gene structural relatedness and introduce our findings on the phylogenetic relationships, distance relationships, and evolutionary history of the lipase gene superfamily. Drosophila yolk proteins contain a 104 amino acid residue segment that is conserved with respect to the lipases. We have used the yolk proteins as an outgroup to root a phylogeny of the lipase family. Our phylogenetic reconstruction suggests that ancestral PL diverged earlier than HL and LPL, which share a more recent root. Human and bovine LPL are shown to be more closely related to murine LPL than to guinea pig LPL. A comparison of the distance (a measure of the number of substitutions between sequences) between mammalian and avian LPL reveals that guinea pig LPL has the largest distance from the other mammals. Human, rodent, and rabbit HL show marked divergence from one another, although they have similar relative rates of amino acid substitution when compared to human LPL as an outgroup. Human and porcine PL are not as divergent as human and rat HL, suggesting that PL is more conserved than HL. However, canine PL demonstrates an unusually rapid rate of substitution with respect to the other pancreatic lipases. The lipases share several structurally conserved features. One highly conserved sequence (Gly-Xaa-Ser-Xaa-Gly) contains the active site serine. This feature, which agrees with that found in serine esterases and proteases, is found within the entire spectrum of lipases, including the evolutionarily unrelated prokaryotic lipases. We review the location and possible activity of putative lipid binding domains. We have constructed a conservation index (CI) to display conserved structural features within the lipase gene family, a CI of 1.0 signifying perfect conservation. We have found a correlation between a high CI and the position of conserved functional structures. The putative lipid-binding domains of LPL and HL, the disulfide-bridging cysteine residues, catalytic residues, and N-linked glycosylation sites of LPL, HL, and PL all lie within regions having a CI of 0.8 or higher. A number of amino acid substitutions have been identified in familial hyperchylomicronemia which result in loss of LPL function.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
青霉素G酰化酶α亚基Ser177的突变对酶活性的影响   总被引:2,自引:0,他引:2  
The technique of cassette and site-specific mutagenesis were used to study the role of residue No. 177 in penicillin G acylase (PGA, EC 3.5.1.11). Ser is conserved at residue No. 177 in all penicillin binding proteins. We got a series of mutants in which the amino acid at residue No. 177 was replaced by other amino acids through the site-specific and cassette mutagenesis, and we characterized the mutants by colony hybridization, NIPAB paper test and DNA sequence analysis. These mutants all show no activity of enzyme, even if the Ser residue was replaced by Thr, Gly and Ala respectively. The results show that Ser residue may be essential for substrate-binding or catalysis of PGA.  相似文献   

11.
Chlorophyllases (Chlases), cloned so far, contain a lipase motif with the active serine residue of the catalytic triad of triglyceride lipases. Inhibitors specific for the catalytic serine residue in serine hydrolases, which include lipases effectively inhibited the activity of the recombinant Chenopodium album Chlase (CaCLH). From this evidence we assumed that the catalytic mechanism of hydrolysis by Chlase might be similar to those of serine hydrolases that have a catalytic triad composed of serine, histidine and aspartic acid in their active site. Thus, we introduced mutations into the putative catalytic residue (Ser162) and conserved amino acid residues (histidine, aspartic acid and cysteine) to generate recombinant CaCLH mutants. The three amino acid residues (Ser162, Asp191 and His262) essential for Chlase activity were identified. These results indicate that Chlase is a serine hydrolase and, by analogy with a plausible catalytic mechanism of serine hydrolases, we proposed a mechanism for hydrolysis catalyzed by Chlase.  相似文献   

