首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
植物细胞中钙信号的时空多样性与信号转导   总被引:9,自引:1,他引:9  
近年来,对钙信号的研究,包括对钙信号的产生,传导及最终靶蛋白的研究,越来越受到人们的重视,植物生长发育过程的信息传递,包括对各种内外刺激的反应都涉及到钙信号,钙信号的产生及传导是通过胞质自由钙离子的浓度变化来实现的,本文综述了胞质自由钙离子的测定,钙信号的时空多样性及钙信号的靶蛋白如CaM,Ca^2 依赖的蛋白激酶,钙调磷酸酶,磷脂酰肌醇-磷脂酶C等方面的一些最新进展,展望了今后钙信号研究的方向所用到的一些技术方法等。  相似文献   

2.
电镜细胞化学观察揭示,不抗寒的玉米(Zea mays L.ev. Black Mexican Sweel)和抗寒的小偃麦(Triticurn seet.Trititrigia mackey)细胞在26℃悬浮培养时,标志Ca^2+定位的锑酸钙沉淀物主要分布在液泡内,细胞质和细胞核中很少见到Ca^2+沉淀;标志Ca^2+-ATPase活性的反应的磷权沉淀物丰富地分布在质膜上,显示这两种植物物质膜Ca^  相似文献   

3.
植物中解密Ca2+信号转导特异性的机制   总被引:4,自引:0,他引:4  
Ca^2+信号介导植物对外界信号的刺激反应,并调节多种生理过程。CBL是一种在植物中发现的Ca^2+结合蛋白,其靶蛋白为CIPK,现对CBL-CIPK信号转导系统及其如何解密Ca^2+信号转导特异性进行综述。  相似文献   

4.
动态IP3-Ca2+振荡模型的数值分析   总被引:3,自引:0,他引:3  
通过改进J.W.Shuai和P.Jung钙振荡模型,得到与IP3浓度相关的动态IP3-Ca^2+振荡模型.利用改进模型,数值分析依赖性参数λ和钙通道数目N对Ca^2+振荡的影响,得到Ca^2+振荡关于参数λ的分叉图、Ca^2+振荡与IP3振荡的一致性、钙通道数目N对Ca^2+振荡的影响等.这些模型结果显示了Ca^2+振荡的特性.  相似文献   

5.
在常温下生长的辣椒(Capsicum annuum L.)叶肉细胞中Ca^2 -ATP酶主要分布于质膜、液泡膜上,叶绿体的基质和基粒片层上也有少量分布;在40℃下热胁迫不同的时间,酶活性逐渐下降,直到叶绿体超微结构解体。同样条件下,经过Ca^2 预处理后,分布在上述细胞器膜或片层上的酶活性大大提高,表明Ca^2 预处理对该活性具有激活作用;Ca^2 预处理对热胁迫下的超微结构的完整性具有一定的保护作用,并且能使Ca^2 -ATP酶在热胁迫下维持较高活性。结果表明,Ca^2 预处理增强辣椒幼苗的抗热性,可能与其稳定细胞膜、从而使Ca^2 -ATP酶在热迫下保护较高活性有一定关系。  相似文献   

6.
7.
8.
钠通道是参与心肌兴奋传导和维持心脏节律的重要物质。ca2+在心肌细胞的兴奋-收缩偶联中起重要  相似文献   

9.
黄瓜种子萌发过程中Ca^2+分布的变化   总被引:2,自引:0,他引:2  
吴慧涵  王建波 《植物生理学报》2001,27(2):141-144,T001,T002,T003
采用细胞化学方法,研究了黄瓜种子中贮藏Ca^2 的分布特点及其在萌发过程中的变化动态,干种子的子叶细胞中贮藏有大量的蛋白体,油脂体,Ca^2 沉淀颗粒大量分布于胞质,胞间隙以及细胞质膜上,大多数蛋白体中有1至数个圆球形或椭圆体形含Ca^2 的球状晶体,相比之下,胚芽和胚根细胞中Ca^2 较少,种子萌发早期,子叶中的贮藏钙及晶体溶解释放出的Ca^2 部分转运到生长发育中的胚芽和胚根中。随着萌发的继续,胚根和胚芽细胞中的Ca^2 不会持续增多,反而下降。  相似文献   

