首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The most complete account to date of the ultrastructure of flagellate cells in diatoms is given for the sperm of Thalassiosira lacustris and Melosira moniliformis var. octogona, based on serial sections. The sperm are uniflagellate, with no trace of a second basal body, and possess a 9?+?0 axoneme. The significance of the 9?+?0 configuration is discussed: lack of the central pair microtubules and radial spokes does not compromise the mastigoneme-bearing flagellum’s capacity to perform planar beats and thrust reversal and may perhaps be related to sensory/secretory function of the sperm flagellum during plasmogamy. The basal bodies of diatoms are confirmed to contain doublets rather than triplets, which may correlate with the absence of some centriolar proteins found in most cells producing active flagella. Whereas Melosira possesses a normal cartwheel structure in the long basal body, no such structure is present in Thalassiosira, which instead possesses ‘intercalary fibres’ linking the basal body doublets. No transitional helices or transitional plates are present in either species studied. Cones of microtubules are associated with the basal body and partially enclose the nucleus in M. moniliformis and T. lacustris. They do not appear to be true microtubular roots and may arise through transformation of the meiosis II spindle. A close association between cone microtubules and tubules containing mastigonemes may indicate a function in intracellular mastigoneme transport. No correlation can yet be detected between methods of spermatogenesis and phylogeny in diatoms, contrary to previous suggestions.  相似文献   

2.
3.
Many GTPases regulate intracellular transport and signaling in eukaryotes. Guanine nucleotide exchange factors (GEFs) activate GTPases by catalyzing the exchange of their GDP for GTP. Here we present crystallographic and biochemical studies of a GEF reaction with four crystal structures of Arabidopsis thaliana ARA7, a plant homolog of Rab5 GTPase, in complex with its GEF, VPS9a, in the nucleotide-free and GDP-bound forms, as well as a complex with aminophosphonic acid-guanylate ester and ARA7·VPS9a(D185N) with GDP. Upon complex formation with ARA7, VPS9 wedges into the interswitch region of ARA7, inhibiting the coordination of Mg2+ and decreasing the stability of GDP binding. The aspartate finger of VPS9a recognizes GDP β-phosphate directly and pulls the P-loop lysine of ARA7 away from GDP β-phosphate toward switch II to further destabilize GDP for its release during the transition from the GDP-bound to nucleotide-free intermediates in the nucleotide exchange reaction.  相似文献   

4.
B cells signal through both the B cell receptor (BCR) which binds antigens and Toll-like receptors (TLRs) including TLR9 which recognises CpG DNA. Activation of TLR9 synergises with BCR signalling when the BCR and TLR9 co-localise within an auto-phagosome-like compartment. Here we report that Bruton’s tyrosine kinase (BTK) is required for synergistic IL6 production and up-regulation of surface expression of MHC-class-II, CD69 and CD86 in primary murine and human B cells. We show that BTK is essential for co-localisation of the BCR and TLR9 within a potential auto-phagosome-like compartment in the Namalwa human B cell line. Downstream of BTK we find that calcium acting via calmodulin is required for this process. These data provide new insights into the role of BTK, an important target for autoimmune diseases, in B cell activation.  相似文献   

5.
《Life sciences》1997,61(4):PL39-PL43
Hypoalgesia induced by cannabinoid drugs has been found to implicate the opioid system. The effect of five days treatment with Δ-9-tetrahydrocannabinol (THC) was examined on prodynorphin (PDYN) and proenkephalin (PENK) gene expression in the spinal cord of male rats. PDYN and PENK gene expression was estimated measuring by northern blot analysis mRNA levels in the whole spinal cord, containing perikarya of these neurons. The subchronic treatment with THC (5 mg/kg/day; 5 days; i.p.) produced an increase in PDYN (39%) and PENK (34%) gene expression when compared with the vehicle treated group. These results suggest that the effects of THC in the spinal cord involve an increase in opioid activity, and therefore sustain the hypothesis of an interaction between the cannabinoid and opioid systems in this region.  相似文献   

