首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
During pancreatic development, endocrine and exocrine cell types arise from common precursors in foregut endoderm. However, little information is available regarding regulation of pancreatic epithelial differentiation in specific precursor populations. We show that undifferentiated epithelial precursors in E10.5 mouse pancreas express nestin, an intermediate filament also expressed in neural stem cells. Within developing pancreatic epithelium, nestin is co-expressed with pdx1 and p48, but not ngn3. Epithelial nestin expression is extinguished upon differentiation of endocrine and exocrine cell types, and no nestin-positive epithelial cells are observed by E15.5. In E10.5 dorsal bud explants, activation of EGF signaling results in maintenance of undifferentiated nestin-positive precursors at the expense of differentiated acinar cells, suggesting a precursor/progeny relationship between these cell types. This relationship was confirmed by rigorous lineage tracing studies using nestin regulatory elements to drive Cre-mediated labeling of nestin-positive precursor cells and their progeny. These experiments demonstrate that a nestin promoter/enhancer element containing the second intron of the mouse nestin locus is active in undifferentiated E10.5 pancreatic epithelial cells, and that these nestin-positive precursors contribute to the generation of differentiated acinar cells. As in neural tissue, nestin-positive cells act as epithelial progenitors during pancreatic development, and may be regulated by EGF receptor activity.  相似文献   

3.
4.
In response to inflammation, pancreatic acinar cells can undergo acinar-to-ductal metaplasia (ADM), a reprogramming event that induces transdifferentiation to a ductlike phenotype and, in the context of additional oncogenic stimulation, contributes to development of pancreatic cancer. The signaling mechanisms underlying pancreatitis-inducing ADM are largely undefined. Our results provide evidence that macrophages infiltrating the pancreas drive this transdifferentiation process. We identify the macrophage-secreted inflammatory cytokines RANTES and tumor necrosis factor α (TNF) as mediators of such signaling. Both RANTES and TNF induce ADM through activation of nuclear factor κB and its target genes involved in regulating survival, proliferation, and degradation of extracellular matrix. In particular, we identify matrix metalloproteinases (MMPs) as targets that drive ADM and provide in vivo data suggesting that MMP inhibitors may be efficiently applied to block pancreatitis-induced ADM in therapy.  相似文献   

5.
6.
Although pancreatic exocrine acinar cells have the potential to transdifferentiate into pancreatic endocrine cells, the mechanisms are poorly understood. Here we report that intracellular signaling pathways, including those involving MAPK and phosphatidylinositol 3 (PI3)-kinase, are activated by enzymatic dissociation of pancreatic acinar cells and that spherical cell clusters are formed by cadherin-mediated cell-cell adhesion during transdifferentiation. Inhibition of PI3-kinase by LY294002 prevents spheroid formation by degrading E-cadherin and beta-catenin, blocking transdifferentiation into insulin-secreting cells. In addition, neutralizing antibody against E-cadherin suppresses the induction of genes characteristic of pancreatic beta-cells. We also show that loss of cadherin-mediated cell-cell adhesion induces and maintains a dedifferentiated state in isolated pancreatic acinar cells. Thus, disruption and remodeling of cadherin-mediated cell-cell adhesion is critical in pancreatic exocrine-to-endocrine transdifferentiation, in which the PI3-kinase pathway plays an essential role.  相似文献   

7.
Notch signaling is involved both in development as well as in multiple cancers, including pancreatic cancer. Its activity has been implicated early in pancreatic disease, shown to be essential for a pre-cancerous transdifferentiation event known as acinar-to-ductal metaplasia (ADM). Recently, we have shown that matrix metalloproteinase-7 (MMP-7) is essential for ADM by activating the Notch pathway, challenging the notion that ADAM metalloproteinases are the sole enzymes responsible for initiating Notch activity. In ADM, ADAMs do not compensate for the absence of MMP-7 activity. We propose that during development and stem cell maintenance, Notch activation is highly regulated by the binding of Notch ligand to receptor and employs the ubiquitously-expressed ADAMs, whereas in a disease state, high levels of induced MMP-7 activity can lead to aberrant ligand-independent Notch activation. Therefore, if ADM or PDA is to be blocked by inhibiting Notch, treatment with ADAM-specific inhibitors alone will be inadequate. Other approaches for Notch inhibition, including by γ-secretase and broad-spectrum MMP inhibitors, will be discussed.  相似文献   

