首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On May 8, 1980, the World Health Assembly at its 33rd session solemnly declared that the world and all its peoples had won freedom from smallpox and recommended ceasing the vaccination of the population against smallpox. Currently, a larger part of the world population has no immunity not only against smallpox but also against other zoonotic orthopoxvirus infections. Recently, recorded outbreaks of orthopoxvirus diseases not only of domestic animals but also of humans have become more frequent. All this indicates a new situation in the ecology and evolution of zoonotic orthopoxviruses. Analysis of state-of-the-art data on the phylogenetic relationships, ecology, and host range of orthopoxviruses—etiological agents of smallpox (variola virus, VARV), monkeypox (MPXV), cowpox (CPXV), vaccinia (VACV), and camelpox (CMLV)—as well as the patterns of their evolution suggests that a VARV-like virus could emerge in the course of natural evolution of modern zoonotic orthopoxviruses. Thus, there is an insistent need for organization of the international control over the outbreaks of zoonotic orthopoxvirus infections in various countries to provide a rapid response and prevent them from developing into epidemics.The genus Orthopoxvirus of the family Poxviridae comprises the species variola (smallpox) virus (VARV), with human as its only sensitive host; zoonotic species monkeypox virus (MPXV), cowpox virus (CPXV), vaccinia virus (VACV), and camelpox virus (CMLV); and several others. These orthopoxviruses are immunologically cross-reactive and cross-protective, so that infection with any member of this genus provides protection against infection with any other member of the genus [1], [2]. Traditionally, the species of the Orthopoxvirus genus have been named primarily according to the host animal from which they were isolated and identified based on a range of biological characteristics [1]. Most frequently, zoonotic orthopoxviruses have been initially isolated from animals immediately close to humans being incidental hosts for the virus, the natural carriers of which are, as a rule, wild animals. Correspondingly, the name of an orthopoxvirus species does not reflect the actual animal that is its natural reservoir.With accumulation of the data on complete genome nucleotide sequences for various strains of orthopoxvirus species, it has been found that an interesting feature of the orthopoxvirus genomes is the presence of genes that are intact in one species but fragmented or deleted in another [3][8]. These data confirm the concept of a reductive evolution of orthopoxviruses, according to which the gene loss plays an important role in the evolutionary adaptation of progenitor virus to a particular environmental niche (host) and emergence of new virus species [9]. CPXV has the largest genome of all the modern representatives of the genus Orthopoxvirus, and this genome contains all the genes found in the other species of this genus [2], [4], [10][12]. Therefore, Cowpox virus was proposed as the closest of all the modern species to the progenitor virus for the genus Orthopoxvirus, while the remaining species, Variola virus included, had appeared as a result of multistage reductive evolution [4], [9], [13].VARV, the most pathogenic species for humans, has the smallest genome of all the orthopoxviruses [2][7]. This suggests a potential possibility for emergence of a VARV-like variant from the currently existing zoonotic orthopoxviruses with longer genomes in the course of natural evolution. It is known that although mutational changes are rather a rare event for the poxvirus DNA [13], characteristic of these viruses is the possibility of intermolecular and intramolecular recombinations, as well as genomic insertions and deletions [14], [15]. It has been recently found that duplication/amplification of genomic segments is typical of poxviruses, and in the case of a certain selective pressure (for example, host antiviral defenses), certain genes are able to relatively rapidly accumulate mutations that would provide the virus adaptation to new conditions, including a new host [16].The conducted analysis of the available archive data on smallpox and the history of ancient civilizations as well as the newest data on the evolutionary relationships of orthopoxviruses has allowed me to suggest the hypothesis that smallpox could have repeatedly emerged in the past via evolutionary changes of a zoonotic progenitor virus [17].Because of the cessation of the vaccination against smallpox after its eradication 35 years ago, a tremendous part of the world human population currently has no immunity not only against smallpox, but also against any other zoonotic orthopoxvirus infections. This new situation allows orthopoxviruses to circulate in the human population and, as a consequence, should alter several established concepts on the ecology and range of sensitive hosts for various orthopoxvirus species.The most intricate case is the origin of VACV. For many decades, VACV has been used for vaccinating humans against smallpox, and it was considered that this virus, variolae vaccinae, originates from zoonotic CPXV, introduced to immunization practice by Jenner as early as 1796 [1]. Only in the 20th century was it found out that the orthopoxvirus strains used for smallpox vaccination significantly differ in their properties from both the natural CPXV isolates recovered from cows and the other orthopoxvirus species examined by that time [18]. Correspondingly, they were regarded as a separate species, Vaccinia virus [19]. Moreover, it was inferred that the VACV natural reservoir was unknown and numerous hypotheses attempted to explain the origin of this virus while passaging progenitor viruses in animals in the process of vaccine production [1], [2], [20].The issue of VACV origin was somewhat clarified after sequencing the complete genome of horsepox virus (HSPV) [21], which appeared to be closely related to the sequenced VACV strains. Only after this was attention paid to the fact that Jenner specified the origin of his vaccine from an infection of the heels of horses (“grease”) and indicated that the vaccine became more suitable for human use after passage through the cow [20]. This suggests that VACV may originate from a zoonotic HSPV, which naturally persisted concurrently with CPXV. Some facts suggest that the infectious materials not only from cow lesions but also from horse lesions were used for smallpox vaccination in the 19th century. The vaccine lymph from the horse gave the most satisfactory results in inducing an anti-smallpox immunity as well as less side reactions [1]. By all accounts, they gradually commenced using HSPV isolates for smallpox vaccination, the future generations of which recovered decades later were ascribed to the separate species Vaccinia virus [19], rather than CPXV for smallpox vaccination everywhere.Since the 1960s, VACVs have been repeatedly isolated in Brazil [22]. The first VACV isolates were recovered from wild rodents (sentinel mice and rice rat) [23]. Since 1999, an ever-increasing number of exanthematous outbreaks affecting dairy cows and their handlers have been recorded [24][27], supplemented recently with outbreaks among horses [28], [29]. Several VACV strains have been isolated during these outbreaks from cows, horses, humans, and rodents [22], [27], [28], [30], [31]. The questions that arise are when and how VACV entered Brazil and the wild nature of the American continent. The more widespread point of view is that VACV strains could be transmitted from vaccinated humans to domestic animals and further to wild ones with subsequent adaptation to the rural environment [22]. My standpoint implies that HSPV/VACV could have been repeatedly accidentally imported from Europe to South America with the infected horses or rodents to be further introduced into wildlife. Possibly, the latter hypothesis more adequately reflects the actual pathway of VACV transmission to the Brazilian environment, since recent phylogenetic studies have suggested an independent origin for South American VACV isolates, distinct from the vaccine strains used on this continent during the WHO smallpox eradication campaign [22], [32]. Presumably, genome-wide sequencing of the viruses will give a more precise answer to the origin of VACV variants isolated in Brazil.In the past, the outbreaks of buffalopox had occurred frequently in various states of India as well as in Pakistan, Bangladesh, Indonesia, Egypt, and other countries [33]. The causative agent, buffalopox virus (BPXV), is closely related to VACV and affiliated with the species Vaccinia virus, genus Orthopoxvirus [2], [34]. Recently, mass outbreaks of buffalopox in domestic buffaloes along with severe zoonotic infection in milk attendants were recorded at various places in India [35], [36]. In several buffalopox outbreaks, the BPXV-caused infections were recorded in cows in the same herds [37]. An increase in BPXV transmission to different species, including buffaloes, cows, and humans, suggests the reemergence of zoonotic buffalopox infection [35], [38]. The buffalopox outbreaks recorded in different distant regions of India are likely to suggest the presence of an abundant natural BPXV reservoir represented by wild animals, most probably rodents. Correspondingly, it is of the paramount importance to perform a large-scale study of the presence of orthopoxviruses in wild animals of India.Thus, yet incomplete data on the modern ecology of VACV and BPXV allow for speculation that the orthopoxviruses belonging to the species Vaccinia virus have a wide host range, are zoonotic, are currently spread over large areas in Eurasia and South America, and that their natural carriers are several rodents.CPXV has relatively low pathogenicity for humans but has a wide range of sensitive animal hosts [2], [39]. Human cowpox is a rare sporadic disease, which develops when CPXV is transmitted from an infected animal to human [2], [40]. This disease is mainly recorded in Europe. In wildlife, CPXV carriers are asymptomatically infected rodents [41], [42]. During the last two decades, reports on an increasing number of CPXV infections in cats, rats, exotic animals, and humans have been published [43][47]. Comparative studies of the properties of CPXV isolates recovered from various hosts at different times and in several geographic zones have shown sufficient intraspecific variations [2], [48], [49]. A recent phylogenetic analysis of the complete genomes of 12 CPXV strains recovered from humans and several animal species suggests that they be split into two major Cowpox virus–like and Vaccinia virus–like clades [50]. This means that the criteria of the separation of orthopoxviruses into these two species should be corrected.MPXV is a zoonotic virus causing a human infection similar to smallpox in its clinical manifestations with a lethality rate of 1–8% [51]. The natural reservoir of MPXV is various species of African rodents [8], [10]. The