首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Several genome sequencing projects have recently been completed and the majority of human coding regions have been sequenced. In the next step many of the further studies will concentrate on proteins. Proteomics methods are essential for studying protein expression, activity, regulation and modifications. Bioinformatics is an integral part of proteomics research. The recent developments and applications in proteomics are discussed including mass spectrometry data analysis and interpretation, analysis and storage of the gel images to databases, gel comparison, and advanced methods to study e.g. protein co-expression, protein-protein interactions, as well as metabolic and cellular pathways. The significance of informatics in proteomics will gradually increase because of the advent of high-throughput methods relying on powerful data analysis.  相似文献   

2.
The VQIVYK fragment from the Tau protein, also known as PHF6, is essential for aggregation of Tau into neurofibrillary lesions associated with neurodegenerative diseases. VQIVYK itself forms amyloid fibrils composed of paired β-sheets. Therefore, the full Tau protein and VQIVYK fibrils have been intensively investigated. A central issue in these studies is polymorphism, the ability of a protein to fold into more than one structure. Using all-atom molecular simulations, we generate five stable polymorphs of VQIVYK fibrils, establish their relative free energy with umbrella sampling methods, and identify the side chain interactions that provide stability. The two most stable polymorphs, which have nearly equal free energy, are formed by interdigitation of the mostly hydrophobic VIY “face” sides of the β-sheets. Another stable polymorph is formed by interdigitation of the QVK “back” sides. When we turn to examine structures from cryo-electron microscopy experiments on Tau filaments taken from diseased patients or generated in vitro, we find that the pattern of side chain interactions found in the two most stable face-to-face as well as the back-to-back polymorphs are recapitulated in amyloid structures of the full protein. Thus, our studies suggest that the interactions stabilizing PHF6 fibrils explain the amyloidogenicity of the VQIVYK motif within the full Tau protein and provide justification for the use of VQIVYK fibrils as a test bed for the design of molecules that identify or inhibit amyloid structures.  相似文献   

3.
Tau is the major neuronal protein involved in the stabilization of microtubule assembly. In Alzheimer's disease, Tau self-assembles to form intracellular protein aggregates which are toxic to cells. Various methods have been tried and tested to restrain the aggregation of Tau. Most of the agents tested for this purpose have limitations in their effectiveness and availability to neuronal cells. We have tested melatonin, a neurohormone secreted by pineal gland and a well-known anti-oxidant, for its ability to interact with the repeat domain of Tau using ITC and NMR. In aggregation inhibition and disaggregation studies of repeat Tau, melatonin was found to modulate the aggregation propensity of repeat Tau at a concentration of 5000 μM and was more effective in dissolving preformed aggregates rather than acting as an aggregation inhibitor. However, there were no major conformational changes in Tau in presence of melatonin as observed by CD spectroscopy. On the basis of our findings, we are proposing a mechanism by which melatonin can interact with the repeat domain of Tau and exhibit its disaggregation effect.  相似文献   

4.
Alzheimer's disease is a progressive neurodegenerative disorder characterized by the abnormal processing of the Tau and the amyloid precursor proteins. The unusual aggregation of Tau is based on the formation of intermolecular β‐sheets through two motifs: 275VQIINK280 and 306VQIVYK311. Phenylthiazolyl‐hydrazides (PTHs) are capable of inhibiting/disassembling Tau aggregates. However, the disaggregation mechanism of Tau oligomers by PTHs is still unknown. In this work, we studied the disruption of the oligomeric form of the Tau motif 306VQIVYK311 by PTHs through molecular docking, molecular dynamics, and free energy calculations. We predicted hydrophobic interactions as the major driving forces for the stabilization of Tau oligomer, with V306 and I308 being the major contributors. Nonpolar component of the binding free energy is essential to stabilize Tau‐PTH complexes. PTHs disrupted mainly the van der Waals interactions between the monomers, leading to oligomer destabilization. Destabilization of full Tau filament by PTHs and emodin was not observed in the sampled 20 ns; however, in all cases, the nonpolar component of the binding free energy is essential for the formation of Tau filament‐PTH and Tau filament‐emodin. These results provide useful clues for the design of more effective Tau‐aggregation inhibitors.  相似文献   

