首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inflammatory joint diseases are a group of heterogeneous disorders with a variety of different etiologies and disease manifestations. However, there are features that are common to all of them: first, the recruitment of various inflammatory cell types that are attracted to involved tissues over the course of the disease process. Second, the treatments used in many of these diseases are commonly medications that suppress or alter immune function. The demonstration that adenosine has endogenous anti-inflammatory functions and that some of the most commonly used anti-rheumatic medications exert their therapeutic effects through stimulation of adenosine release suggest an important role for purinergic signaling in inflammatory rheumatic disorders.  相似文献   

2.
This paper reviews hypotheses about roles of angiogenesis in the pathogenesis of inflammatory disease in two organs, the synovial joint and the lung. Neovascularisation is a fundamental process for growth and tissue repair after injury. Nevertheless, it may contribute to a variety of chronic inflammatory diseases, including rheumatoid arthritis, osteoarthritis, asthma, and pulmonary fibrosis. Inflammation can promote angiogenesis, and new vessels may enhance tissue inflammation. Angiogenesis in inflammatory disease may also contribute to tissue growth, disordered tissue perfusion, abnormal ossification, and enhanced responses to normal or pathological stimuli. Angiogenesis inhibitors may reduce inflammation and may also help to restore appropriate tissue structure and function.  相似文献   

3.
Interleukin (IL)-15 is a dangerous inflammatory cytokine that induces tumor-necrosis factor-α, IL-1β and inflammatory chemokines. It inhibits self-tolerance mediated by IL-2 mediated activation-induced cell death and facilitates maintenance of CD8+ memory T-cell survival including that of self-directed memory cells. Disordered IL-15 expression has been reported in patients with an array of inflammatory autoimmune diseases. A series of therapeutic agents that inhibit IL-15 action have been introduced, including the soluble IL-15 receptor (IL-15R) α chain, mutant IL-15, and antibodies directed against the IL-15 cytokine and against the IL-2R/IL-15R β subunit used by IL-2 and IL-15.  相似文献   

4.
5.
Youngkyun Lee 《BMB reports》2013,46(10):479-483
The balance between osteoblast-dependent bone formation and osteoclast-dependent bone resorption maintains bone homeostasis. In inflammatory conditions, this balance shifts toward bone resorption, causing osteolytic bone lesions observed in rheumatoid arthritis and periodontitis. A recently discovered family of cytokine IL-17 is widely reported to mediate diverse inflammatory processes. During the last decade, novel roles for IL-17 in skeletal homeostasis have been discovered indicating the potential importance of this cytokine in bone metabolism. This review will summarize and discuss the involvement of IL-17 during bone homeostasis in both physiologic and pathologic conditions. A better understanding of the role of IL-17 in skeletal systems warrants an advance in bone biology, as well as development of therapeutic strategies against bone-lytic diseases, such as rheumatoid arthritis and periodontitis. [BMB Reports 2013; 46(10): 479-483]  相似文献   

6.
7.
Inflammatory bowel diseases (IBDs), Crohn's disease (CD), and ulcerative colitis (UC) are chronic inflammatory conditions, which are increasing in incidence, prevalence, and severity, in many countries. While there is genetic susceptibility to IBD, the probability of disease development is modified by diet, lifestyle, and endogenous factors, including the gut microbiota. For example, high intakes of mono- and disaccharides, and total fats consistently increases the risk developing both forms of IBD. High vegetable intake reduces the risk of UC, whereas increased fruit and/or dietary fiber intake appears protective against CD. Low levels of certain micronutrients, especially vitamin D, may increase the risk of both diseases. Dietary patterns may be even more important to disease susceptibility than the levels of individual foods or nutrients. Various dietary regimes may modify disease symptoms, in part through their actions on the host microbiota. Both probiotics and prebiotics may modulate the microflora, and reduce the likelihood of IBD regression. However, other dietary factors affect the microbiota in different ways. Distinguishing cause from effect, and characterizing the relative roles of human and microbial genes, diet, age of onset, gender, life style, smoking history, ethnic background, environmental exposures, and medications, will require innovative and internationally integrated approaches.  相似文献   