12.
Adenylosuccinate lyase (ASL) catalyzes two beta-elimination reactions in purine biosynthesis, leading to the question of whether the two substrates occupy the same or different active sites. Kinetic studies of Bacillus subtilis and human ASL with a new substrate analog, adenosine phosphonobutyric acid, 2'(3'), 5'-diphosphate (APBADP), show that it acts as a competitive inhibitor with respect to either substrate (K(I) approximately 0.1 microM), indicating that the two substrates occupy the same active site. Binding studies show that both the B. subtilis and human ASLs bind up to 4 mol of APBADP per mole of enzyme tetramer and that both enzymes exhibit cooperativity: negative for B. subtilis ASL and positive for human ASL. Mutant B. subtilis ASLs, with replacements for residues previously identified as critical for catalysis, bind the substrate analog similarly to wild-type ASL. Two serines in a flexible loop of ASL have been proposed to play roles in catalysis because they are close to the substrate in the crystal structure of Escherichia coli ASL. We have now mutated the corresponding serines to alanines in B. subtilis and human ASL to evaluate their involvement in enzyme function. Kinetic data reveal that human Ser(289) and B. subtilis Ser(262) and Ser(263) are essential for catalysis, while the ability of these Ser mutants to bind APBADP suggests that they do not contribute to substrate affinity. Although these serines are not visible in the crystal structure of human adenylosuccinate lyase complexed with substrate or products (PDB #2VD6), they may be interacting with the active sites.  相似文献   

13.
A molecular model of human pancreatic lipase (Winkler, F. K., D'Arcy, A., and Hunziker, W. (1990) Nature 343, 771-774) is used to explain the possible structural effects of the amino acid mutations identified to date in the human lipoprotein and hepatic lipase genes. A sequence homology profile was used to evaluate the alignment of the amino acid sequences of all three lipolytic enzymes (Kirchgessner, T. G., Chuat, J.-C., Heinzmann, C., Etienne, J., Guilhot, S., Svenson, K., Ameis, D., Pilon, C., D'Auriol, L., Andalibi, A., Schotz, M. C., Galibert, F., and Lusis, A. J. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 9647-9651) with respect to the secondary structure elements identified in the pancreatic lipase. As expected, maximum homology is observed in internal regions namely the hydrophobic strands of the central beta-pleated sheet. This observation strongly supports the hypothesis that all three molecules exhibit a very similar three-dimensional structure, particularly in the N-terminal catalytic domain. There is considerable variation in some of the surface loops connecting the individual strands, whereas others are conserved. It is hypothesized that the most conserved loops located around the active site are responsible for the catalytic function (similar for all three enzymes), whereas those that markedly differ are involved in the regulation at the molecular level, namely the binding of colipase (pancreatic enzyme) and apolipoprotein CII (lipoprotein lipase). The currently available library of hepatic and lipoprotein gene mutations seems to indicate that the majority of mutants disrupt the folding of the polypeptide chain, rather than affect specific constellations in and around the catalytic site or regulatory loops.  相似文献   

14.
The complete sequence of the horse pancreatic lipase was elucidated by combining polypeptide chain and cDNA sequencing. Among the structural features of horse lipase, it is worth mentioning that Lys373 is not conserved. This residue, which is present in human, porcine and canine lipases, has been assumed to be involved in p-nitrophenyl acetate hydrolysis by pancreatic lipases. Kinetic investigation of the p-nitrophenyl acetate hydrolysis by the various pancreatic lipases and by the C-terminal domain (336-449) of human lipase reveals that this hydrolysis is the result of the superimposition of independent events; a specific linear hydrolysis occurring at the active site of lipase, a fast acylation depending on the presence of Lys373 and a non-specific hydrolysis most likely occurring in the C-terminal domain of the enzyme. This finding definitely proves that pancreatic lipase bears only one active site and raises the question of a covalent catalysis by pancreatic lipases. Moreover, based on sequence comparison with the above-mentioned pancreatic lipases, three residues located in the C-terminal domain, Lys349, Lys398 and Lys419, are proposed as possible candidates for lipase/colipase binding.  相似文献   

15.
用盒式突变和定点突变对大肠杆菌青霉素G酰化酶α亚基177位ser进行了突变研究,结果发现所挑选的突变体均无酶的活力,这一结果可能可以用来解释Ser 177附近肽段和一些青霉素结合蛋白青霉素结合区在一级结构上保持同源性的原因。  相似文献   

