首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 302 毫秒
1.
In order to investigate conformational preferences of the 21-residue peptide hormone endothelin-1 (ET-1), an extensive conformational search was carried out in vacuo using a combination of high temperature molecular dynamics / annealing and a Monte Carlo / minimization search in torsion angle space. Fully minimized conformations from the search were grouped into families using a clustering technique based on rms fitting over the Cartesian coordinates of the atoms of the peptide backbone of the ring region. A wide range of local energy minima were identified even though two disulfide bridges (Cys1-Cys15 and Cys3-Cys11) constrain the structure of the peptide. Low energy conformers of ET-1 as a nonionized species in vacuo arestabilized by intramolecular interaction of the ring region (residues 1-15) with the tail (residues 16–21). Strained conformations for individual residues are observed. Conformational similarity to protein loops is established by matching to protein crystal structures In order to assess the influence of aqueous environment on conformational preference, the electrostatic contribution to the solvation energy was calculated for ET-1 as a fully ionized species (Asp8, Lys9, Glu10, Asp18, N- and C-terminus) using a continuum electrostatics model (DelPhi) for each of the conformed generated in vacuo, and the total solvation free energy was estimated by adding a hydrophobic contribution proportional to solvent accessible surface area. Solvation dramatically alters the relative energetics of ET-1 conformers from that calculated in vacuo. Conformers of ET-1 favored by the electrostatic salvation energy in water include conformers with helical secondary structure in the region of residues 9–15. Perhaps of most importance, it was demonstrated that the contribution tosolvation by an individual charge depends not only on its solvent accessibility but on the proximity of other charges, i.e., it is a cooperative effect. This was shown by the calculation of electrostatic solvation energy as afunction of conformation with individual charges systematically turned “on” and “off”. The cooperative effect of multiple charges on solvation demonstrated in this manner calls into question models that relate solvation energysimply to solvent accessibility by atom or residue alone. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
3.
The molecular structure of 27 conformers of beta-cellobiose were studied in vacuo through gradient geometry optimization using B3LYP density functionals and the 6-311++G** basis set. The conformationally dependent geometry changes and energies were explored as well as the hydrogen-bonding network. The lowest electronic energy structures found were not those suggested from available crystallographic and NMR solution data, where the glycosidic dihedral angles fall in the region (phi, psi) approximately (40 degrees, -20 degrees ). Rather, 'flipped' conformations in which the dihedral angles are in the range (phi, psi) approximately (180 degrees, 0 degrees ) are energetically more stable by approximately 2.5 kcal/mol over the 'experimentally accepted' structure. Further, when the vibrational free energy, deltaG, obtained from the calculated frequencies, is compared throughout the series, structures with (phi, psi) in the experimentally observed range still have higher free energy ( approximately 2.0 kcal/mol) than 'flipped' forms. The range of bridging dihedral angles of the 'normal' conformers, resulting from the variance in the phi dihedral is larger than that found in the 'flipped' forms. Due to this large flat energy surface for the normal conformations, we surmise that the summation of populations of these conformations will favor the 'normal' conformations, although evidence suggests that polar solvent effects may play the dominant role in providing stability for the 'normal' forms. Even though some empirical studies previously found the 'flipped' conformations to be lowest in energy, these studies have been generally discredited because they were in disagreement with experimental results. Most of the DFT/ab initio conformations reported here have not been reported previously in the ab initio literature, in part because the use of less rigorous theoretical methods, i.e. smaller basis sets, have given results in general agreement with experimental data, that is, they energetically favored the 'normal' forms. These are the first DFT/ab initio calculations at this level of theory, apparently because of the length and difficulty of carrying out optimizations at these high levels.  相似文献   