5.
During the last decade, protein analysis and proteomics have been established as new tools for understanding various biological problems. As the identification of proteins after classical separation techniques, such as two-dimensional gel electrophoresis, have become standard methods, new challenges arise in the field of proteomics. The development of "functional proteomics" combines functional characterization, like regulation, localization and modification, with the identification of proteins for deeper insight into cellular functions. Therefore, different mass spectrometric techniques for the analysis of post-translational modifications, such as phosphorylation and glycosylation, have been established as well as isolation and separation methods for the analysis of highly complex samples, e.g. protein complexes or cell organelles. Furthermore, quantification of protein levels within cells is becoming a focus of interest as mass spectrometric methods for relative or even absolute quantification have currently not been available. Protein or genome databases have been an essential part of protein identification up to now. Thus, de novo sequencing offers new possibilities in protein analytical studies of organisms not yet completely sequenced. The intention of this review is to provide a short overview about the current capabilities of protein analysis when addressing various biological problems.  相似文献   

6.
Alterovitz G  Liu J  Afkhami E  Ramoni MF 《Proteomics》2007,7(16):2843-2855
Biological and medical data have been growing exponentially over the past several years [1, 2]. In particular, proteomics has seen automation dramatically change the rate at which data are generated [3]. Analysis that systemically incorporates prior information is becoming essential to making inferences about the myriad, complex data [4-6]. A Bayesian approach can help capture such information and incorporate it seamlessly through a rigorous, probabilistic framework. This paper starts with a review of the background mathematics behind the Bayesian methodology: from parameter estimation to Bayesian networks. The article then goes on to discuss how emerging Bayesian approaches have already been successfully applied to research across proteomics, a field for which Bayesian methods are particularly well suited [7-9]. After reviewing the literature on the subject of Bayesian methods in biological contexts, the article discusses some of the recent applications in proteomics and emerging directions in the field.  相似文献   

7.
The two pathological hallmarks of Alzheimer's disease, amyloid plaques and neurofibrillary tangles, involve two apparently unrelated proteins, the amyloid precursor protein (APP) and Tau. Although it is known that aberrant processing of APP is associated with Alzheimer's disease, the definitive role of APP in neurons is not yet clear. Tau regulates microtubule stabilization and assembly in axons and is, thus, an essential component of the microtubule-associated organelle transport machinery. Although several groups have reported physical interaction between APP and Tau, and induction of Tau phosphorylation by APP and beta-amyloid peptide, the functional connection between APP and Tau is unclear. To explore the possibility that the functions of these two proteins may somehow converge on the same cellular process, we overexpressed APPL, the Drosophila homologue of APP, along with Tau in Drosophila neurons. Panneural coexpression of APPL and Tau resulted in adults that, upon eclosion, failed to expand wings and harden the cuticle, which is suggestive of neuroendocrine dysfunction. We analyzed axonal transport when Tau and APPL were coexpressed and found that transport of axonal cargo was disrupted, as evidenced by increased retention of synaptic proteins in axons and scarcity of neuropeptide-containing vesicles in the distal processes of peptidergic neurons. In an independent approach, we demonstrated genetic interaction and phenotypic similarity between APPL overexpression and mutations in the Kinesin heavy chain (Khc) gene, the product of which is a motor for anterograde vesicle trafficking.  相似文献   

8.
Mutations affecting either the structure or regulation of the microtubule-associated protein Tau cause neuronal cell death and dementia. However, the molecular mechanisms mediating these deleterious effects remain unclear. Among the most characterized activities of Tau is the ability to regulate microtubule dynamics, known to be essential for proper cell function and viability. Here we have tested the hypothesis that Tau mutations causing neurodegeneration also alter the ability of Tau to regulate the dynamic instability behaviors of microtubules. Using in vitro microtubule dynamics assays to assess average microtubule growth rates, microtubule growth rate distributions, and catastrophe frequencies, we found that all tested mutants possessing amino acid substitutions or deletions mapping to either the repeat or interrepeat regions of Tau do indeed compromise its ability to regulate microtubule dynamics. Further mutational analyses suggest a novel mechanism of Tau regulatory action based on an "alternative core" of microtubule binding and regulatory activities composed of two repeats and the interrepeat between them. In this model, the interrepeat serves as the primary regulator of microtubule dynamics, whereas the flanking repeats serve as tethers to properly position the interrepeat on the microtubule. Importantly, since there are multiple interrepeats on each Tau molecule, there are also multiple cores on each Tau molecule, each with distinct mechanistic capabilities, thereby providing significant regulatory potential. Taken together, the data are consistent with a microtubule misregulation mechanism for Tau-mediated neuronal cell death and provide a novel mechanistic model for normal and pathological Tau action.  相似文献   