active surveillance data in the same health zone (Democratic Republic of Congo) from the 1980s to 2006–2007 suggest a 20-fold increase in human monkeypox incidence 30 years after the cessation of the smallpox vaccination campaign [52]. This poses the question of whether MPXV can acquire the possibility of a high human-to-human transmission rate, characteristic of VARV, under conditions of a long-term absence of vaccination and considerably higher incidence of human infection. If this occurs, humankind will face a problem considerably more complex than with the smallpox eradication. First and foremost, this is determined by the fact that MPXV, unlike VARV, has its natural reservoir represented by numerous African rodents [2], [53].In its biological properties and according to the data of phylogenetic analysis of the complete virus genomic sequence, CMLV is closest to VARV, the causative agent of smallpox, as compared with the other orthopoxvirus species [1], [8]. Camelpox is recognized as one of the most important viral diseases in camels. This infection was first described in India in 1909. Subsequently, camelpox outbreaks have been reported in many countries of the Middle East, Asia, and Africa [54], [55]. Until recently, it has been commonly accepted that the host range of CMLV is confined to one animal species, camels [1], [55]. However, the first human cases of camelpox have been recently confirmed in India [56]. This suggests that camelpox could be a zoonotic disease. Since camelpox outbreaks occur irregularly in distant regions of the world and the viruses isolated during these outbreaks display different degrees of virulence [55], it is possible to postulate the presence of a wildlife animal reservoir of CMLV other than camels. Since the camelpox outbreaks are usually associated with the rainy season of the year, when rodents are actively reproducing, it is likely that rodents could be the natural carriers of CMLV.It is known that most of the emerging human pathogens originate from zoonotic pathogens [57][59]. Many viruses do not cause the disease in their natural reservoir hosts but can be highly pathogenic when transmitted to a new host species. Emerging and reemerging human pathogens more often are those with broad host ranges. The viruses able to infect many animal species are evolutionarily adapted to utilizing different cell mechanisms for their reproduction and, thus, can extend/change their host range with a higher probability [58].There are no fundamental prohibitions for the possible reemergence of smallpox or a similar human disease in the future as a result of natural evolution of the currently existing zoonotic orthopoxviruses. An ever-increasing sensitivity of the human population to zoonotic orthopoxviruses, resulting from cessation of the mass smallpox vaccination, elevates the probability for new variants of these viruses, potentially dangerous for humans, to emerge. However, the current situation is radically different from the ancient one, since many outbreaks of orthopoxvirus infections among domestic animals and humans are recorded and studied.Recently, the efforts of scientists under WHO control are directed to the development of state-of-the-art methods for VARV rapid identification as well as design of new generation safe smallpox vaccines and drugs against VARV and other orthopoxviruses [60]. The designed promising anti-orthopoxvirus drugs display no pronounced virus species specificity. Therefore, they are applicable in the outbreaks caused by any orthopoxvirus species. International acceptance of the designed highly efficient anti-orthopoxvirus drugs ST-246 and CMX001 [60] is of paramount importance.In the areas of high incidence of zoonotic orthopoxviral infections, it would be purposeful to vaccinate domestic and zoo animals as well as the persons closely associated with them using state-of-the-art safe vaccines based on VACV, which has a wide range of sensitive hosts. This would considerably decrease the likelihood for such infections to spread from wildlife into the human environment.In the African region endemic for monkeypox, which also displays a high rate of HIV infection, the population could be vaccinated with the VACV strain MVA, which has been recently demonstrated to be safe even for HIV-infected persons [61].Taking into account the above mentioned increased incidence of outbreaks of animal and human orthopoxvirus infections and their potential danger, it is important to accelerate organization of the international Smallpox Laboratory Network, discussed by the WHO Advisory Committee on Variola Virus Research [62], [63], and orient this network to express diagnosing not only of VARV but also of other zoonotic orthopoxviruses. This will provide constant monitoring of these infections in all parts of the world and make it possible to prevent the development of small outbreaks into expanded epidemics, thereby decreasing the risk of evolutional changes and emergence of an orthopoxvirus highly pathogenic for humans.The international system for clinical sampling and identification of infectious agents has been worked out and optimized while implementing the global smallpox eradication program under the aegis of the WHO as well as anti-epidemic measures and methods for mass vaccination [1]. The accumulated experience is of paramount importance for the establishment of international control not only over currently existing orthopoxvirus infections but also other emerging and reemerging diseases.  相似文献   

2.
3.
4.
