首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Micronemes, specialised organelles found in all apicomplexan parasites, secrete molecules that are essential for parasite attachment and invasion of host cells. EtMIC5 is one such microneme protein that contains eleven tandemly repeating modules. These modules have homology with the PAN module superfamily. Members of this family are found in blood clotting proteins, some growth factors and some nematode proteins. This paper presents the structure of the 9th PAN module in EtMIC5, determined using high resolution NMR. The structure shows similarities to and some differences from the N-terminal module of hepatocyte growth factor (HGF), the only previous member of the PAN family with known structure. AbbreviationsNMR – nuclear magnetic resonance; NOE – nuclear Overhauser enhancement; NOESY – NOE spectroscopy; COSY – correlated spectroscopy; TOCSY – total correlated spectroscopy; HSQC – hetero nuclear single quantum coherence; HMQC-J – hetero nuclear multiple quantum coherence-J coupling; MICs – microneme proteins; EtMIC5 – a microneme protein from Eimeria tenella; Apple9 – the ninth Apple repeat of EtMIC5; FXI – blood coagulation factor XI; PK – plasma prekallikrein; HGF – hepatocyte growth factor.  相似文献   

3.
The apicomplexan pathogens of Eimeria cause coccidiosis, an intestinal disease of chickens, which has a major economic impact on the poultry industry. Members of the Apicomplexa share an assortment of unique secretory organelles (rhoptries, micronemes and dense granules) that mediate invasion of host cells and formation and modification of the parasitophorous vacuole. Among these, microneme protein 2 from Eimeria tenella(EtMIC2) has a putative function in parasite adhesion to the host cell to initiate the invasion process. To investigate the role of EtMIC2 in host parasite interactions, the production and characterization of 12 monoclonal antibodies (mabs) produced against recombinant EtMIC2 proteins is described. All mabs reacted with molecules belonging to the apical complex of sporozoites and merozoites of E. tenella, E. acervulina and E. maxima in an immunofluorescence assay. By Western blot analysis, the mabs identified a developmentally regulated protein of 42 kDa corresponding to EtMIC 2 and cross-reacted with proteins in developmental stages of E. acervulina. Collectively, these mabs are useful tools for the detailed investigation of the characterization of EtMIC2 related proteins in Eimeria species.  相似文献   

4.
Micronemes are specialised secretory organelles that release their proteins by a stimulus-coupled exocytosis that occurs when apicomplexan parasites make contact with target host cells. These proteins play crucial roles in motility and invasion, most likely by mediating adhesion between parasite and host cell surfaces and facilitating the transmission of dynamic forces generated by the parasite actinomyosin cytoskeleton. Members of the TRAP family of microneme proteins are characterised by having extracellular domains containing one or more types of cysteine-rich, adhesive modules, highly-conserved transmembrane regions and cytosolic tails that contain one or more tyrosines, stretches of acidic residues and a single tryptophan. In this paper, we describe a novel member of the TRAP family, EtMIC4, a 218 kDa microneme protein from Eimeria tenella. EtMIC4 contains 31 epidermal growth factor (EGF) modules, 12 thrombospondin type-1 (TSP-1) modules and a highly acidic, proline and glycine-rich region in its extracellular region, plus the conserved transmembrane and cytosolic tail. Like EtMIC1, another TRAP family member from E. tenella, EtMIC4 is expressed in sporozoites and all the merozoite stages of the parasite, suggesting that this parasite has a strong requirement for TSP-1 modules. Unlike the other microneme proteins so far studied in E. tenella, EtMIC4 appears to be found constitutively on the sporozoite surface as well as within the micronemes.  相似文献   

5.
6.
The effects of diclazuril on mRNA expression levels of invasion-related microneme genes were examined in second-generation merozoites of Eimeria tenella (E. tenella) by quantitative real-time (QRT) PCR. Diclazruil treatment of infected chickens significantly decreased the number of second-generation merozoites by 65.13%, and resulted in downregulation of EtMIC genes: EtMIC1 by 65.63%, EtMIC2 by 64.12%, EtMIC3 by 56.82%, EtMIC4 by 73.48%, and EtMIC5 by 78.17%. SEM images of caecum tissue from uninfected chickens showed regular intestinal villus structure. In infected chickens, a distinct loss of the superficial epithelium, with a flattened mucosa and large-area necrosis and anabrosis, was evident. In diclazruil-treated chickens, a decrease in merozoite number and a visibly improved appearance of the caeca were noted. These improvements appeared to be mediated in part by downregulation of the expression of invasion-related EtMIC genes in response to diclazuril.  相似文献   