16.
Krepkiy DV  Miziorko HM 《Biochemistry》2005,44(7):2671-2677
Alignment of more than 20 deduced sequences for mevalonate diphosphate decarboxylase (MDD) indicates that serines 34, 36, 120,121, 153, and 155 are invariant residues that map within a proposed interdomain active site cleft. To test possible active site roles for these invariant serines, each has been mutated to alanine. S34A exhibits limited solubility and impaired binding of the fluorescent ATP analogue, trinitrophenyl-ATP (TNP-ATP), suggesting that Ser-34 substitution destabilizes proper enzyme folding. All other serine mutants retain structural integrity, as indicated by their ability to bind TNP-ATP at levels comparable to wild-type enzyme. S153A exhibits a 18-fold inflation in K(d) for Mg-ATP, as indicated by competitive displacement of TNP-ATP; the enzyme also is characterized by a 35-fold inflation in K(m) for Mg-ATP. S155A exhibits a 26-fold inflation in K(m) for Mg-ATP, but competitive displacement of TNP-ATP indicates only a 2-fold inflation in K(d) for this substrate. S155A exhibits both a 16-fold inflation in K(m) for mevalonate diphosphate and a 14-fold inflation in K(i(slope)) for the substrate analogue, diphosphoglycolylproline. These observations suggest roles for Ser-153 and Ser-155 in substrate binding. Catalytic consequences of mutating invariant serines 36, 120, 153, and 155 are modest (<8-fold diminution in k(cat)). In contrast, S121A, which exhibits only modest changes in K(d) for Mg-ATP and K(m) for mevalonate diphosphate, is characterized by a >42,000-fold diminution in k(cat), indicating the critical involvement of Ser-121 in reaction catalysis. The selective involvement of the latter of two tandem serine residues (Ser-120, Ser-121) in a conserved sequence motif suggests mechanistic similarities within the GHMP kinase superfamily of proteins.  相似文献   

17.
18.
Lipoprotein lipase (LpL) activity is enhanced by apolipoprotein C-II (apoC-II), a 79 amino acid residue peptide. The minimal apoC-II sequence required for activation of LpL resides between residues 56-79. To determine the possible role of an acyl-apoC-II intermediate involving Ser61 in enzyme catalysis, a synthetic peptide of apoC-II containing residues 56-79 was synthesized and compared to the corresponding peptide with serine at position 61 being substituted with glycine. With two different LpL assay systems, both peptides enhanced enzyme activity. Since glycine does not contain a hydroxyl group, these results rule out the possibility that an acyl-apoC-II intermediate with Ser61 is required for enzyme activation.  相似文献   

19.
20.
I Trehan  B M Beadle  B K Shoichet 《Biochemistry》2001,40(27):7992-7999
Beta-lactamases hydrolyze beta-lactam antibiotics, including penicillins and cephalosporins; these enzymes are the most widespread resistance mechanism to these drugs and pose a growing threat to public health. beta-Lactams that contain a bulky 6(7)alpha substituent, such as imipenem and moxalactam, actually inhibit serine beta-lactamases and are widely used for this reason. Although mutant serine beta-lactamases have arisen that hydrolyze beta-lactamase resistant beta-lactams (e.g., ceftazidime) or avoid mechanism-based inhibitors (e.g., clavulanate), mutant serine beta-lactamases have not yet arisen in the clinic with imipenemase or moxalactamase activity. Structural and thermodynamic studies suggest that the 6(7)alpha substituents of these inhibitors form destabilizing contacts within the covalent adduct with the conserved Asn152 in class C beta-lactamases (Asn132 in class A beta-lactamases). This unfavorable interaction may be crucial to inhibition. To test this destabilization hypothesis, we replaced Asn152 with Ala in the class C beta-lactamase AmpC from Escherichia coli and examined the mutant enzyme's thermodynamic stability in complex with imipenem and moxalactam. Consistent with the hypothesis, the Asn152 --> Ala substitution relieved 0.44 and 1.10 kcal/mol of strain introduced by imipenem and moxalactam, respectively, relative to the wild-type complexes. However, the kinetic efficiency of AmpC N152A was reduced by 6300-fold relative to that of the wild-type enzyme. To further investigate the inhibitor's interaction with the mutant enzyme, the X-ray crystal structure of moxalactam in complex with N152A was determined to a resolution of 1.83 A. Moxalactam in the mutant complex is significantly displaced from its orientation in the wild-type complex; however, moxalactam does not adopt an orientation that would restore competence for hydrolysis. Although Asn152 forces beta-lactams with 6(7)alpha substituents out of a catalytically competent configuration, making them inhibitors, the residue is essential for orienting beta-lactam substrates and cannot simply be replaced with a much smaller residue to restore catalytic activity. Designing beta-lactam inhibitors that interact unfavorably with this conserved residue when in the covalent adduct merits further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号