Influenza A virus causes annual epidemics and occasional pandemics of short-term respiratory infections associated with considerable morbidity and mortality. The pandemics occur when new human-transmissible viruses that have the major surface protein of influenza A viruses from other host species are introduced into the human population. Between such rare events, the evolution of influenza is shaped by antigenic drift: the accumulation of mutations that result in changes in exposed regions of the viral surface proteins. Antigenic drift makes the virus less susceptible to immediate neutralization by the immune system in individuals who have had a previous influenza infection or vaccination. A biannual reevaluation of the vaccine composition is essential to maintain its effectiveness due to this immune escape. The study of influenza genomes is key to this endeavor, increasing our understanding of antigenic drift and enhancing the accuracy of vaccine strain selection. Recent large-scale genome sequencing and antigenic typing has considerably improved our understanding of influenza evolution: epidemics around the globe are seeded from a reservoir in East-Southeast Asia with year-round prevalence of influenza viruses; antigenically similar strains predominate in epidemics worldwide for several years before being replaced by a new antigenic cluster of strains. Future in-depth studies of the influenza reservoir, along with large-scale data mining of genomic resources and the integration of epidemiological, genomic, and antigenic data, should enhance our understanding of antigenic drift and improve the detection and control of antigenically novel emerging strains.Influenza is a single-stranded, negative-sense RNA virus that causes acute respiratory illness in humans. In temperate regions, winter influenza epidemics result in 250,000–500,000 deaths per year; in tropical regions, the burden is similar [1],[2]. Influenza viruses of three genera or types (A, B, and C) circulate in the human population. Influenza viruses of the types B and C evolve slowly and circulate at low levels. Type A evolves rapidly and can evade neutralization by antibodies in individuals who have been previously infected with, or vaccinated against, the virus. As a result it regularly causes large epidemics. Furthermore, distinct reservoirs of influenza A exist in other mammals and in birds. Four times in the last hundred years these reservoirs have provided genetic material for novel viruses that have caused global pandemics [3][8].The genome of influenza A viruses comprises eight RNA segments of 0.9–2.3 kb that together span approximately 13.5 kb and encode 11 proteins [9]. Segment 4 encodes the major surface glycoprotein called hemagglutinin (H), which is responsible for attaching the virus to sialic acid residues on the host cell surface and fusing the virus membrane envelope with the host cell membrane, thus delivering the viral genome into the cell (Figure 1). Segment 6 encodes another surface glycoprotein called neuraminidase (N), which cleaves terminal sialic acid residues from glycoproteins and glycolipids on the host cell surface, thus releasing budding viral particles from an infected cell [10]. Influenza A viruses are further classified into distinct subtypes based on the genetic and antigenic characteristics of these two surface glycoproteins. Sixteen hemagglutinin (H1–16) and nine neuraminidase subtypes (N1–9) are known to exist, and they occur in various combinations in influenza viruses endemic in aquatic birds [10],[11]. Viruses with the subtype composition H1N1 and H3N2 have been circulating in the human population for several decades. Of these two subtypes, H3N2 evolves more rapidly, and has until recently caused the majority of infections [1],[12],[13]. In the spring of 2009, however, a new H1N1 virus originating from swine influenza A viruses, and only distantly related to the H1N1 already circulating, gained hold in the human population. The emergence of this virus has initiated the first influenza pandemic of the twenty-first century [7],[14],[15].Open in a separate windowFigure 1Schematic representation of an influenza A virion.Three proteins, hemagglutinin (HA, a trimer of three identical subunits), neuraminidase (NA, a tetramer of four identical subunits), and the M2 transmembrane proton channel (a tetramer of four identical subunits), are anchored in the viral membrane, which is composed of a lipid bilayer. The large, external domains of hemagglutinin and neuraminidase are the major targets for neutralizing antibodies of the host immune response. The M1 matrix protein is located below the membrane. The genome of the influenza A virus is composed of eight individual RNA segments (conventionally ordered by decreasing length, bottom row), which each encode one or two proteins. Inside the virion, the eight RNA segments are packaged in a complex with nucleoprotein (NP) and the viral polymerase complex, consisting of the PA, PB1, and PB2 proteins.Hemagglutinin is about five times more abundant than neuraminidase in the viral membrane and is the major target of the host immune response [16][18]. Following exposure to the virus, whether by infection or vaccination, the host immune system acquires the capacity to produce neutralizing antibodies against the viral surface glycoproteins. These antibodies participate in clearing an infection and may protect an individual from future infections for many decades [19]. Five exposed regions on the surface of hemagglutinin, called epitope sites, are predominantly recognized by such antibodies [16],[17]. However, the human subtypes of influenza A continuously evolve and acquire genetic mutations that result in amino acid changes in the epitopes. These changes reduce the protective effect of antibodies raised against previously circulating viral variants. This “antigenic drift” necessitates frequent modification and readministration of the influenza vaccine to ensure efficient protection (Box 1).