6.
Abstract

Ribosylation of 3-methylguanine la was investigated by enzymatic and chemical methods. Compound la did not act as a substrate for purine nucleoside phosphorylase. N-2-Protected 3-methylguanines 4 and 6 underwent exclusive N-7 glycosylation by fusion and chloromercury methods to give 5 and 7. Fully acetylated 7-α-D-ribofuranoside 5 was also obtained by thermal transglycosylation of the corresponding 9-α-D-ribofuranoside 9. The reverse isomerization 59 did not occur. The differences in the relative stability towards acidic hydrolysis between 7- and 9-(α-D-ribofuranosyl)-3-methylguanines are distinctly higher than those described so far for the other 7-9 isomeric nucleosides.  相似文献   

7.
There is now compelling evidence that the neurodegenerative process in Alzheimer’s disease (AD) begins in synapses. Loss of synaptic proteins and functional synapses in the amyloid precursor protein (APP) transgenic mouse models of AD is well established. However, what is the earliest age at which such loss of synapses occurs, and whether known markers of AD progression accelerate functional deficits is completely unknown. We previously showed that RanBP9 overexpression leads to robustly increased amyloid β peptide (Aβ) generation leading to enhanced amyloid plaque burden in a mouse model of AD. In this study we compared synaptic protein levels among four genotypes of mice, i.e., RanBP9 single transgenic (Ran), APΔE9 double transgenic (Dbl), APΔE9/RanBP9 triple transgenic (Tpl) and wild-type (WT) controls. We found significant reductions in the levels of synaptic proteins in both cortex and hippocampus of 5- and 6-months-old but not 3- or 4-months-old mice. Specifically, at 5-months of age, rab3A was reduced in the triple transgenic mice only in the cortex by 25% (p<0.05) and gap43 levels were reduced only in the hippocampus by 44% (p<0.01) compared to wild-type (WT) controls. Interestingly, RanBP9 overexpression in the Tpl mice reduced gap43 levels by a further 31% (p<0.05) compared to APΔE9 mice. RanBP9 also further decreased the levels of drebrin in the hippocampus by 32% (p<0.01) and chromogranin in the cortex by 24% (p<0.05) compared to APΔE9 mice. At 6-months of age, RanBP9 expression in the cortex led to further reduction of rab3A by 30% (p<0.05) and drebrin by 38% (p<0.01) compared to APΔE9 mice. RanBP9 also increased Aβ oligomers in the cortex at 6 months. Similarly, in the hippocampus, RanBP9 expression further reduced rab3A levels by 36% (p<0.01) and drebrin levels by 33% (p<0.01). Taken together these data suggest that RanBP9 overexpression accelerates loss of synaptic proteins in the mouse brain.  相似文献   

8.
Chionodraco hamatus and Trematomus bernacchii are perciforms, members of the fish suborder Notothenioidei that live in the Antarctic Ocean and experience very cold and persistent environmental temperature. These fish have biochemical and molecular features that allow them to live at these extreme cold temperatures. Fine tuning of the level of unsaturated fatty acids content in membrane is a key mechanism of living organisms to adapt to cold and high temperatures. Desaturases are key enzymes that synthesize unsaturated fatty acyl-CoAs from saturated fatty acids. We cloned and sequenced a Δ9-desaturase gene and its cDNA of C. hamatus, and the cDNA of T. bernacchii. The coded proteins are virtually identical and share homology to other Δ9-desaturase fish sequences. These proteins contain, in the first trans-membrane domain, two cysteine residues that may form a disulfur bond present in the corresponding membrane region of Δ9-desaturase proteins of other Antarctic fish but not in Eleginops maclovinus that experiences higher environmental temperatures and in all other Δ9-desaturase genes of mammals present in data bases. C. hamatus Δ9-desaturase gene complements a Saccharomyces cerevisiae mutant lacking Δ9-desaturase (Ole1) gene. Analysis of sequence homology of the trans-membrane domains of Δ9-desaturase and the cytoplasmic region of the same proteins of Antarctic fish, non-Antarctic fish and mammals suggest that the significant differences found in the homologous sequences of the first trans-membrane domain may be due to the specific lipid content of their membrane.  相似文献   