10.
胞外Ca^2+促进粟酒裂殖酵母细胞增殖作用的研究   总被引:5,自引:2,他引:5  
鲁仲谋  袁生 《菌物系统》1998,17(3):233-239
研究了胞外Ca^2+粟酒裂殖酵母(Schizosaccharomycespombe)细胞增殖的影响,实验结果首次证明胞外Ca^2+能明显促进粟酒裂殖酵母的增殖,其作用方式主要是缩短了粟酒裂殖酵母的生长延滞期,当起始的接种细胞密度升高至使粟酒裂殖酵母的生长滞期消失时,外加Ca^2+的作用也消失,EGTA可抑制粟酒裂殖酵母的细胞增殖,而外加Ca^2+能够有效消除EGTA的抑制作用,进一步说明胞外Ca^  相似文献   

11.
钙离子不仅是植物生长发育所需的一种大量元素,而且起了偶联细胞外刺激与胞内反应第二信使的作用,是多种受体激动后信息传递过程的中心环节。近年的研究表明:高温、干旱、触摸、低渗、低温、风、机械刺激、病原菌感染等多种环境胁迫均能引起胞质Ca~(2+)水平的改变。这种变化被认为是植物细胞感受环境胁迫的原初反应之一,它通过启动基因表达和胞内一系列生理生化过程调节细胞对环境改变的适应反应。胞质Ca~(2+)水平的改变有两种来源:胞外Ca~(2+)跨膜内流和胞内钙库如内质网中的Ca~(2+)释放。其中由肌醇磷  相似文献   

12.
High concentrations of NaCl immediately elevated cytoplasmic Ca activity in maize (Zea Mays L. cv Pioneer 3377) root protoplasts, as measured with the fluorescent probe Indo-1. The effect of salinity was inhibited by Li pretreatment but restored by inositol, suggesting that phosphoinositides mediate the stress response.  相似文献   

13.
Two different effects of calcium were studied, respectively, in plasma membrane vesicles and in protoplasts isolated from roots of control pepper plants (Capsicum annuum L cv. California) or of plants treated with 50 mM NaCl, 10 mM CaCl(2) or 10 mM CaCl(2) + 50 mM NaCl. Under saline conditions, osmotic water permeability (P ( f )) values decreased in protoplasts and plasma membrane vesicles, and the same reduction was observed in the PIP1 aquaporin abundance, indicating inhibitory effects of NaCl on aquaporin functionality and protein abundance. The cytosolic Ca(2+) concentration, [Ca(2+)](cyt), was reduced by salinity, as observed by confocal microscope analysis. Two different actions of Ca(2+) were observed. On the one hand, increase in free cytosolic calcium concentrations associated with stress perception may lead to aquaporin closure. On the other hand, when critical requirements of Ca(2+) were reduced (by salinity), and extra-calcium would lead to an upregulation of aquaporins, indicating that a positive role of calcium at whole plant level combined with an inhibitory mechanism at aquaporin level may work in the regulation of pepper root water transport under salt stress. However, a link between these observations and other cell signalling in relation to water channel gating remains to be established.  相似文献   