4.
Alamethicin is a hydrophobic helical peptide of 20 residues, which oligomerizes to form ion-conducting channels in membranes. The behavior of an intact alamethicin channel in POPC bilayers was recently studied, using 2 ns molecular dynamics (MD) simulations of a model hexameric channel. These simulations produced numerous conformations of the channel. In the present study, we used 11 of these channel conformations and carried out continuum-solvent model calculations, similar to those used for the monomers in our previous studies, to investigate the energetics of the channel inside the lipid bilayer. Our results suggest that, out of the 11 channel conformations produced by the MD simulations, only four are stable inside the lipid bilayer, with water-to-membrane free energies of transfer ranging from ~–6 to ~–10 kcal/mol. Analysis of the results suggests two causes for the apparent instability of the remainder of the structures inside the lipid bilayer, both resulting from the desolvation of channel polar groups (i.e. their transfer from the aqueous phase into the bilayer). The first is specific, uncompensated backbone hydrogen bonds, which exist in the region of the channel exposed to the hydrocarbon of the lipid bilayer. The second is exposure of intra-pore water molecules to the surrounding lipid. Thus, the association of these structures with the membrane involves a large electrostatic desolvation free-energy penalty. The apparent conflict between continuum-solvent and MD calculations, and its significance for the interpretation of membrane proteins simulations, are discussed.  相似文献   

5.
The four Trp dipoles in the gramicidin A (gA) channel modulate channel conductance, and their side chain conformations should therefore be important, but the energies of different conformations are unknown. A conformational search for the right-handed helix based on molecular mechanics in vacuo yielded 46 conformations within 20 kcal/mol of the lowest energy conformation. The two lowest energy conformations correspond to the solid-state and solution-state NMR conformations, suggesting that interactions within the peptide determine the conformation. For representative conformations, the electrostatic potential of the Trp side chains on the channel axis was computed. A novel application of the image-series method of. Biophys. J. 9:1160-1170) was introduced to simulate the polarization of bulk water by the Trp side chains. For the experimentally observed structures, the CHARm toph19 potential energy (PE) of a cation in the channel center is -1.65 kcal/mol without images. With images, the PE is -1.9 kcal/mol, demonstrating that the images further enhance the direct dipole effect. Nonstandard conformations yielded less favorable PEs by 0.4-1.1 kcal/mol.  相似文献   

6.
A full theory of the conformations of biopolymers requires a method for treating the effects of solvent on the induced structures. This is especially critical in aqueous solvent where hydrogen-bonding and dielectric shielding play major roles in determining the relative stability of conformers. Calculations of peptide conformations on a free energy surface are contrasted with the traditional sort of calculations which employs a simple potential energy function (in vacuo). The method employs a pairwise decomposable free energy surface determined by approximate analytical statistical mechanical theory. Applications are presented for tripeptides of alanine and glycine in water. This method, with precomputed free energy functions, takes the same amount of time and effort as traditional molecular mechanics in vacuo.  相似文献   

7.
Conformational preferences of 1,4,7-trithiacyclononane were studied using a highly efficient sampling technique based on local nonstochastic deformations and the MM2(91) force field. The results show that conformers that the molecule adopts in the crystal state were found to be low-energy conformers (LECs) within 5 kcal mol(-1) of the global minimum. A conformation with C1 symmetry was the global minimum and the C3 and C2 conformations were calculated to be 0.03 and 1.78 kcal mol(-1) higher in energy, respectively. The structures were further minimized using Density Functional Theory (DFT) calculations with two different functionals. The C2 and the C1 conformations were found to be LECs with the C3 conformation more than 4.0 kcal mol(-1) above the global minimum. The relative energies and structural ordering obtained using the BP86 functional are in agreement with the previously reported relative energies calculated using second-order Moller-Plesset (MP2) ab initio calculations. With the energy ordering being dependent on the molecular mechanics force field used, the approach of MM-->DFT (searching exhaustively the available conformational space at the MM level followed by generating the energy ordering through DFT calculations) appears to be appropriate for thiacrown ethers.  相似文献   