8.
Cell-based therapies are a rapidly developing area of regenerative medicine as dynamic treatments that execute therapeutic functions multimodally. Monocytes and macrophages, as innate immune cells that control inflammation and tissue repair, are increasing popular clinical candidates due to their spectrum of functionality. In this article, we review the role of monocytes and macrophages specifically in inflammatory and degenerative disease pathology and the evidence supporting the use of these cells as an effective therapeutic strategy. We compare current strategies of exogenously polarized monocyte/macrophage therapies regarding dosage, delivery and processing to identify outcomes, advances and challenges to their clinical use. Monocytes/macrophages hold the potential to be a promising therapeutic avenue but understanding and optimization of disease-specific efficacy is needed to accelerate their clinical use.  相似文献   

9.
10.
It is well documented that long term potentiation (LTP) is impaired in the hippocampus of the aged animal. Among the changes that contribute to this impairment is an increase in hippocampal concentration of the pro-inflammatory cytokine interleukin-1beta (IL-1beta), and increased IL-1beta-induced signaling. In this study we investigated the possibility that these changes were a consequence of decreased concentration of the anti-inflammatory cytokine, IL-4, and decreased IL-4-stimulated signaling. We report that functional IL-4 receptors are expressed on granule cells of the dentate gyrus and that receptor activation results in phosphorylation of JAK1 and STAT6. Hippocampal IL-4 concentration was decreased with age, and this was accompanied by a decrease in phosphorylation of JAK1 and STAT6. The evidence indicates that IL-4 modulates expression of IL-1beta mRNA and protein and that it attenuates IL-1beta-induced impairment of LTP and phosphorylation of JNK and c-Jun. We argued that, if a decrease in hippocampal IL-4 concentration significantly contributed to the age-related impairment in LTP, then restoration of IL-4 should restore LTP. To test this, we treated rats with VP015 (phospholipid microparticles-incorporating phosphatidylserine), which increases IL-4 concentration in hippocampus. The data indicate that the VP015-induced increase in IL-4 concentration in hippocampus of aged rats and lipopolysaccharide (LPS)-treated rats was accompanied by a reversal of the age-related and LPS-induced impairment in LTP in perforant path granule cell synapses. We propose that interplay between pro-inflammatory and anti-inflammatory responses impact significantly on synaptic function in the hippocampus of the aged rat.  相似文献   

11.
Retinal degeneration, either acquired or inherited, is a major cause of visual impairment and blindness in humans. Inherited retinal degeneration comprises a large group of diseases that result in the loss of photoreceptor cells. To date, 131 retinal disease loci have been identified, and 76 of the genes at these loci have been isolated (RetNet Web site). Several of these genes were first considered candidates because of their chromosomal localization or homology to genes involved in retinal degeneration in other organisms. In this review, I will discuss recent advances in the identification of genes that cause retinal degeneration, and I will describe the mechanisms of photoreceptor death and potential treatments for retinal degenerative diseases.  相似文献   

12.
13.
14.
15.
Taurine (2-aminoethanesulfonic acid) is the most abundant free amino acid in humans and plays an important role in several essential biological processes such as bile acid conjugation, maintenance of calcium homeostasis, osmoregulation and membrane stabilization. Moreover, attenuation of apoptosis and its antioxidant activity seem to be crucial for the cytoprotective effects of taurine. Although these properties are not tissue specific, taurine reaches particularly high concentrations in tissues exposed to elevated levels of oxidants (e.g., inflammatory cells). It suggests that taurine may play an important role in inflammation associated with oxidative stress. Indeed, at the site of inflammation, taurine is known to react with and detoxify hypochlorous acid generated by the neutrophil myeloperoxidase (MPO)–halide system. This reaction results in the formation of less toxic taurine chloramine (TauCl). Both haloamines, TauCl and taurine bromamine (TauBr), the product of taurine reaction with hypobromous acid (HOBr), exert antimicrobial and anti-inflammatory properties. In contrast to a well-documented regulatory role of taurine and taurine haloamines (TauCl, TauBr) in acute inflammation, their role in the pathogenesis of inflammatory diseases is not clear. This review summarizes our current knowledge concerning the role of taurine, TauCl and TauBr in the pathogenesis of inflammatory diseases initiated or propagated by MPO-derived oxidants. The aim of this paper is to show links between inflammation, neutrophils, MPO, oxidative stress and taurine. We will discuss the possible contribution of taurine and taurine haloamines to the pathogenesis of inflammatory diseases, especially in the best studied example of rheumatoid arthritis.  相似文献   