9.
2D electrophoresis (2DE) is a prominent separation method for complex proteomes. Although recent advances have increased the utility of this method in quantitative proteomics studies, many sources of variance still exist. This review discusses the post-electrophoretic sources of variance in current 2DE analysis. The essential improvements in protein visualization and software algorithms that have made 2DE a leading quantitative proteomics method are briefly reviewed. A number of shortcomings in the post-electrophoretic analysis of 2DE data that require further attention are highlighted. Topics discussed include protein visualization and image acquisition, internal standards and normalization methods, background subtraction algorithms, normality of distribution, and the need for standardized tests for the evaluation of 2DE analysis software packages.  相似文献   

10.
In proteomics, MS plays an essential role in identifying and quantifying proteins. To characterize mature target proteins from living cells, candidate proteins are often analyzed with PMF and MS/MS ion search methods in combination with computational search routines based on bioinformatics. In contrast to shotgun proteomics, which is widely used to identify proteins, proteomics based on the analysis of N- and C-terminal amino acid sequences (terminal proteomics) should render higher fidelity results because of the high information content of terminal sequence and potentially high throughput of the method not requiring very high sequence coverage to be achieved by extensive sequencing. In line with this expectation, we review recent advances in methods for N- and C-terminal amino acid sequencing of proteins. This review focuses mainly on the methods of N- and C-terminal analyses based on MALDI-TOF MS for its easy accessibility, with several complementary approaches using LC/MS/MS. We also describe problems associated with MS and possible remedies, including chemical and enzymatic procedures to enhance the fidelity of these methods.  相似文献   

11.
Tau is a multiply phosphorylated protein that is essential for the development and maintenance of the nervous system. Errors in Tau action are associated with Alzheimer disease and related dementias. A huge literature has led to the widely held notion that aberrant Tau hyperphosphorylation is central to these disorders. Unfortunately, our mechanistic understanding of the functional effects of combinatorial Tau phosphorylation remains minimal. Here, we generated four singly pseudophosphorylated Tau proteins (at Thr(231), Ser(262), Ser(396), and Ser(404)) and four doubly pseudophosphorylated Tau proteins using the same sites. Each Tau preparation was assayed for its abilities to promote microtubule assembly and to regulate microtubule dynamic instability in vitro. All four singly pseudophosphorylated Tau proteins exhibited loss-of-function effects. In marked contrast to the expectation that doubly pseudophosphorylated Tau would be less functional than either of its corresponding singly pseudophosphorylated forms, all of the doubly pseudophosphorylated Tau proteins possessed enhanced microtubule assembly activity and were more potent at regulating dynamic instability than their compromised singly pseudophosphorylated counterparts. Thus, the effects of multiple pseudophosphorylations were not simply the sum of the effects of the constituent single pseudophosphorylations; rather, they were generally opposite to the effects of singly pseudophosphorylated Tau. Further, despite being pseudophosphorylated at different sites, the four singly pseduophosphorylated Tau proteins often functioned similarly, as did the four doubly pseudophosphorylated proteins. These data lead us to reassess the conventional view of combinatorial phosphorylation in normal and pathological Tau action. They may also be relevant to the issue of combinatorial phosphorylation as a general regulatory mechanism.  相似文献   

12.
Recent achievements in genomics have created an infrastructure of biological information. The enormous success of genomics promptly induced a subsequent explosion in proteomics technology, the emerging science for systematic study of proteins in complexes, organelles, and cells. Proteomics is developing powerful technologies to identify proteins, to map proteomes in cells, to quantify the differential expression of proteins under different states, and to study aspects of protein-protein interaction. The dynamic nature of protein expression, protein interactions, and protein modifications requires measurement as a function of time and cellular state. These types of studies require many measurements and thus high throughput protein identification is essential. This review will discuss aspects of mass spectrometry with emphasis on methods and applications for large-scale protein identification, a fundamental tool for proteomics.  相似文献   