8.
Lineage tracing follows the progeny of labeled cells through development. This technique identifies precursors of mature cell types in vivo and describes the cell fate restriction steps they undergo in temporal order. In the mouse pancreas, direct cell lineage tracing reveals that Pdx1- expressing progenitors in the early embryo give rise to all pancreatic cells. The progenitors for the mature pancreatic ducts separate from the endocrine/exocrine tissues before E12.5. Expression of Ngn3 and pancreatic polypeptide marks endocrine cell lineages during early embryogenesis, and these cells behave as transient progenitors rather than stem cells. In adults, Ngn3 is expressed within the endocrine islets, and the NGN3+ cells seem to contribute to pancreatic islet renewal. These results indicate the stage at which each progenitor population is restricted to a particular fate and provide markers for isolating progenitors to study their growth, differentiation, and the genes necessary for their development.  相似文献   

9.
Transdifferentiation is defined as the conversion of one cell type to another. It belongs to a wider class of cell type transformations called metaplasias which also includes cases in which stem cells of one tissue type switch to a completely different stem cell. Numerous examples of transdifferentiation exist within the literature. For example, isolated striated muscle of the invertebrate jellyfish (Anthomedusae) has enormous transdifferentiation potential and even functional organs (e.g., tentacles and the feeding organ (manubrium)) can be generated in vitro. In contrast, the potential for transdifferentiation in vertebrates is much reduced, at least under normal (nonpathological) conditions. But despite these limitations, there are some well-documented cases of transdifferentiation occurring in vertebrates. For example, in the newt, the lens of the eye can be formed from the epithelial cells of the iris. Other examples of transdifferentiation include the appearance of hepatic foci in the pancreas, the development of intestinal tissue at the lower end of the oesophagus and the formation of muscle, chondrocytes and neurons from neural precursor cells. Although controversial, recent results also suggest the ability of adult stem cells from different embryological germlayers to produce differentiated cells e.g., mesodermal stem cells forming ecto- or endodermally-derived cell types. This phenomenon may constitute an example of metaplasia. The current review examines in detail some well-documented examples of transdifferentiation, speculates on the potential molecular and cellular mechanisms that underlie the switches in phenotype, together with their significance to organogenesis and regenerative medicine.Key Words: transdifferentiation, metaplasia, tissue regeneration, stem cells, plasticity, reprogramming, regenerative medicine  相似文献   

10.
The role of miRNA processing in the maintenance of adult pancreatic acinar cell identity and during the initiation and progression of pancreatic neoplasia has not been studied in detail. In this work, we deleted Dicer specifically in adult pancreatic acinar cells, with or without simultaneous activation of oncogenic Kras. We found that Dicer is essential for the maintenance of acinar cell identity. Acinar cells lacking Dicer showed increased plasticity, as evidenced by loss of polarity, initiation of epithelial-to-mesenchymal transition (EMT) and acinar-to-ductal metaplasia (ADM). In the context of oncogenic Kras activation, the initiation of ADM and pancreatic intraepithelial neoplasia (PanIN) were both highly sensitive to Dicer gene dosage. Homozygous Dicer deletion accelerated the formation of ADM but not PanIN. In contrast, heterozygous Dicer deletion accelerated PanIN initiation, revealing complex roles for Dicer in the regulation of both normal and neoplastic pancreatic epithelial identity.  相似文献   

11.
12.
Barrett's esophagus (BE) is defined as an incomplete intestinal metaplasia characterized generally by the presence of columnar and goblet cells in the formerly stratified squamous epithelium of the esophagus. BE is known as a precursor for esophageal adenocarcinoma. Currently, the cell of origin for human BE has yet to be clearly identified. Therefore, we investigated the role of Notch signaling in the initiation of BE metaplasia. Affymetrix gene expression microarray revealed that BE samples express decreased levels of Notch receptors (NOTCH2 and NOTCH3) and one of the the ligands (JAG1). Furthermore, BE tissue microarray showed decreased expression of NOTCH1 and its downstream target HES1. Therefore, Notch signaling was inhibited in human esophageal epithelial cells by expression of dominant-negative-Mastermind-like (dnMAML), in concert with MYC and CDX1 overexpression. Cell transdifferentiation was then assessed by 3D organotypic culture and evaluation of BE-lineage specific gene expression. Notch inhibition promoted transdifferentiation of esophageal epithelial cells toward columnar-like cells as demonstrated by increased expression of columnar keratins (K8, K18, K19, K20) and glandular mucins (MUC2, MUC3B, MUC5B, MUC17) and decreased expression of squamous keratins (K5, K13, K14). In 3D culture, elongated cells were observed in the basal layer of the epithelium with Notch inhibition. Furthermore, we observed increased expression of KLF4, a potential driver of the changes observed by Notch inhibition. Interestingly, knockdown of KLF4 reversed the effects of Notch inhibition on BE-like metaplasia. Overall, Notch signaling inhibition promotes transdifferentiation of esophageal cells toward BE-like metaplasia in part via upregulation of KLF4. These results support a novel mechanism through which esophageal epithelial transdifferentiation promotes the evolution of BE.  相似文献   