16.
In dogs, degenerative joint diseases (DJD) have been shown to be associated with increased lactate dehydrogenase (LDH) activity in the synovial fluid. The goal of this study was to examine healthy and degenerative stifle joints in order to clarify the origin of LDH in synovial fluid. In order to assess the distribution of LDH, cartilage samples from healthy and degenerative knee joints were investigated by means of light and transmission electron microscopy in conjunction with immunolabeling and enzyme cytochemistry. Morphological analysis confirmed DJD. All techniques used corroborated the presence of LDH in chondrocytes and in the interterritorial matrix of healthy and degenerative stifle joints. Although enzymatic activity of LDH was clearly demonstrated in the territorial matrix by means of the tetrazolium–formazan reaction, immunolabeling for LDH was missing in this region. With respect to the distribution of LDH in the interterritorial matrix, a striking decrease from superficial to deeper layers was present in healthy dogs but was missing in affected joints. These results support the contention that LDH in synovial fluid of degenerative joints originates from cartilage. Therefore, we suggest that (1) LDH is transferred from chondrocytes to ECM in both healthy dogs and dogs with degenerative joint disease and that (2) in degenerative joints, LDH is released from chondrocytes and the ECM into synovial fluid through abrasion of cartilage as well as through enhanced diffusion as a result of increased water content and degradation of collagen.  相似文献   

17.
Patterns of degenerative joint disease are investigated in the shoulder, elbow, hip, and knee joints of the macerated remains of approximately 800 individuals from 20th century American and two prehistoric populations. Age is an important contributory factor in all joints, but its effects are seen most directly in the shoulder and hip. Patterns of right-left involvement also indicate the elbow is the most susceptible area to local factors. Multiple joint involvement is seen more often in females from contemporary populations but more often in males from archeological groups. No significant association is found between degenerative involvement and osteometric measurements, and cause of death is probably only incidentally associated with degenerative disease.  相似文献   

18.
The association of inflammation with modern human diseases (e.g. obesity, cardiovascular disease, type 2 diabetes mellitus, cancer) remains an unsolved mystery of current biology and medicine. Inflammation is a protective response to noxious stimuli that unavoidably occurs at a cost to normal tissue function. This fundamental trade-off between the cost and benefit of the inflammatory response has been optimized over evolutionary time for specific environmental conditions. Rapid change of the human environment due to niche construction outpaces genetic adaptation through natural selection, leading increasingly to a mismatch between the modern environment and selected traits. Consequently, multiple trade-offs that affect human physiology are not optimized to the?modern environment, leading to increased disease susceptibility. Here we examine the inflammatory response from an evolutionary perspective. We discuss unique aspects of the inflammatory response and its evolutionary history that can help explain the association between inflammation and modern human diseases.  相似文献   

19.
促炎症消退介质脂氧素与炎症性疾病   总被引:2,自引:0,他引:2  
脂氧素是炎症过程中产生的具有特征性三羟四烯结构的花生四烯酸衍生物,因具有独特的促炎症消退功效而成为目前炎症研究和新药开发的焦点.越来越多的研究征实,脂氧素代谢及效应的异常与临床多种炎症相关性疾病的发生发展关系密切.目前认为炎症自限机制发生障碍才是炎症失控的根本原因,而"促炎症消退"成为炎症治疗的新策略.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号