7.
Eimeria tenella, in common with other parasitic protozoa of the phylum Apicomplexa, invades host cells using an actinomyosin-powered "glideosome" complex and requires the secretion of adhesive proteins from the microneme organelles onto the parasite surface. Microneme proteins of E. tenella include EtMIC4, a transmembrane protein that has multiple thrombospondin type I domains and calcium-binding epidermal growth factor-like domains in its extracellular domain, and EtMIC5, a soluble protein composed of 11 tandemly repeated domains that belong to the plasminogen-apple-nematode superfamily. We show here that EtMIC4 and EtMIC5 interact to form an oligomeric, ultrahigh molecular mass protein complex. The complex was purified from lysed parasites by non-denaturing techniques, and the stoichiometry was shown to be [EtMIC4](2):[EtMIC5](1), with an octamer of EtMIC4 bound non-covalently to a tetramer of EtMIC5. The complex is formed within the parasite secretory pathway and is maintained after secretion onto the surface of the parasite. The purified complex binds to a number of epithelial cell lines in culture. Identification and characterization of this complex contributes to an overall understanding of the role of multimolecular protein complexes in specific interactions between pathogens and their hosts during infection.  相似文献   

8.
Like other apicomplexan parasites, Toxoplasma gondii actively invades host cells using a combination of secretory proteins and an acto-myosin motor system. Micronemes are the first set of proteins secreted during invasion that play an essential role in host cell entry. Many microneme proteins (MICs) function in protein complexes, and each complex contains at least one protein that displays a cleavable propeptide. Although MIC propeptides have been implicated in forward targeting to micronemes, the specific amino acids involved have not been identified. It was also not known if the propeptide has a general function in MICs trafficking in T. gondii and other apicomplexans. Here we show that propeptide domains are extensively interchangeable between T. gondii MICs and also with that of Eimeria tenella MIC5 (EtMIC5), suggesting a common mechanism of function. We also performed N-terminal deletion and mutational analysis of M2AP and MIC5 propeptides to show that a valine at position +3 (relative to signal peptidase cleavage) of proM2AP and a leucine at position +1 of proMIC5 are crucial for targeting to micronemes. Valine and leucine are closely related amino acids with similar side chains, implying a similar mode of function, a notion that was confirmed by correct trafficking of TgM2AP-V/L and TgMIC5-L/V substitution mutants. Propeptides of AMA1, MIC3 and EtMIC5 have valine or leucine at or near the N-termini and mutagenesis of these conserved residues validated their role in microneme trafficking. Collectively, our findings suggest that discrete, aliphatic residues at the extreme N-termini of proMICs facilitate trafficking to the micronemes.  相似文献   

9.
Analyzing the chemosensory organs of the moth Heliothis virescens, three proteins belonging to the family of insect chemosensory proteins (CSPs) have been cloned; they are called HvirCSP1, HvirCSP2 and HvirCSP3. The HvirCSPs show about 50% identity between each other and 30–76% identity to CSPs from other species. Overall, they are rather hydrophilic proteins but include a conserved hydrophobic motif. Tissue distribution and temporal expression pattern during the last pupal stages were assessed by Northern blots. HvirCSP mRNAs were detected in various parts of the adult body with a particular high expression level in legs. The expression of HvirCSP1 in legs started early during adult development, in parallel with the appearance of the cuticle. HvirCSP1 mRNA was detectable five days before eclosion (day E-5), increased dramatically on day E-3 and remained at high level into adult life. The tissue distribution and the time course of appearance of HvirCSPs are in agreement with a possible role in contact chemosensation.  相似文献   

10.
Micronemes are specialised organelles, found in all apicomplexan parasites, which secrete molecules that are essential for parasite attachment to and invasion of host cells. Regions of several microneme proteins have sequence similarity to the Apple domains (A-domains) of blood coagulation factor XI (FXI) and plasma pre-kallikrein (PK). We have used mass spectrometry on a recombinant-expressed, putative A-domain from the microneme protein EtMIC5 from Eimeria tenella, to demonstrate that three intramolecular disulphide bridges are formed. These bridges are analogous to those that stabilise A-domains in FXI and PK. The data confirm that the apicomplexan domains are structural homologues of A-domains and are therefore novel members of the PAN module superfamily, which also includes the N-terminal domains of members of the plasminogen/hepatocyte growth factor family. The role of A-domains/PAN modules in apicomplexan parasites is not known, but their presence in the microneme suggests that they may be important for mediating protein-protein or protein-carbohydrate interactions during parasite attachment and host cell invasion.  相似文献   