13.
蛋白质糖基化分析方法及其在蛋白质组学中的应用   总被引:5,自引:0,他引:5  
作为一种普遍存在的翻译后修饰,糖基化对蛋白质的结构和功能有着重要影响。弄清糖基化发生发展的规律是理解蛋白质复杂多样的生物功能的一个重要前提。糖基化发生的特点决定了糖基化相关研究是对分析技术的一大挑战。作为蛋白质组学研究的重要组成部分,目前蛋白质糖基化研究的重点和难点主要集中于糖蛋白/糖肽的分离富集和糖蛋白的鉴定/糖基化位点的确定2个方面,相关技术已用于蛋白质组学水平的糖基化研究,但都还不够成熟。以生物质谱为核心、多学科交叉的蛋白质组学技术始终处于不断发展之中。基于糖基化发生规律的富集检测技术的发展、移动质子理论的提出及电子捕获裂解技术的应用必将极大地促进包括糖基化在内的翻译后修饰研究。蛋白质糖基化的研究有助于从基因组-蛋白组-糖组这样一个宏观的综合的水平观察分析生命现象,从而达到对生命现象更本质的认识。  相似文献   

14.
Proteomics: a link between genomics,genetics and physiology   总被引:16,自引:0,他引:16  
Thanks to spectacular advances in the techniques for identifying proteins separated by two-dimensional electrophoresis and in methods for large-scale analysis of proteome variations, proteomics is becoming an essential methodology in various fields of plant biology. In the study of pleiotropic effects of mutants and in the analysis of responses to hormones and to environmental changes, the identification of involved metabolic pathways can be deduced from the function of affected proteins. In molecular quantitative genetics, proteomics can be used to map translated genes and loci controlling their expression, which can be used to identify proteins accounting for the variation of complex phenotypic traits. Linking gene expression to cell metabolism on the one hand and to genetic maps on the other, proteomics is a central tool for functional genomics.  相似文献   

15.
Interaction of tau protein with the dynactin complex   总被引:1,自引:0,他引:1  
Tau is an axonal microtubule-associated protein involved in microtubule assembly and stabilization. Mutations in Tau cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), and tau aggregates are present in Alzheimer's disease and other tauopathies. The mechanisms leading from tau dysfunction to neurodegeneration are still debated. The dynein-activator complex dynactin has an essential role in axonal transport and mutations in its gene are associated with lower motor neuron disease. We show here for the first time that the N-terminal projection domain of tau binds to the C-terminus of the p150 subunit of the dynactin complex. Tau and dynactin show extensive colocalization, and the attachment of the dynactin complex to microtubules is enhanced by tau. Mutations of a conserved arginine residue in the N-terminus of tau, found in patients with FTDP-17, affect its binding to dynactin, which is abnormally distributed in the retinal ganglion cell axons of transgenic mice expressing human tau with a mutation in the microtubule-binding domain. These findings, which suggest a direct involvement of tau in axonal transport, have implications for understanding the pathogenesis of tauopathies.  相似文献   

16.
Biomarkers, also called biological markers, are indicators to identify a biological case or situation as well as detecting any presence of biological activities and processes. Proteins are considered as a type of biomarkers based on their characteristics. Therefore, proteomics approach is one of the most promising approaches in this field. The purpose of this review is to summarize the use of proteomics approach and techniques to identify proteins as biomarkers for different diseases. This review was obtained by searching in a computerized database. So, different researches and studies that used proteomics approach to identify different biomarkers for different diseases were reviewed. Also, techniques of proteomics that are used to identify proteins as biomarkers were collected. Techniques and methods of proteomics approach are used for the identification of proteins' activities and presence as biomarkers for different types of diseases from different types of samples. There are three essential steps of this approach including: extraction and separation of proteins, identification of proteins, and verification of proteins. Finally, clinical trials for new discovered biomarker or undefined biomarker would be on.  相似文献   