8.
Geometry optimization, at the B3LYP/6-311++G** level of theory, was carried out on 4C1 and 1C4 chairs, (3,O)B and B(3,O) boats, and skew-boat conformations of alpha- and beta-D-glucopyranose. Similar calculations on 1,5-anhydro-D-glucitol allowed examination of the effect of removal of the 1-hydroxy group on the energy preference of the hydroxymethyl rotamers. Stable minimum energy boat conformers of glucose were found, as were stable skew boats, all having energies ranging from approximately 4-15 kcal/mol above the global energy 4C1 chair conformation. The 1C4 chair electronic energies were approximately 5-10 kcal/mol higher than the 4C1 chair, with the 1C4 alpha-anomers being lower in energy than the beta-anomers. Zero-point energy, enthalpy, entropy, and relative Gibbs free energies are reported at the harmonic level of theory. The alpha-anomer 4C1 chair conformations were found to be approximately 1 kcal/mol lower in electronic energy than the beta-anomers. The hydroxymethyl gt conformation was of lowest electronic energy for both the alpha- and beta-anomers. The glucose alpha/beta anomer ratio calculated from the relative free energies is 63/37%. From a numerical Hessian calculation, the tg conformations were found to be approximately 0.4-0.7 kcal/mol higher in relative free energy than the gg or gt conformers. Transition-state barriers to rotation about the C-5-C-6 bond were calculated for each glucose anomer with resulting barriers to rotation of approximately 3.7-5.8 kcal/mol. No energy barrier was found for the path between the alpha-gt and alpha-gg B(3,O) boat forms and the equivalent 4C1 chair conformations. The alpha-tg conformation has an energy minimum in the 1S3 twist form. Other boat and skew-boat forms are described. The beta-anomer boats retained their starting conformations, with the exception of the beta-tg-(3,O)B boat that moved to a skew form upon optimization.  相似文献   

9.
Amide-resolved hydrogen-deuterium exchange-rate constants were measured for backbone amides of alamethicin reconstituted in dioleoylphosphatidylcholine vesicles by an exchange-trapping method combined with high-resolution nuclear magnetic resonance spectroscopy. In vesicles containing alamethicin at molar ratios between 1:20 and 1:100 relative to lipid, the exchange-rate constants increased with increasing volume of the D20 buffer in which the vesicles were suspended, indicating that exchange under these conditions is dominated by partitioning of the peptide into the aqueous phase. This was supported by observation of a linear relationship between the exchange-rate constants for amides in membrane-reconstituted alamethicin and those for amides in alamethicin dissolved directly into D2O buffer. Significant protection of amides from exchange with D2O buffer in membrane-reconstituted alamethicin is interpreted in terms of stabilization by helical hydrogen bonding. Under conditions in which amide exchange occurred by partitioning of the peptide into solution, only lower limits for hydrogen-bond stabilities in the membrane were determined; all the potentially hydrogen-bonded amides of alamethicin are at least 1000-fold exchange protected in the membrane-bound state. When partitioning of alamethicin into the aqueous phase was suppressed by hydration of reconstituted vesicles in a limiting volume of water [D2O:dioleoylphosphatidylcholine:alamethicin; 220:1:0.05; (M:M:M)], the exchange-protection factors exhibited helical periodicity with highly exchange-protected, and less well-protected, amides on the nonpolar and polar helix faces, respectively. The exchange data indicate that, under the conditions studied, alamethicin adopts a stable helical structure in DOPC bilayers in which all the potentially hydrogen-bonded amides are stabilized by helical hydrogen bonds. The protection factors define the orientation of the peptide helix with respect to an aqueous phase, which is either the bulk solution or water within parallel or antiparallel transmembrane arrays of reconstituted alamethicin.  相似文献   

10.
Alamethicin is a 20-amino acid antibiotic peptide that forms voltage-gated ion channels in lipid bilayers. Here we report calculations of its association free energy with membranes. The calculations take into account the various free-energy terms that contribute to the transfer of the peptide from the aqueous phase into bilayers of different widths. The electrostatic and nonpolar contributions to the solvation free energy are calculated using continuum solvent models. The contributions from the lipid perturbation and membrane deformation effects and the entropy loss associated with peptide immobilization in the bilayer are estimated from a statistical thermodynamic model. The calculations were carried out using two classes of experimentally observed conformations, both of which are helical: the NMR and the x-ray crystal structures. Our calculations show that alamethicin is unlikely to partition into bilayers in any of the NMR conformations because they have uncompensated backbone hydrogen bonds and their association with the membrane involves a large electrostatic solvation free energy penalty. In contrast, the x-ray conformations provide enough backbone hydrogen bonds for the peptide to associate with bilayers. We tested numerous transmembrane and surface orientations of the peptide in bilayers, and our calculations indicate that the most favorable orientation is transmembrane, where the peptide protrudes approximately 4 A into the water-membrane interface, in very good agreement with electron paramagnetic resonance and oriented circular dichroism measurements. The calculations were carried out using two alamethicin isoforms: one with glutamine and the other with glutamate in the 18th position. The calculations indicate that the two isoforms have similar membrane orientations and that their insertion into the membrane is likely to involve a 2-A deformation of the bilayer, again, in good agreement with experimental data. The implications of the results for the biological function of alamethicin and its capacity to oligomerize and form ion channels are discussed.  相似文献   