9.
Since cannabinoids lead to dose-related tachycardia in man but dose dependent bradycardia has been reported thus far in laboratory animals, there would seem to be a need for an experimental model in which the effect seen in man (tachycardia) could be reproduced and explored. In the conscious rat, the compounds Δ9-tetrahydrocannabinol (Δ9-THC) and dimethylheptylpyran (DMHP) injected i.p. led to dose-related increases in heart rate at 10–20 minutes after administration. In vehicle (ethanol) control rats there were small increases in heart rate. Propranolol given before Δ9-THC resulted in a parallel shift to the right of the dose-effect curve. Adrenalectomy led to a significant (p<0.01) decrease in tachycardia following Δ9-THC and DMHP while ganglionic block markedly decreased the heart rate increases after Δ9-THC (p<0.001). Systolic blood pressure at nearly all doses of Δ9-THC was minimally affected, although it tended to decrease with increasing dose. Tachycardia in the rat may be the result of a centrally mediated release of epinephrine from the adrenal gland.  相似文献   

10.
Changes in the morphology of dendritic spines are prominent during learning and in different neurological and neuropsychiatric diseases, including those in which glycogen synthase kinase-3β (GSK-3β) has been implicated. Despite much evidence of the involvement of GSK-3β in functional synaptic plasticity, it is unclear how GSK-3β controls structural synaptic plasticity (i.e., the number and shape of dendritic spines). In the present study, we used two mouse models overexpressing and lacking GSK-3β in neurons to investigate how GSK-3β affects the structural plasticity of dendritic spines. Following visualization of dendritic spines with DiI dye, we found that increasing GSK-3β activity increased the number of thin spines, whereas lacking GSK-3β increased the number of stubby spines in the dentate gyrus. Under conditions of neuronal excitation, increasing GSK-3β activity caused higher activity of extracellularly acting matrix metalloproteinase-9 (MMP-9), and MMP inhibition normalized thin spines in GSK-3β overexpressing mice. Administration of the nonspecific GSK-3β inhibitor lithium in animals with active MMP-9 and animals lacking MMP-9 revealed that GSK-3β and MMP-9 act in concert to control dendritic spine morphology. Altogether, our data demonstrate that the dysregulation of GSK-3β activity has dramatic consequences on dendritic spine morphology, implicating MMP-9 as a mediator of GSK-3β-induced synaptic alterations.  相似文献   