11.
Eimeria spp. are a highly successful group of intracellular protozoan parasites that develop within intestinal epithelial cells of poultry, causing coccidiosis. As a result of resistance against anticoccidial drugs and the expense of manufacturing live vaccines, it is necessary to understand the relationship between Eimeria and its host more deeply, with a view to developing recombinant vaccines. Eimeria possesses a family of microneme lectins (MICs) that contain microneme adhesive repeat regions (MARR). We show that the major MARR protein from Eimeria tenella, EtMIC3, is deployed at the parasite-host interface during the early stages of invasion. EtMIC3 consists of seven tandem MAR1-type domains, which possess a high specificity for sialylated glycans as shown by cell-based assays and carbohydrate microarray analyses. The restricted tissue staining pattern observed for EtMIC3 in the chicken caecal epithelium indicates that EtMIC3 contributes to guiding the parasite to the site of invasion in the chicken gut. The microarray analyses also reveal a lack of recognition of glycan sequences terminating in the N-glycolyl form of sialic acid by EtMIC3. Thus the parasite is well adapted to the avian host which lacks N-glycolyl neuraminic acid. We provide new structural insight into the MAR1 family of domains and reveal the atomic resolution basis for the sialic acid-based carbohydrate recognition. Finally, a preliminary chicken immunization trial provides evidence that recombinant EtMIC3 protein and EtMIC3 DNA are effective vaccine candidates.  相似文献   

12.
13.
Plasmodium sporozoites are transmitted through the bite of infected mosquitoes and invade hepatocytes as a first and obligatory step of the parasite life cycle in man. Hepatocyte invasion involves proteins secreted from parasite vesicles called micronemes, the most characterized being the thrombospondin-related adhesive protein (TRAP). Here we investigated the expression and function of another microneme protein recently identified in Plasmodium falciparum sporozoites, apical membrane antigen 1 (AMA-1). P. falciparum AMA-1 is expressed in sporozoites and is lost after invasion of hepatocytes, and anti-AMA-1 antibodies inhibit sporozoite invasion, suggesting that the protein is involved during invasion of hepatocytes. As observed with TRAP, AMA-1 is initially mostly sequestered within the sporozoite. Upon microneme exocytosis, AMA-1 and TRAP relocate to the sporozoite surface, where they are proteolytically cleaved, resulting in the shedding of soluble fragments. A subset of serine protease inhibitors blocks the processing and shedding of both AMA-1 and TRAP and inhibits sporozoite infectivity, suggesting that interfering with sporozoite proteolytic processing may constitute a valuable strategy to prevent hepatocyte infection.  相似文献   

14.
15.
Eimeria tenella and Toxoplasma gondii are obligate intracellular parasites belonging to the phylum Apicomplexa. In T. gondii, the microneme protein TgMIC2 contains two well-defined adhesive motifs and is thought to be a key participant in the attachment and invasion of host cells. However, several attempts by different laboratories to generate a knockout (KO) of TgMIC2 have failed, implying that TgMIC2 is an essential gene. As Eimeria and Toxoplasma utilize the same mechanisms of invasion and have highly conserved adhesive proteins, we hypothesized that the orthologous molecule in Eimeria, EtMIC1, could functionally substitute in Toxoplasma to allow a knockout of TgMIC2. TgMIC2 is partnered with a protein called TgM2AP, which corresponds to EtMIC2 in Eimeria. Because the activity of TgMIC2 is most likely tightly linked to its association with TgM2AP, it was thought that the activity of EtMIC1 might similarly require its partner EtMIC2. EtMIC1 and EtMIC2 were introduced into T. gondii, and the presence of EtMIC1 allowed the first knockout clone of TgMIC2 to be obtained. The TgMIC2 KO resulted in significantly decreased numbers of invaded parasites compared to the parental clone. In the absence of TgMIC2, TgM2AP was incorrectly processed and mistargeted to the parasitophorous vacuole instead of the micronemes. These findings indicate that the EtMIC1 can compensate for the essential requirement of TgMIC2, but it cannot fully functionally substitute for TgMIC2 in the invasion process or for supporting the correct maturation and targeting of TgM2AP.  相似文献   