Box 1. Broadly Protective Vaccines

Current influenza vaccines are based on detergent-inactivated viruses. They elicit antibodies with a narrow range of protection that target predominantly the variable regions of the hemagglutinin protein. Accordingly, the seasonal influenza vaccine includes one strain with segments of the surface proteins for each of the A/H1N1, A/H3N2 and B viruses, and it is updated every 1–3 years to match the predominant variants of influenza. Research into vaccines that offer broader protection across diverse subtypes and antigenic drift variants is ongoing [21], [59][61]. This research is particularly important with respect to the emergence of novel viruses with pandemic potential, such as the 2009 H1N1 virus. In such an event, the time period between the detection of the virus and the onset of a pandemic is too short to produce a specific vaccine for immediate vaccination of the population. Work in this area is focused on developing vaccines that elicit antibodies against conserved viral components, such as certain regions of hemagglutinin, neuraminidase, and the M2 proton channel in the viral membrane [60]. Other types of vaccines based on live attenuated viruses or plasmid DNA expression vectors, or supplemented with adjuvants, show promise in inducing a more broadly protective immune response [61].To monitor for novel emerging strains, the World Health Organization (WHO) maintains a global surveillance program. A panel of experts meets twice a year to review antigenic, genetic, and epidemiological data and decides on the vaccine composition for the next winter season in the northern or southern hemisphere [20]. If an emerging antigenic variant is detected and judged likely to become predominant, an update of the vaccine strain is recommended. This “predict and produce” approach mostly results in efficient vaccines that substantially limit the morbidity and mortality of seasonal epidemics [21]. The recommendation has to be made almost a year before the season in which the vaccine is used, however, because of the time required to produce and distribute a new vaccine. Problems arise when an emerging variant is not identified early enough for an update of the vaccine composition [22][24]. Thus, gaining a detailed understanding of the evolution and epidemiology of the virus is of the utmost importance, as it may lead to earlier identification of novel emerging variants [20].The development of high-throughput sequencing has recently provided large datasets of high-quality, complete genome sequences for viral isolates collected in a relatively unbiased manner, regardless of virulence or other unusual characteristics [9],[25]. Analyses of the genome sequence data combined with large-scale antigenic typing [26],[27] have given insights into the pattern of global spread, the genetic diversity during seasonal epidemics, and the dynamics of subtype evolution. Influenza data repositories such as the NCBI Influenza Virus Resource (http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html) [28] and the Global Initiative on Sharing All Influenza Data (GISAID; http://platform.gisaid.org/) database [29] make the genomic information publicly available, together with epidemiological data for the sequenced isolates. The GISAID model for data sharing requires users to agree to collaborate with, and appropriately credit, all data contributors. A notable success of this initiative has been the contribution of countries, such as Indonesia and China, which have previously been reticent about placing data in the public domain. The WHO also supports the endeavor of rapid publication of all available sequences for influenza viruses and there is hope that comprehensive submission to public databases will soon become a reality [24],[30]. In the future, mining these resources and establishing a statistical framework based on epidemiological, antigenic, and genetic information could provide further insights into the rules that govern the emergence and establishment of antigenically novel variants and improve the potential for influenza prevention and control.  相似文献   

5.