11.
Molecular pathways underlying the neurotoxicity and production of amyloid β protein (Aβ) represent potentially promising therapeutic targets for Alzheimer''s disease (AD). We recently found that overexpression of the scaffolding protein RanBP9 increases Aβ production in cell lines and in transgenic mice while promoting cofilin activation and mitochondrial dysfunction. Translocation of cofilin to mitochondria and induction of cofilin–actin pathology require the activation/dephosphorylation of cofilin by Slingshot homolog 1 (SSH1) and cysteine oxidation of cofilin. In this study, we found that endogenous RanBP9 positively regulates SSH1 levels and mediates Aβ-induced translocation of cofilin to mitochondria and induction of cofilin–actin pathology in cultured cells, primary neurons, and in vivo. Endogenous level of RanBP9 was also required for Aβ-induced collapse of growth cones in immature neurons (days in vitro 9 (DIV9)) and depletion of synaptic proteins in mature neurons (DIV21). In vivo, amyloid precursor protein (APP)/presenilin-1 (PS1) mice exhibited 3.5-fold increased RanBP9 levels, and RanBP9 reduction protected against cofilin–actin pathology, synaptic damage, gliosis, and Aβ accumulation associated with APP/PS1 mice. Brains slices derived from APP/PS1 mice showed significantly impaired long-term potentiation (LTP), and RanBP9 reduction significantly enhanced paired pulse facilitation and LTP, as well as partially rescued contextual memory deficits associated with APP/PS1 mice. Therefore, these results underscore the critical importance of endogenous RanBP9 not only in Aβ accumulation but also in mediating the neurotoxic actions of Aβ at the level of synaptic plasticity, mitochondria, and cofilin–actin pathology via control of the SSH1-cofilin pathway in vivo.The defining pathological hallmark of Alzheimer''s disease (AD) is the accumulation of amyloid β protein (Aβ) in brain associated with tau pathology, synapse loss, cytoskeletal aberrations, mitochondrial dysfunction, and cognitive decline. The generation of Aβ occurs via sequential β- and γ-secretase processing of the amyloid precursor protein (APP) by beta site APP cleaving enzyme 1 (BACE1) and the presenilin (PS) complex, respectively.1 Soluble oligomeric forms of Aβ are thought to be the most toxic species, resulting in synaptic loss and downstream neurotoxicity.2 Despite the requirement for Tau in multiple aspects of Aβ-induced neurotoxicity,3 a large knowledge gap exists as to how the Aβ oligomer-induced neurotoxic signals are transduced intracellularly to impair synaptic plasticity, eventually leading to neurodegeneration. Both Aβ and Tau promote cofilin–actin pathology,4, 5 cofilin–actin pathology is widespread in AD brains,6 and cofilin activity is also increased in AD brains.7 Cofilin normally functions as a key regulator of actin dynamics that destabilizes filamentous actin (F-actin). Cofilin is inactivated by phosphorylation on Ser3 by LIM kinase 1 (LIMK1), whereas its dephosphorylation by Slingshot homolog 1 (SSH1) activates cofilin.4 Upon oxidative stress and/or Ca2+ elevation,4, 8, 9 SSH1 is activated and active cofilin becomes oxidized on cysteine residues, resulting in rapid mitochondrial translocation to promote apoptosis and induction of cofilin–actin pathology.10, 11 An early and consistent impairment secondary to Aβ oligomer treatment in primary neurons is the shrinkage of dendritic spines12 involving the rearrangement of F-actin cytoskeleton in spines and loss of spine-associated proteins such as postsynaptic density-95 (PSD95) and Drebrin,13, 14 as well as impaired mitochondrial function.15, 16We recently found that overexpression of the scaffolding protein RanBP9 increases Aβ production in cell lines and in transgenic mice.17, 18 Moreover, RanBP9 is significantly increased in brains of AD patients and the J20 APP transgenic model.18, 19 In studying the trafficking of APP, we also found that RanBP9 overexpression not only promotes the endocytosis of APP but also those of LRP and β1-integrin, the latter resulting in disassembly of integrin-associated focal complexes (talin and vinculin).20 In addition, RanBP9 overexpression promotes cofilin activation and the translocation of cofilin to mitochondria, resulting in overall mitochondrial dysfunction.9, 19 However, how RanBP9 activates cofilin is unknown, and it is not clear whether reduction in endogenous RanBP9 protects against Aβ oligomer-induced deficits in synaptic plasticity, cofilin-dependent pathology, Aβ accumulation, and memory impairment. Here we report that short interfering ribonucleic acid (siRNA) or genetic reduction in RanBP9 significantly reduces SSH1 levels and mitigates Aβ-induced translocation of cofilin to mitochondria, cofilin–actin rod/aggregate formation, depletion of synaptic proteins, deficits in synaptic plasticity, Aβ accumulation, and contextual memory deficits in vivo.  相似文献   

12.
Matrix metalloproteinases (MMPs) cleave and degrade most components of the extracellular matrix, and unregulated MMP activity has been correlated to cancer and metastasis. Hence there is a burgeoning need to develop inhibitors that bind selectively to structurally similar MMPs. The inhibition profiles of peptidomimetics containing C(α) substituents at the α,β unsaturated carbon were evaluated against the recombinant forms of ADAM17, MMP1, and MMP9. The dicarboxylic acid D2 and hydroxamate C2 inhibited MMP9 but not MMP1. The unsaturated compound E2 displayed selective inhibition for MMP1, compared with the saturated precursor C2, with an IC(50) value of 3.91 μm. The molecular basis for this selectivity was further investigated by the molecular docking of E2 and D2 into the active sites of MMP1 and MMP9. These data demonstrate hydrogen-bonding interactions between the carbonyl group of the C(α) substituent of E2 and the side chain of Asn180 present in the active site of MMP1. Conversely, the docked MMP9-D2 structure shows hydrophobic and hydrogen bonding between the ligand's morpholine substituent and second carboxylic acid group with Leu187 and an amide, respectively. This study suggests that substituents other than P(1)' and P(2)' may confer selectivity among MMPs and may aid in the search for novel lead compounds.  相似文献   