16.
The invasion of erythrocytes by Plasmodium merozoites requires specific interactions between host receptors and parasite ligands. Parasite proteins that bind erythrocyte receptors during invasion are localized in apical organelles called micronemes and rhoptries. The regulated secretion of microneme and rhoptry proteins to the merozoite surface to enable receptor binding is a critical step in the invasion process. The sequence of these secretion events and the external signals that trigger release are not known. We have used time-lapse video microscopy to study changes in intracellular calcium levels in Plasmodium falciparum merozoites during erythrocyte invasion. In addition, we have developed flow cytometry based methods to measure relative levels of cytosolic calcium and study surface expression of apical organelle proteins in P. falciparum merozoites in response to different external signals. We demonstrate that exposure of P. falciparum merozoites to low potassium ion concentrations as found in blood plasma leads to a rise in cytosolic calcium levels through a phospholipase C mediated pathway. Rise in cytosolic calcium triggers secretion of microneme proteins such as the 175 kD erythrocyte binding antigen (EBA175) and apical membrane antigen-1 (AMA-1) to the merozoite surface. Subsequently, interaction of EBA175 with glycophorin A (glyA), its receptor on erythrocytes, restores basal cytosolic calcium levels and triggers release of rhoptry proteins. Our results identify for the first time the external signals responsible for the sequential release of microneme and rhoptry proteins during erythrocyte invasion and provide a starting point for the dissection of signal transduction pathways involved in regulated exocytosis of these key apical organelles. Signaling pathway components involved in apical organelle discharge may serve as novel targets for drug development since inhibition of microneme and rhoptry secretion can block invasion and limit blood-stage parasite growth.  相似文献   

17.
A global analysis of developmentally regulated genes in Myxococcus xanthus   总被引:68,自引:0,他引:68  
  相似文献   

18.
Analyzing the chemosensory organs of the moth Heliothis virescens, three proteins belonging to the family of insect chemosensory proteins (CSPs) have been cloned; they are called HvirCSP1, HvirCSP2 and HvirCSP3. The HvirCSPs show about 50% identity between each other and 30–76% identity to CSPs from other species. Overall, they are rather hydrophilic proteins but include a conserved hydrophobic motif. Tissue distribution and temporal expression pattern during the last pupal stages were assessed by Northern blots. HvirCSP mRNAs were detected in various parts of the adult body with a particular high expression level in legs. The expression of HvirCSP1 in legs started early during adult development, in parallel with the appearance of the cuticle. HvirCSP1 mRNA was detectable five days before eclosion (day E-5), increased dramatically on day E-3 and remained at high level into adult life. The tissue distribution and the time course of appearance of HvirCSPs are in agreement with a possible role in contact chemosensation.  相似文献   

19.
The two-dimensional gel electrophoresis of polypeptides synthesized in vitro from poly(A)+ RNA showed that mRNA populations change during sporulation of Physarum polycephalum. The differential hybridization of a cDNA library prepared from poly(A)+ RNA isolated from sporulating cells revealed that of 846 clones, 64 corresponded to sporulation-specific mRNAs. Further analysis demonstrated that these clones contained seven different sequences: three abundant sequences composing 3.2, 1.8, and 1.2% of the library and four other less abundant sequences. It is probable that all the major mRNAs specifically expressed in early stages of sporulation were identified. The most abundant mRNA from this group coded for a hydrophobic protein that contained a signal peptide. This protein is 47% similar to another Physarum protein, which was encoded by the most abundant plasmodium-specific mRNA. The plasmodial mRNA was degraded during sporulation and was replaced by the sporulation mRNA. These two proteins are thus encoded by members of a gene family whose expression is developmentally regulated.  相似文献   

20.
The GAS multigene family of Saccharomyces cerevisiae is composed of five paralogs (GAS1 to GAS5). GAS1 is the only one of these genes that has been characterized to date. It encodes a glycosylphosphatidylinositol-anchored protein functioning as a beta(1,3)-glucan elongase and required for proper cell wall assembly during vegetative growth. In this study, we characterize the roles of the GAS2 and GAS4 genes. These genes are expressed exclusively during sporulation. Their mRNA levels showed a peak at 7 h from induction of sporulation and then decreased. Gas2 and Gas4 proteins were detected and reached maximum levels between 8 and 10 h from induction of sporulation, a time roughly coincident with spore wall assembly. The double null gas2 gas4 diploid mutant showed a severe reduction in the efficiency of sporulation, an increased permeability of the spores to exogenous substances, and production of inviable spores, whereas the single gas2 and gas4 null diploids were similar to the parental strain. An analysis of spore ultrastructure indicated that the loss of Gas2 and Gas4 proteins affected the proper attachment of the glucan to the chitosan layer, probably as a consequence of the lack of coherence of the glucan layer. The ectopic expression of GAS2 and GAS4 genes in a gas1 null mutant revealed that these proteins are redundant versions of Gas1p specialized to function in a compartment at a pH value close to neutral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号