14.
15.
The changes of Ca2+ -ATPase activities of plasmolemma, and tonoplast membrane in roots and leaf chloroplasts in rice ( Oryza sativa L. ) seedlings were investigated for exploring the mechanism of cross adaptation to different stresses in the plants during the enhancement of chilling resistance induced by cold and salt pretreatment. The results indicated that the chilling resistance of rice seedlings was enhanced markedly by cold and salt pretreatment, but this enhancement was inhibited by Ca2+-chelate ethyleneglycol-bis-(β-aminoethyl ether) N, N-tetraacetic acid (EGTA) and the calmodulin inhibitor chlorpromazine (CPZ), it showed the calcium messenger system was involved in the course of chilling resistance formation. The Ca2+ -ATPase activity of root plasmolemma and tonoplast membrane as well as the Fe(CN)63- reduction in root plasmolemma in nonpretreated seedlings were declined markedly during the chilling stress. The Ca2+ -ATPase activities of plasmolemma, tonoplast membrane and chloroplasts as well as the Fe(CN)63- reduction of plasmolemma were enhanced by cold pretreatment. The activities of Ca2+ -ATPase and Fe(CN)63- reduction of plasmolemma, as compared with nonpretreated seedlings has increased by 86.80% and 93.93% respectively. The effect of salt pretreatmerit on the Ca2+ -ATPase activities of plasmolemma and chloroplast as well as Fe(CN)63- reduction of plasmolemma were similar to the effect of cold pretreatment. Although the Ca2+ -ATPase activity of tonoplast membrane was declined by salt pretreatment, the activity was none the less markedly higher than that of the nonpretreated seedlings. It showed that there was stronger ability of maintaining calcium homeostasis in the seedlings following two pretreatment. The results displayed that the enhancement of chilling resistance in rice seedlings with cold and salt pretreatment might be related to the effective activation of Ca2+ -ATPase in two pretreatment seedlings, because the activated Ca2+ -ATPase could bring back rapidly the raised cytoplasmic Ca2+ concentration from chilling stress to the state of calcium homeostasis, leading to the maintenance of normal functioning of the calcium messenger system and physiological metabolism. It seems that the adapated mechanism to chilling stress in two seedlings with cold and salt pretreatment was similar.  相似文献   

16.
We investigated the possibility that oxidative stress contributes to blossom-end rot (BER) initiation in bell pepper ( Capsicum annuum L.) grown under high salinity. Pepper plants (cv. Mazurka, Rijk Zwaan, the Netherlands) were grown in a greenhouse and irrigated with nutrient solution made up with either desalinated water (control — rising from E.C. 1.9 to 2.4 dS m−1) or saline water (salinity – rising from E.C. 3.2 to 7.0 dS m−1). Irrigation was by a circulation system. BER symptoms were observed throughout the experiment but were highly enhanced in the salinity–grown plants during the spring and summer. The fruit calcium concentration was not affected by salinity, but manganese concentrations in both leaves and fruits were significantly reduced under these conditions. Under salinity there was an enhancement of apoplast reactive oxygen species (ROS) production, which was partly a result of increase in NAD(P)H oxidase activity in the pericarp of pepper fruit at the stage that it was most sensitive to BER. Apoplast ROS production and extracted NAD(P)H oxidase activity were inhibited by manganese, zinc and to a lesser extent by calcium. These cations also negated the enhancement of ROS production caused by incubation of fruit pericarp discs in NaCl solutions. Manganese, zinc and calcium also inhibited NAD(P)H oxidase activity, extracted following their infiltration into fruit pericarp discs. The results suggest that generation and scavenging of oxygen free radicals in the apoplast may contribute to the appearance of BER symptoms in pepper fruits under saline conditions. It is suggested that manganese may serve as antioxidant in pepper fruit and that manganese addition to peppers grown under salinity may alleviate BER symptoms in the fruits.  相似文献   