13.
Almost universally, the effective stimulus for mammalian 9+0 primary cilia has been taken to be bending. In this article I point out that in several physiological contexts there is great advantage in detecting pressure differences across the cell wall, i.e. axially directed forces pushing fluid to and fro through the hollow cilium and its basal body beneath. The form of the cilium--a fluid-filled pipe that connects to an intricate pinwheel-shaped basal body--is well configured for detecting fluid flow. Pressure-detection calls for compressible elements within the cell, but it effectively matches form and function in a range of cases. The "pipe and pinwheel" scheme suggests that the bulbous swellings commonly found near the tip of some primary cilia are compliant, pressure-sensitive elements which act like the bulb of an eye-dropper. In looking exclusively at the bending of cilia, we might be missing aspects of a dual-stimulus system.  相似文献   

14.
A total of 4940 random sequence tags of the dimorphic yeast Yarrowia lipolytica, totalling 4.9 Mb, were analyzed. BLASTX comparisons revealed at least 1229 novel Y. lipolytica genes 1083 genes having homology with Saccharomyces cerevisiae genes and 146 with genes from various other genomes. This confirms the rapid sequence evolution assumed for Y. lipolytica. Functional analysis of newly discovered genes revealed that several enzymatic activities were increased compared to S. cerevisiae, in particular, transport activities, ion homeostasis, and various metabolism pathways. Most of the mitochondrial genes were identified in contigs spanning more than 47 kb. Matches to retrotransposons were observed, including a S. cerevisiae Ty3 and a LINE element. The sequences have been deposited with EMBL under the accession numbers AL409956-AL414895.  相似文献   

15.
CRISPR-Cas9 is widely applied for genome engineering in various organisms. The assembly of single guide RNA (sgRNA) with the Cas9 protein may limit the Cas9/sgRNA effector complex function. We developed a FRET-based assay for detection of CRISPR–Cas9 complex binding to its targets and used this assay to investigate the kinetics of Cas9 assembly with a set of structurally distinct sgRNAs. We find that Cas9 and isolated sgRNAs form the effector complex efficiently and rapidly. Yet, the assembly process is sensitive to the presence of moderate concentrations of non-specific RNA competitors, which considerably delay the Cas9/sgRNA complex formation, while not significantly affecting already formed complexes. This observation suggests that the rate of sgRNA loading into Cas9 in cells can be determined by competition between sgRNA and intracellular RNA molecules for the binding to Cas9. Non-specific RNAs exerted particularly large inhibitory effects on formation of Cas9 complexes with sgRNAs bearing shortened 3′-terminal segments. This result implies that the 3′-terminal segment confers sgRNA the ability to withstand competition from non-specific RNA and at least in part may explain the fact that use of sgRNAs truncated for the 3′-terminal stem loops leads to reduced activity during genomic editing.  相似文献   

16.
Matrix metalloproteinase (MMP)-9 so far is identified as extremely large and complicated MMP family member. Recently, dozens of studies have explored the association between a promoter polymorphism (?1562 C>T) in MMP-9 and stroke susceptibility. However, the conclusions of these studies still remain equivocal. Therefore, our current meta-analysis was conducted to investigate whether or not the MMP-9 promoter polymorphism is related to the risk of stroke. Electronic databases (PubMed, EMBASE, Web of Science, Cochrane Library and the Chinese Biomedical Literature Database) were searched to obtain all the available studies investigating this polymorphism and stroke from inception to October 2013. Overall and subgroup analyses were rigorously conducted after data extraction. Pooled odds ratio (OR) corresponding to 95 % confidence interval (CI) were estimated. The statistical analysis was performed using Review Manager 5.2. Totally, seven studies involving 1,624 cases and 1,525 controls were identified. The overall results suggested that there was no association of the C?1562T variant on stroke risk under the T allele versus C allele [OR T vs. C 0.98, 95 % CI (0.84, 1.15), P = 0.84], the dominant model [OR TT+TC vs. CC 0.95, 95 % CI (0.81, 1.13), P = 0.59], the recessive model [OR TT vs. TC+CC 1.55, 95 % CI (0.86, 2.81), P = 0.15], the homozygote comparison [OR TT vs. CC 1.48, 95 % CI (0.82, 2.68), P = 0.20] and the heterozygote comparison [OR TC vs. CC 0.93, 95 % CI (0.78, 1.10), P = 0.38]. In the subgroup analyses by ethnicity, age, stroke type and source of controls, no significant relations were observed in any genetic models. Our results indicated that MMP-9?1562 C>T polymorphism was not a risk factor for stroke. Further studies should focus on gene–gene and gene–environment interactions, and provide a more convincing explanation for this association.  相似文献   