Recent studies have revealed that proteases encoded by three very diverse RNA virus groups share structural similarity with enzymes of the Ovarian Tumor (OTU) superfamily of deubiquitinases (DUBs). The publication of the latest of these reports in quick succession prevented proper recognition and discussion of the shared features of these viral enzymes. Here we provide a brief structural and functional comparison of these virus-encoded OTU DUBs. Interestingly, although their shared structural features and substrate specificity tentatively place them within the same protease superfamily, they also show interesting differences that trigger speculation as to their origins.The covalent attachment of ubiquitin (Ub) to protein substrates, i.e., ubiquitination, plays a pivotal regulatory role in numerous cellular processes [1][5]. Ubiquitination can be reversed by deubiquitinases (DUBs) [6] and, not surprisingly, various virus groups encode such DUBs to influence ubiquitin-mediated host cell processes [7][21]. Some of these viral DUBs resemble proteases belonging to the Ovarian Tumor (OTU) superfamily [22][28]. Makarova et al. previously identified OTU proteases as a novel superfamily of cysteine proteases from different organisms [29], and their bioinformatics-based analysis included several of the viral enzymes discussed here. Recently reported structures of these viral DUBs include the OTU domains of the nairoviruses Crimean-Congo hemorrhagic fever virus (CCHFV) [22][24] and Dugbe virus (DUGV) [25], the papain-like protease (PLP2) domain of the arterivirus equine arteritis virus (EAV) [26], and the protease (PRO) domain of the tymovirus turnip yellow mosaic virus (TYMV) (Figure 1A–1D) [27], [28]. These viruses are strikingly diverse, considering that nairoviruses are mammalian negative-strand RNA viruses, while the mammalian arteriviruses and plant tymoviruses belong to separate orders of positive-strand RNA viruses.Open in a separate windowFigure 1Viral and eukaryotic OTU domain structures and viral protein context.Crystal structures of (A) CCHFV OTU (3PT2) [23], (B) DUGV OTU (4HXD) [25], (C) EAV PLP2 (4IUM) [26], (D) TYMV PRO (4A5U) [27], [28], (E) yeast OTU1 (3BY4) [57], and (F) human OTUD3 (4BOU) [46]. The β-hairpin motifs of CCHFV OTU and DUGV OTU are indicated in boxes in panels A and B, respectively, and the zinc-finger motif of EAV PLP2 is boxed in panel C. Active sites are indicated with arrows. The CCHFV OTU, DUGV OTU, EAV PLP2, and yeast OTU1 domains were crystallized in complex with Ub, which has been removed for clarity. Structure images were generated using PyMol [60]. (G) Schematic representation of the CCHFV large (L) protein [61], [62]. A similar organization is found in the DUGV L protein, but is not depicted. The OTU domain resides in the N-terminal region of this protein and is not involved in autoproteolytic cleavage events [48]. (H) Schematic representation of the EAV polyprotein 1ab [63]. PLP2 resides in nonstructural protein 2 (nsp2) and is responsible for the cleavage between nsp2 and nsp3 [51]. (I) Schematic representation of the TYMV ORF1 polyprotein [50]. PRO resides in the N-terminal product of this polyprotein and is responsible for two internal cleavages [49], [50]. Key replicative enzymes are indicated in G, H, and I. Colored arrowheads denote cleavage sites for the indicated protease domains. HEL, helicase; PLP, papain-like protease; RdRp, RNA-dependent RNA polymerase; SP, serine protease.Ubiquitination often involves the formation of polyubiquitin chains [1], which can target the ubiquitinated substrate to the proteasome for degradation [2] or modulate its protein–protein interactions, as in the activation of innate immune signaling pathways [3], [4]. Interestingly, several cellular OTU DUBs were found to negatively regulate innate immunity [30][33]. Likewise, both nairovirus OTU and arterivirus PLP2 were recently shown to inhibit innate immune responses by targeting ubiquitinated signaling factors [7][9], [26], [34], [35]. In contrast to eukaryotic OTU DUBs, both of these viral proteases were found to also deconjugate the Ub-like protein interferon-stimulated gene 15 (ISG15) [7], [36], which inhibits viral replication via a mechanism that is currently poorly understood [37]. Interestingly, coronaviruses (which, together with the arteriviruses, belong to the nidovirus order) also encode papain-like proteases targeting both Ub and ISG15 that were shown to inhibit innate immunity [11][13], [38][42] but belong to the ubiquitin-specific protease (USP) class of DUBs [6], [43], [44]. The presence of functionally similar, yet structurally different proteases in distantly related virus families highlights the potential benefits to the virus of harboring such enzymes.The proteasomal degradation pathway is an important cellular route to dispose of viral proteins, as