11.
One hundred and two conformations of alpha- and beta-D-allopyranose, the C-3 substituted epimer of glucopyranose, were geometry optimized using the density functional, B3LYP, and the basis set, 6-311++G **. Full geometry optimization was performed on different ring geometries and on the hydroxymethyl rotamers (gg/gt/tg). Analytically derived Hessians were used to calculate zero point energy, enthalpy, and entropy. The lowest energy and free energy conformation found is the alpha-tg(g-)-4C1-c conformation, which is only slightly higher in electronic (approximately 0.2 kcal/mol) and free energy than the lowest energy alpha-D-glucopyranose. The in vacuo calculations showed a small (approximately 0.3 kcal/mol) energetic preference for the alpha- over the beta-anomer for allopyranose in the 4C1 conformation, whereas in the 1C4 conformation a considerable (approximately 1.6 kcal/mol) energetic preference for the beta- over the alpha-anomer for allopyranose was encountered. The results are compared to previous aldohexose calculations in vacuo. Boat and skew forms were found that remained stable upon gradient optimization although many starting boat conformations moved to other skew forms upon optimization. As found for glucose, mannose, and galactose the orientation and interaction of the hydroxyl groups make the most significant contributions to the conformation/energy relationship in vacuo. A comparison of different basis sets and density functionals is made in the Discussion section, confirming the appropriateness of the level of theory used here.  相似文献   

12.
Conformational properties of te antiherpes agent acyclovir (acycloguanosine, ACG) were calculated using molecular mechanics approximation. Eighty two different stable conformations have been determined. The large number of local minima of the total enery, and small differences between them, point to the marked flexibility of the acyclic chain. The barrier to rotation around N9-C1 bond was calculated and found to be asymmetric (the lower equals 17 kJ/mol, the higher 63 kJ/mol). An energetic preference for the compact from of ACG was demonstrated. A comparison of the calculated conformations with the crystallographic structures is presented.  相似文献   

13.
Ab initio conformational maps for beta-lactose in both the gas phase and in aqueous solution have been constructed at the HF/6-31G(d,p) level of calculation. The results of the gas-phase ab initio calculations allow us to conclude that a rigid conformational map is able to predict the regions of the minima in the potential energy surface of beta-lactose, in full agreement with those found in the relaxed conformational map. The solvation effects do not give rise to any new local minimum in the potential energy surface of beta-lactose, but just change the relative Boltzmann populations of the conformers found in the gas-phase calculations. The values obtained for heteronuclear spin coupling constant (3J(H,C)), using the seven most stable conformers in solution are in good agreement with the available experimental values. This is a good indication that ab initio rigid conformational maps can be reliably used to sort the most stable conformers of beta-lactose.  相似文献   

14.
Empirical conformational energy calculations have been carried out on the molecule retro-all-D -methionine enkephalin. Low-energy conformers were found by energy minimization and conformational search procedures. The lowest energy conformers wee found toi have some stereochemical relationship to the calculated normal met-enkephalin conformers, but they were not retro-all-D -equivalent to the Met-enkephalin structures. The retro-all-D -equivalent conformations were ~10 kcal/mol higher energy than the low-energy conformers found here. A structural comparison between the retro-all-D -conformers and the met-enkephalin conformers shows hat one cannot rely solely on topochemical analysis to predict biological activity for linear retro-all-D -peptides.  相似文献   