13.
Transdifferentiation of pancreas to liver   总被引:13,自引:0,他引:13  
Transdifferentiation is the name used to describe the direct conversion of one differentiated cell type into another. Cells which have the potential to interconvert by transdifferentiation generally arise from adjacent regions in the developing embryo. For example, the liver and pancreas arise from the same region of the endoderm. The transdifferentiation of pancreas to liver (and vice versa) has been observed in animal experiments and in certain human pathologies. Understanding transdifferentiation is important to developmental biologists because it will help elucidate the cellular and molecular differences that distinguish neighbouring regions of the embryo. While the in vivo models for the transdifferentiation of liver to pancreas have been valuable, it is more difficult to extrapolate from these studies to individual changes at the cellular or molecular levels. The recent development of two in vitro systems (AR42J cells and embryonic pancreatic cultures) for the transdifferentiation of pancreas to liver has shown that an environmental change in the form of an exogenous glucocorticoid can cause the conversion of pancreatic exocrine cells into hepatocytes. The AR42J cell system has been used to elucidate the cell lineage and the molecular basis of transdifferentiation of pancreas to liver.  相似文献   

14.
《Organogenesis》2013,9(2):36-44
Transdifferentiation is defined as the conversion of one cell type to another. It belongs to a wider class of cell type transformations called metaplasias which also includes cases in which stem cells of one tissue type switch to a completely different stem cell. Numerous examples of transdifferentiation exist within the literature. For example, isolated striated muscle of the invertebrate jellyfish (Anthomedusae) has enormous transdifferentiation potential and even functional organs (e.g. tentacles and the feeding organ (manubrium) can be generated in-vitro. In contrast, the potential for transdifferentiation in vertebrates is much reduced, at least under normal (non-pathological) conditions. But despite these limitations, there are some well-documented cases of transdifferentiation occurring in vertebrates. For example, in the newt, the lens of the eye can be formed from the epithelial cells of the iris. Other examples of transdifferentiation include the appearance of hepatic foci in the pancreas, the development of intestinal tissue at the lower end of the oesophagus and the formation of muscle, chondrocytes and neurons from neural precursor cells. Although controversial, recent results also suggest the ability of adult stem cells from different embryological germlayers to produce differentiated cells e.g. mesodermal stem cells forming ecto- or endodermally-derived cell types. This phenomenon may constitute an example of metaplasia. The current review examines in detail some well-documented examples of transdifferentiation, speculates on the potential molecular and cellular mechanisms that underlie the switches in phenotype, together with their significance to organogenesis and regenerative medicine.  相似文献   

15.
It is unclear whether the cellular origin of various forms of pancreatic cancer involves transformation or transdifferentiation of different target cells or whether tumors arise from common precursors, with tumor types determined by the specific genetic alterations. Previous studies suggested that pancreatic ductal carcinomas might be induced by polyoma middle T antigen (PyMT) expressed in non-ductal cells. To ask whether PyMT transforms and transdifferentiates endocrine cells toward exocrine tumor phenotypes, we generated transgenic mice that carry tetracycline-inducible PyMT and a linked luciferase reporter. Induction of PyMT in β cells causes β-cell hyperplastic lesions that do not progress to malignant neoplasms. When PyMT is de-induced, β cell proliferation and growth cease; however, regression does not occur, suggesting that continued production of PyMT is not required to maintain the viable expanded β cell population. In contrast, induction of PyMT in early pancreatic progenitor cells under the control of Pdx1 produces acinar cell carcinomas and β-cell hyperplasia. The survival of acinar tumor cells is dependent on continued expression of PyMT. Our findings indicate that PyMT can induce exocrine tumors from pancreatic progenitor cells, but cells in the β cell lineage are not transdifferentiated toward exocrine cell types by PyMT; instead, they undergo oncogene-dependent hyperplastic growth, but do not require PyMT for survival.  相似文献   