exemplified by the turnover of the TYMV polymerase [45]. Moreover, the degradation of this protein is specifically counteracted by the deubiquitinase activity of TYMV PRO, which thus promotes virus replication [10]. The functional characterization of viral OTU DUBs remains incomplete and future studies will likely reveal additional roles in replication and virus–host interplay.Polyubiquitin chains can adopt a number of different configurations, depending on the type of covalent linkage present within the polymer [1]. A distal Ub molecule can be linked via its C-terminus to one of seven internal lysine residues present in a proximal Ub molecule via an isopeptide bond. Alternatively, in the case of linear chains, the C-terminus of the distal Ub is covalently linked to the N-terminal methionine residue of the proximal Ub via a peptide bond. While human OTU proteases often show a distinct preference for one or two isopeptide linkage types [46], nairovirus OTUs and TYMV PRO appear to be more promiscuous in their substrate preference [22], [25]. However, like most human OTU proteases, they seem unable to cleave linear polyubiquitin chains in vitro [22], [25], [46]. Arterivirus PLP2 has not been extensively studied in this respect.It is important to note that many positive-strand RNA viruses, including arteriviruses and tymoviruses, encode polyproteins that are post-translationally cleaved by internal protease domains [47]. Thus, while CCHFV OTU is not involved in viral protein cleavage and its activity seems dispensable for replication (Figure 1G) [48], both arterivirus PLP2 and tymovirus PRO are critically required for viral replication due to their primary role in polyprotein maturation (Figure 1H, 1I) [49][53]. Interestingly, while both EAV PLP2 and TYMV PRO can process peptide bonds in cis and in trans [50], [51], PRO does not cleave peptide bonds in linear polyubiquitin chains in vitro [25]. To date, activity of EAV PLP2 towards linear polyubiquitin chains has not been reported.Based on mutagenesis of putative catalytic residues, arterivirus PLP2 and tymovirus PRO were initially generally classified as papain-like cysteine proteases [51], [54], [55]. Now that crystal structures of these proteases are available, it is possible to search the DALI server [56] in order to identify structurally similar domains. Using the 3-dimensional coordinates of TYMV PRO, the most recently solved structure of a viral OTU protease, such a query identifies structural similarity with eukaryotic OTU DUBs as well as the nairovirus OTU domains and EAV PLP2 ([57] further highlights their similarities (Figure 2A–2C), and these comparisons together clearly position them within the OTU DUB superfamily. Sequence comparisons alone were insufficient to demonstrate this conclusively, as the similarity of viral OTU domains to each other and to eukaryotic OTU proteases is very limited and mostly restricted to the areas surrounding the active site residues [29].Open in a separate windowFigure 2Superpositions of the viral OTU proteases with yeast OTU1 and one another.Superpositions of yeast OTU1 (3BY4) [57] with (A) CCHFV OTU (3PT2) [23], RMSD: 1.8 Å over 112 residues, (B) EAV PLP2 (4IUM) [26], RMSD: 2.8 Å over 69 residues, and (C) TYMV PRO (4A5U) [27], [28], RMSD: 1.4 Å over 76 residues. Superpositions of the yeast OTU1-Ub complex with (D) the CCHFV OTU-Ub complex and (E) the EAV PLP2-Ub complex, highlighting the difference in the orientation of Ub between the two viral OTU domains versus the eukaryotic yeast OTU1 domain. The Ub that is complexed with yeast OTU1 is depicted in yellow, while the Ub complexed with CCHFV OTU or EAV PLP2 is depicted in orange. (F) Superposition of EAV PLP2 and TYMV PRO, RMSD: 2.5 Å over 53 residues. (G) Close-up of the active site region (boxed) of the superposition depicted in F. Side chains of the catalytic cysteine (Cys270 and Cys783 for EAV PLP2 and TYMV PRO, respectively) and histidine (His332 and His869 for EAV PLP2 and TYMV PRO, respectively) residues are shown as sticks, as well as the active site Asn263 for EAV PLP2. The backbone amide group of Asp267 likely contributes to the formation of the oxyanion hole in the active site of EAV PLP2, yet a functionally equivalent residue is absent in TYMV PRO. The Gly266 and Gly268 residues flanking Asp267 in EAV PLP2 are depicted as sticks as well, for clarity. Note the alternative orientation of the active site cysteine residue of TYMV PRO which, unlike EAV PLP2, was not determined in covalent complex with an Ub suicide substrate. All alignments were generated using the PDBeFOLD server [64], and thus the reported RMSD values differ from those reported in [60]. RMSD, root-mean-square deviation.

Table 1

Three-dimensional structural alignment of viral OTU domains against selected structures in the Protein Data Bank using the DALI server [56].