15.
The conformations of three synthetic peptide analogs containing the dPro-dPro-dXaa motif (dXaa = dThr, dGlu, dAsn) in aqueous solution were studied by a combination of NMR and molecular modeling simulations. The three compounds were identified from a random D-amino acid tripeptide library on the basis of their ability to either mimic or block the diuretic activity of neuropeptides of the insect kinin family. TOCSY and ROESY correlations, as well as abnormal secondary chemical shifts for protons on the D-proline residues were employed to obtain conformational ensembles consistent with the experimental NMR data for the three analogs using an in vacuo simulated annealing protocol. Similar secondary structures were found for the three molecules after refinement, in agreement with the similarities observed between their NMR spectra. Unrestrained molecular dynamics simulations with explicit water representation indicate that the structural motifs found in vacuo are stable in aqueous solution. The three analogs can be considered initiators of right-handed poly D-proline II helices, mirror images of the poly L-proline II left-handed helical motifs normally found in proline-rich proteins. The role of these secondary folds on binding of the analogs to the kinin receptors is discussed.  相似文献   

16.
Recognition of Ras by its downstream target Raf is mediated by a Ras-recognition region in the Ras-binding domain (RBD) of Raf. Residues 78–89 in this region occupy two different conformations in the ensemble of NMR solution structures of the RBD: a fully α-helical one, and one where 87–90 form a type IV β-turn. Molecular dynamics simulations of the RBD in solution were performed to explore the stability of these and other possible conformations of both the wild-type RBD and the R89K mutant, which does not bind Ras. The simulations sample a fully helical conformation for residues 78–89 similar to the NMR helical structures, a conformation where 85–89 form a 310-helical turn, and a conformation where 87–90 form a type I |iB-turn, whose free energies are all within 0.3 kcal/mol of each other. NOE patterns and Hα chemical shifts from the simulations are in reasonable agreement with experiment. The NMR turn structure is calculated to be 3 kcal/mol higher than the three above conformations. In a simulation with the same implicit solvent model used in the NMR structure generation, the turn conformation relaxes into the fully helical conformation, illustrating possible structural artifacts introduced by the implicit solvent model. With the Raf R89K mutant, simulations sample a fully helical and a turn conformation, the turn being 0.9 kcal/mol more stable. Thus, the mutation affects the population of RBD conformations, and this is expected to affect Ras binding. For example, if the fully helical conformation of residues 78–89 is required for binding, its free energy increase in R89K will increase the binding free energy by about 0.6 kcal/mol. Proteins 31:186–200, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Falk M  Sidhu P  Walter JA 《Natural toxins》1998,6(3-4):159-171
Conformational behaviour of kainic acid in aqueous solution was elucidated by molecular mechanics and dynamics. The pucker of the five-membered ring in kainic acid was examined and compared with that of model compounds. In cyclopentane there is no barrier to pseudorotation, so that all puckered states coexist. In pyrrolidinium, the presence of a hetero-atom in the ring introduces a small barrier (about 0.6 kcal mol(-1)) to pseudorotation, separating two stable regions, A and B, which are equivalent by symmetry. In proline, the presence of the carboxylate group on C2 removes the symmetry but two stable conformational minima, A and B, remain. In kainic acid, the presence of side-chains on C3 and C4 introduces complications resulting in additional sub-minima in both regions, A and B. In solution, kainic acid is a complex mixture of conformers with comparable energies, because of the combination of several stable states of the pyrrolidinium ring with the torsional degrees of freedom arising from the two side-chains. The individual geometries, energies, and estimates of relative populations of these conformers were obtained from molecular dynamics simulations. The calculations were validated by a comparison of predicted inter-proton distances and vicinal proton coupling constants with the experimental quantities derived from NMR spectra.  相似文献   