16.
The relentless nature and increasing prevalence of human pancreatic diseases, in particular, diabetes mellitus and adenocarcinoma, has motivated further understanding of pancreas organogenesis. The pancreas is a multifunctional organ whose epithelial cells govern a diversity of physiologically vital endocrine and exocrine functions. The mechanisms governing the birth, differentiation, morphogenesis, growth, maturation, and maintenance of the endocrine and exocrine components in the pancreas have been discovered recently with increasing tempo. This includes recent studies unveiling mechanisms permitting unexpected flexibility in the developmental potential of immature and mature pancreatic cell subsets, including the ability to interconvert fates. In this article, we describe how classical cell biology, genetic analysis, lineage tracing, and embryological investigations are being complemented by powerful modern methods including epigenetic analysis, time-lapse imaging, and flow cytometry-based cell purification to dissect fundamental processes of pancreas development.  相似文献   

17.
The digestive-enzyme secreting, gastric epithelial chief (zymogenic) cell is remarkable and underappreciated. Here, we discuss how all available evidence suggests that mature chief cells in the adult, mammalian stomach are postmitotic, slowly turning over cells that arise via a relatively long-lived progenitor, the mucous neck cell, The differentiation of chief cells from neck cells does not involve cell division, and the neck cell has its own distinct pattern of gene expression and putative physiological function. Thus, the ontogeny of the normal chief cell lineage exemplifies transdifferentiation. Furthermore, under pathophysiogical loss of acid-secreting parietal cell, the chief cell lineage can itself trasndifferentiate into a mucous cell metaplasia designated Spasmolytic Polypeptide Expressing Metaplasia (SPEM). Especially in the presence of inflammation, this metaplastic lineage can regain proliferative capacity and, in humans may also further differentiate into intestinal metaplasia. The results indicate that gastric fundic lineages display remarkable plasticity in both physiological ontogeny and pathophysiological pre-neoplastic metaplasia.  相似文献   

18.
The developing pancreatic epithelium gives rise to all endocrine and exocrine cells of the mature organ. During organogenesis, the epithelial cells receive essential signals from the overlying mesenchyme. Previous studies, focusing on ex vivo tissue explants or complete knockout mice, have identified an important role for the mesenchyme in regulating the expansion of progenitor cells in the early pancreas epithelium. However, due to the lack of genetic tools directing expression specifically to the mesenchyme, the potential roles of this supporting tissue in vivo, especially in guiding later stages of pancreas organogenesis, have not been elucidated. We employed transgenic tools and fetal surgical techniques to ablate mesenchyme via Cre-mediated mesenchymal expression of Diphtheria Toxin (DT) at the onset of pancreas formation, and at later developmental stages via in utero injection of DT into transgenic mice expressing the Diphtheria Toxin receptor (DTR) in this tissue. Our results demonstrate that mesenchymal cells regulate pancreatic growth and branching at both early and late developmental stages by supporting proliferation of precursors and differentiated cells, respectively. Interestingly, while cell differentiation was not affected, the expansion of both the endocrine and exocrine compartments was equally impaired. To further elucidate signals required for mesenchymal cell function, we eliminated β-catenin signaling and determined that it is a critical pathway in regulating mesenchyme survival and growth. Our study presents the first in vivo evidence that the embryonic mesenchyme provides critical signals to the epithelium throughout pancreas organogenesis. The findings are novel and relevant as they indicate a critical role for the mesenchyme during late expansion of endocrine and exocrine compartments. In addition, our results provide a molecular mechanism for mesenchymal expansion and survival by identifying β-catenin signaling as an essential mediator of this process. These results have implications for developing strategies to expand pancreas progenitors and β-cells for clinical transplantation.  相似文献   

19.
LKB1 is a key regulator of energy homeostasis through the activation of AMP-activated protein kinase (AMPK) and is functionally linked to vascular development, cell polarity, and tumor suppression. In humans, germ line LKB1 loss-of-function mutations cause Peutz-Jeghers syndrome (PJS), which is characterized by a predisposition to gastrointestinal neoplasms marked by a high risk of pancreatic cancer. To explore the developmental and physiological functions of Lkb1 in vivo, we examined the impact of conditional Lkb1 deletion in the pancreatic epithelium of the mouse. The Lkb1-deficient pancreas, although grossly normal at birth, demonstrates a defective acinar cell polarity, an abnormal cytoskeletal organization, a loss of tight junctions, and an inactivation of the AMPK/MARK/SAD family kinases. Rapid and progressive postnatal acinar cell degeneration and acinar-to-ductal metaplasia occur, culminating in marked pancreatic insufficiency and the development of pancreatic serous cystadenomas, a tumor type associated with PJS. Lkb1 deficiency also impacts the pancreas endocrine compartment, characterized by smaller and scattered islets and transient alterations in glucose control. These genetic studies provide in vivo evidence of a key role for LKB1 in the establishment of epithelial cell polarity that is vital for pancreatic acinar cell function and viability and for the suppression of neoplasia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号