17.
Salinity affects intracellular calcium in corn root protoplasts   总被引:5,自引:1,他引:4       下载免费PDF全文
Previous work with the fluorescent Ca probe chlorotetracycline (CTC) showed that salinity displaces Ca from membranes of root cells. Using a variety of indirect approaches, we studied whether salinity displaces Ca from the cell surface or from internal membranes of corn (Zea mays L. cv Pioneer 3377) root protoplasts. Preloading the cells with supplemental Ca counteracted subsequent NaCl effects on CTC fluorescence. CTC quenching by exogenous EGTA was not competitive with CTC quenching by NaCl. The Ca channel reagent (+)-202-791 had significant interactions with the effect of NaCl on CTC fluorescence. The effect of NaCl on CTC fluorescence was attenuated by pretreatment with Li, but was restored by inositol. Salinity increased Na influx, decreased Ca influx, and increased Ca efflux from the cells. Fluorescence anisotropy indicated that NaCl decreased the fluidity of the external face of the plasmalemma but increased the fluidity of cell membranes in general. Our results suggest that salinity displaces Ca associated with intracellular membranes through activation of the phosphoinositide system and depletion of intracellular Ca pools.  相似文献   

18.
D.J. JACKSON, V.A. SAUNDERS AND A.M. HUMPHREYS. 1996. Microsomal chitinase from yeast and hyphal cells of Candida albicans was activated endogenously by incubation at 30°C and exogenously by trypsin. The putative activating factor of yeast cells was separated from chitinase activity by fractionation of lysed protoplasts on an Iodixanol density gradient. The vacuole fraction contained no significant chitinase activity, but was enriched in chitinase activating factor. Activity of microsomal chitinase increased upon incubation with this, but no other gradient factor. Results suggest that the regulatory system governing microsomal chitinase activity, like that governing chitin synthase, involves a 'vacuolar'activating factor in Candida albicans .  相似文献   

19.
This study, of how Ca2+ availability (intracellular, extracellular or linked to the membrane) influences the functionality of aquaporins of pepper (Capsicum annuum L.) plants grown under salinity stress, was carried out in plants treated with NaCl (50 mM), CaCl2 (10 mM), and CaCl2 (10 mM) + NaCl (50 mM). For this, water transport through the plasma membrane of isolated protoplasts, and the involvement of aquaporins and calcium (extracellular, intracellular and linked to the membrane) has been determined. After these treatments, it could be seen that the calcium concentration was reduced in the apoplast, in the cells and on the plasma membrane of roots of pepper plants grown under saline conditions; these concentrations were increased or restored when extra calcium was added to the nutrient solution. Protoplasts extracted from plants grown under Ca2+ starvation showed no aquaporin functionality. However, for the protoplasts to which calcium was added, an increase of aquaporin functionality of the plasma membrane was observed [osmotic water permeability (Pf) inhibition after Hg addition]. Interestingly, when verapamil (a Ca2+ channel blocker) was added, no functionality was observed, even when Ca2+ was added with verapamil. Therefore, calcium seems to be involved in plasma membrane aquaporin regulation via a chain of processes within the cell but not by alteration of the stability of the plasma membrane.  相似文献   

20.
Chen H  Chen SL  Jiang JG 《PloS one》2011,6(12):e28613
The effect of Ca(2+) channel blockers on cytosolic Ca(2+) levels and the role of Ca(2+) in glycerol metabolism of Dunaliella salina under hypoosmotic or hyperosmotic stress were investigated using the confocal laser scanning microscope (CLSM). Results showed that intracellular Ca(2+) concentration increased rapidly when extracellular salinity suddenly decreased or increased, but the increase could be inhibited by pretreatment of Ca(2+) channel blockers LaCl(3), verapamil or ruthenium red. The changes of glycerol content and G3pdh activity in D. salina to respect to hypoosmotic or hyperosmotic stress were also inhibited in different degrees by pretreatment of Ca(2+) channel blockers, indicating that the influx of Ca(2+) via Ca(2+) channels are required for the transduction of osmotic signal to regulate osmotic responses of D. salina to the changes of salinity. Differences of the three blockers in block effect suggested that they may act on different channels or had different action sites, including influx of Ca(2+) from the extracellular space via Ca(2+) channels localized in the plasma membrane or from intracellular calcium store via the mitochondrial. Other Ca(2+)-mediated or non-Ca(2+)-mediated osmotic signal pathway may exist in Dunaliella in response to hypoosmotic and hyperosmotic stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号