18.
Forty-one conformations of alpha- and beta-d-galactopyranose were geometry optimized using the B3LYP density functional and 6-311++G** basis set. Full geometry optimization was performed on different ring geometries and different hydroxymethyl rotamers (gg/gt/tg). Analytically derived Hessians were used to calculate zero point energy, enthalpy, and entropy. The lowest energy and free-energy conformation found is the alpha-gg-(4)C(1)-c chair conformation, which is of lower electronic and free energy than the lowest energy alpha-d-glucopyranose conformer because of favorable hydrogen-bonding interactions. The in vacuo calculations showed considerable ( approximately 2.2kcal/mol) energetic preference for the alpha over the beta anomer for galactopyranose in both the (4)C(1) and (1)C(4) chair conformations. Results are compared to glucopyranose and mannopyranose calculations in vacuo. Boat and skew-boat forms were found that remained stable upon gradient optimization, although many starting conformations moved to other boat forms upon optimization. As with glucopyranose and mannopyranose, the orientation and interaction of the hydroxyl groups make the most significant contributions to the conformation-energy relationship in vacuo.  相似文献   

19.
Thirty-five conformations of alpha- and beta-d-mannopyranose, the C-2 substituted epimer of glucopyranose, were geometry optimized using the density functional (B3LYP), and basis set (6-311++G**). Full geometry optimization was performed on the hydroxymethyl rotamers (gg/gt/tg) and an analytical hessian program was used to calculate the harmonic vibrational frequencies, zero point energy, enthalpy, and entropy. The lowest energy conformation investigated is the beta-tg in the (4)C(1) chair conformation. The in vacuo calculations showed little energetic preference for either the alpha or beta anomer for mannopyranose in the (4)C(1) chair conformation. Results are compared to similar glucopyranose calculations in vacuo where the alpha anomer is approximately 1kcal/mol lower in electronic energy than the beta anomer. In the case of the generally higher energy (1)C(4) chair conformations, one low-energy, low-entropy beta-gg-(1)C(4) chair conformation was identified that is within approximately 1.4kcal/mol of the lowest energy (4)C(1) conformation of mannopyranose. Other (1)C(4) chair conformations in our investigation are approximately 2.9-7.9kcal/mol higher in overall energy. Many of the (3,O)B, B(3,O), (1,4)B, and B(1,4) boat forms passed through transitions without barriers to (1)S(3), (5)S(1), (1)S(5) skew forms with energies between approximately 3.6 and 8.9kcal/mol higher in energy than the lowest energy conformation of mannopyranose. Boat forms were found that remained stable upon gradient optimization. As with glucopyranose, the orientation and interaction of the hydroxy groups make a significant contribution to the conformation/energy relationship in vacuo.  相似文献   

20.
Incorporation of the helical antimicrobial peptide alamethicin from aqueous phase into hydrated phases of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC) was investigated within a range of peptide concentrations and temperatures by time-resolved synchrotron X-ray diffraction. It was found that alamethicin influences the organizations of the non-bilayer-forming (DOPE) and the bilayer-forming (DOPC) lipids in different ways. In DOPC, only the bilayer thickness was affected, while in DOPE new phases were induced. At low peptide concentrations (<1.10(-4) M), an inverted hexagonal (H(II)) phase was observed as with DOPE dispersions in pure buffer solution. A coexistence of two cubic structures was found at the critical peptide concentration for induction of new lipid/peptide phases. The first one Q224 (space group Pn3m) was identified within the entire temperature region studied (from 1 to 45 degrees C) and was found in coexistence with H(II)-phase domains. The second lipid/peptide cubic structure was present only at temperatures below 16 degrees C and its X-ray reflections were better fitted by a Q212 (P4(3)32) space group, rather than by the expected Q229 (Im3m) space group. At alamethicin concentrations of 1 mM and higher, a nonlamellar phase transition from a Q224 cubic phase into an H(II) phase was observed. Within the investigated range of peptide concentrations, lamellar structures of two different bilayer periods were established with the bilayer-forming lipid DOPC. They correspond to lipid domains of associated and nonassociated helical peptide. The obtained X-ray results suggest that the amphiphilic alamethicin molecules adsorb from the aqueous phase at the lipid head group/water interface of the DOPE and DOPC membranes. At sufficiently high (>1.10(-4) M) solution concentrations, the peptide is probably accommodated in the head group region of the lipids thus inducing structural features of mixed lipid/peptide phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号