17.
The “9+2” axoneme is a highly specific cylindrical machine whose periodic bending is due to the cumulative shear of its 9 outer doublets of microtubules. Because of the discrete architecture of the tubulin monomers and the active appendices that the outer doublets carry (dynein arms, nexin links and radial spokes), this movement corresponds to the relative shear of these topological verniers, whose characteristics depend on the geometry of the wave train. When an axonemal segment bends, this induces the compressed and dilated conformations of the tubulin monomers and, consequently, the modification of the spatial frequencies of the appendages that the outer doublets carry. From a dynamic point of view, the adjustments of the spatial frequencies of the elements of the two facing verniers that must interact create different longitudinal periodic patterns of distribution of the joint probability of the molecular interaction as a function of the location of the doublet pairs around the axonemal cylinder and their spatial orientation within the axonemal cylinder. During the shear, these patterns move along the outer doublet intervals at a speed that ranges from one to more than a thousand times that of sliding, in two opposite directions along the two opposite halves of the axoneme separated by the bending plane, respecting the polarity of the dynein arms within the axoneme. Consequently, these waves might be involved in the regulation of the alternating activity of the dynein arms along the flagellum, because they induce the necessary intermolecular dialog along the axoneme since they could be an element of the local dynamic stability/instability equilibrium of the axoneme. This complements the geometric clutch model [Lindemann, C., 1994. A “geometric clutch” hypothesis to explain oscillations of the axoneme of cilia and flagella. J. Theor. Biol. 168, 175-189].  相似文献   

18.
19.
Summary Using cloned cDNA for human 2-macroglobulin (A2M) as a probe, mink-Chinese hamster hybrid cells were analysed. The results allowed us to assign a gene for A2M to mink chromosome 9. Breeding tests demonstrated that the Lpm-locus coding for other related -macroglobulin protein and the gene for peptidase B (PEPB) are linked 11±3 cm apart. The PEPB gene is located on mink chromosome 9, and hence, the Lpw-locus is on the same mink chromosome. The relationship of the genetic systems controlling the isotypically different -macroglobulins in mink serum are discussed.  相似文献   

20.
Neurodegeneration associated with amyloid β (Aβ) peptide accumulation, synaptic loss, neuroinflammation, tauopathy, and memory impairments encompass the pathophysiological features of Alzheimer's disease (AD). We previously reported that the scaffolding protein RanBP9, which is overall increased in brains of AD patients, simultaneously promotes Aβ generation and focal adhesion disruption by accelerating the endocytosis of amyloid precursor protein (APP) and β1-integrin, respectively. Here, we show that RanBP9 protein levels are increased by fourfold in FAD mutant APP transgenic mice. Accordingly, RanBP9 transgenic mice demonstrate significantly increased synapse loss, neurodegeneration, gliosis, and spatial memory deficits. RanBP9 overexpression promotes apoptosis and potentiates Aβ-induced neurotoxicity independent of its capacity to promote Aβ generation. Conversely, RanBP9 reduction by siRNA or gene dosage mitigates Aβ-induced neurotoxicity. Importantly, RanBP9 activates/dephosphorylates cofilin, a key regulator of actin dynamics and mitochondria-mediated apoptosis, and siRNA knockdown of cofilin abolishes both Aβ and RanBP9-induced apoptosis. These findings implicate the RanBP9-cofilin pathway as critical therapeutic targets not only for stemming Aβ generation but also antagonizing Aβ-induced neurotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号