17.
The etiology of sporadic Alzheimer disease (AD) is largely unknown, although evidence implicates the pathological hallmark molecules amyloid beta (Aβ) and phosphorylated Tau. Work in animal models suggests that altered axonal transport caused by Kinesin-1 dysfunction perturbs levels of both Aβ and phosphorylated Tau in neural tissues, but the relevance of Kinesin-1 dependent functions to the human disease is unknown. To begin to address this issue, we generated human embryonic stem cells (hESC) expressing reduced levels of the kinesin light chain 1 (KLC1) Kinesin-1 subunit to use as a source of human neural cultures. Despite reduction of KLC1, undifferentiated hESC exhibited apparently normal colony morphology and pluripotency marker expression. Differentiated neural cultures derived from KLC1-suppressed hESC contained neural rosettes but further differentiation revealed obvious morphological changes along with reduced levels of microtubule-associated neural proteins, including Tau and less secreted Aβ, supporting the previously established connection between KLC1, Tau and Aβ. Intriguingly, KLC1-suppressed neural precursors (NPs), isolated using a cell surface marker signature known to identify cells that give rise to neurons and glia, unlike control cells, failed to proliferate. We suggest that KLC1 is required for normal human neural differentiation, ensuring proper metabolism of AD-associated molecules APP and Tau and for proliferation of NPs. Because impaired APP metabolism is linked to AD, this human cell culture model system will not only be a useful tool for understanding the role of KLC1 in regulating the production, transport and turnover of APP and Tau in neurons, but also in defining the essential function(s) of KLC1 in NPs and their progeny. This knowledge should have important implications for human neurodevelopmental and neurodegenerative diseases.  相似文献   

18.
Identifying the proteome: software tools   总被引:18,自引:0,他引:18  
The interest in proteomics has recently increased dramatically and proteomic methods are now applied to many problems in cell biology. The method of choice in proteomics for identifying and characterizing proteins is mass spectrometry combined with database searching. Software tools have been improved to increase the sensitivity of protein identification and methods for evaluating the search results have been incorporated  相似文献   

19.
Mutations causing neurodegenerative tauopathies   总被引:13,自引:0,他引:13  
Tau is the major component of the intracellular filamentous deposits that define a number of neurodegenerative diseases. They include the largely sporadic Alzheimer's disease (AD), progressive supranuclear palsy, corticobasal degeneration, Pick's disease and argyrophilic grain disease, as well as the inherited frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). For a long time, it was unclear whether the dysfunction of tau protein follows disease or whether disease follows tau dysfunction. This was resolved when mutations in Tau were found to cause FTDP-17. Currently, 32 different mutations have been identified in over 100 families. About half of the known mutations have their primary effect at the protein level. They reduce the ability of tau protein to interact with microtubules and increase its propensity to assemble into abnormal filaments. The other mutations have their primary effect at the RNA level and perturb the normal ratio of three-repeat to four-repeat tau isoforms. Where studied, this resulted in a relative overproduction of tau protein with four microtubule-binding domains in the brain. Individual Tau mutations give rise to diseases that resemble progressive supranuclear palsy, corticobasal degeneration or Pick's disease. Moreover, the H1 haplotype of Tau has been identified as a significant risk factor for progressive supranuclear palsy and corticobasal degeneration. At a practical level, the new work is leading to the production of experimental animal models that reproduce the essential molecular and cellular features of the human tauopathies, including the formation of abundant filaments made of hyperphosphorylated tau protein and nerve cell degeneration.  相似文献   

20.
Aggregation of the microtubule associated protein Tau is associated with several neurodegenerative disorders, including Alzheimer disease and frontotemporal dementia. In Alzheimer disease, Tau pathology spreads progressively throughout the brain, possibly along existing neural networks. However, it is still unclear how the propagation of Tau misfolding occurs. Intriguingly, in animal models, vaccine-based therapies have reduced Tau and synuclein pathology by uncertain mechanisms, given that these proteins are intracellular. We have previously speculated that trans-cellular propagation of misfolding could be mediated by a process similar to prion pathogenesis, in which fibrillar Tau aggregates spread pathology from cell to cell. However, there has been little evidence to demonstrate true trans-cellular propagation of Tau misfolding, in which Tau aggregates from one cell directly contact Tau protein in the recipient cell to trigger further aggregation. Here we have observed that intracellular Tau fibrils are directly released into the medium and then taken up by co-cultured cells. Internalized Tau aggregates induce fibrillization of intracellular Tau in these naive recipient cells via direct protein-protein contact that we demonstrate using FRET. Tau aggregation can be amplified across several generations of cells. An anti-Tau monoclonal antibody blocks Tau aggregate propagation by trapping fibrils in the extracellular space and preventing their uptake. Thus, propagation of Tau protein misfolding among cells can be mediated by release and subsequent uptake of fibrils that directly contact native protein in recipient cells. These results support the model of aggregate propagation by templated conformational change and suggest a mechanism for vaccine-based therapies in neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号