DALI Query:CCHFV OTUDUGV OTUTYMV PROEAV PLP2
3PT2 [23] 4HXD [25] 4A5U [27], [28] 4IUM [26]
Human OTUD3 14.5; 12%* 14.4; 15%7.6; 12%4.2; 13%
4BOU [46] 2.1 Å (123)** 2.1 Å (123)1.9 Å (85)2.4 Å (69)
Yeast OTU1 11.8; 16%11.6; 20%7.3; 12%5.1; 9%
3BY4 [57] 2.9 Å (126)2.5 Å (123)2.3 Å (91)3.3 Å (81)
CCHFV OTU 28.1; 55%6.8; 15%4.6; 19%
3PT2 [23] 0.9 Å (157)3.0 Å (91)2.6 Å (74)
DUGV OTU 6.9; 12%4.5; 19%
4HXD [25] 2.8 Å (90)2.6 Å (74)
TYMV PRO 3.2; 13%
4A5U [27], [28] 2.8 Å (64)
Open in a separate window*z-score (>2 indicates significant structural similarity [59]); % sequence identity.**Root-mean-square deviation (RMSD) values are indicated, followed by the number of residues used for RMSD calculation in brackets. Value represents the average distance (Å) between alpha carbons used for comparison.Structural characterization of nairovirus (CCHFV and DUGV) OTU domains and EAV PLP2 in complex with Ub revealed that while these viral proteases adopt a fold that is consistent with eukaryotic OTU DUBs, they possess additional structural motifs in their S1 binding site that rotate the distal Ub relative to the binding orientation observed in eukaryotic OTU enzymes (Figure 2D, 2E) [22][26]. In the case of CCHFV OTU, this alternative binding mode was shown to expand its substrate repertoire by allowing the enzyme to also accommodate ISG15. Since TYMV PRO was crystallized in its apo form [27], [28], it remains to be determined whether its S1 site binds Ub in an orientation similar to nairovirus OTU and EAV PLP2 or eukaryotic OTU DUBs.A remarkable feature of EAV PLP2 is the incorporation within the OTU-fold of a zinc finger that is involved in the interaction with Ub (Figures 1C, ,2E).2E). The absence of similar internal zinc-finger motifs in other OTU superfamily members prompted us to propose that PLP2 prototypes a novel subclass of zinc-dependent OTU DUBs [26].Finally, an interesting structural difference between TYMV PRO and other OTU proteases of known structure is the absence of a loop that generally covers the active site (Figure 2F, 2G). Because of this, TYMV PRO lacks a complete oxyanion hole. It also lacks a third catalytic residue that would otherwise form the catalytic triad that has been observed in other OTU proteases (Figure 2G). Lombardi et al. suggested that the resulting solvent exposure of the active site may contribute to the broad substrate specificity of TYMV PRO [28]. Interestingly, EAV PLP2 also has broad substrate specificity, cleaving Ub, ISG15, and the viral polyprotein, even though it does possess an intact oxyanion hole and an active site that is not solvent exposed. Future work may uncover additional aspects relating to the unusual architecture of the TYMV PRO active site.The presence of structurally similar proteases, each displaying unique features, in these highly diverse virus groups suggests that their ancestors have independently acquired their respective OTU enzymes. Although their origins remain elusive, one possible scenario is the scavenging of an OTU DUB-encoding gene that directly enabled the ancestral virus to interact with the cellular ubiquitin landscape [29]. The absence of an OTU homologue in other lineages of the bunyavirus family strongly suggests that a nairoviral ancestor acquired an OTU DUB through heterologous recombination. In this scenario, the current differences between the nairoviral and eukaryotic OTU domains would reflect divergent evolution. In the case of arteriviruses, however, it is also conceivable that a preexisting papain-like protease that was initially only involved in polyprotein maturation acquired OTU-like features through a process of convergent evolution. Although rare, such a scenario would account for the limited structural similarity between eukaryotic OTU domains and EAV PLP2, which contrasts with that observed for nairovirus OTU (Figure 2A, 2B; [58]. These and other intriguing unsolved questions should be addressed through structural and functional studies of additional OTU-like proteases, be they viral or cellular, the results of which may shed more light on the various scenarios explaining the evolution of viral OTU domains.  相似文献   

6.
Human cytomegalovirus (HCMV) is a widely circulating pathogen that causes severe disease in immunocompromised patients and infected fetuses. By immortalizing memory B cells from HCMV-immune donors, we isolated a panel of human monoclonal antibodies that neutralized at extremely low concentrations (90% inhibitory concentration [IC90] values ranging from 5 to 200 pM) HCMV infection of endothelial, epithelial, and myeloid cells. With the single exception of an antibody that bound to a conserved epitope in the UL128 gene product, all other antibodies bound to conformational epitopes that required expression of two or more proteins of the gH/gL/UL128-131A complex. Antibodies against gB, gH, or gM/gN were also isolated and, albeit less potent, were able to neutralize infection of both endothelial-epithelial cells and fibroblasts. This study describes unusually potent neutralizing antibodies against HCMV that might be used for passive immunotherapy and identifies, through the use of such antibodies, novel antigenic targets in HCMV for the design of immunogens capable of eliciting previously unknown neutralizing antibody responses.Human cytomegalovirus (HCMV) is a member of the herpesvirus family which is widely distributed in the human population and can cause severe disease in immunocompromised patients and upon infection of the fetus. HCMV infection causes clinical disease in 75% of patients in the first year after transplantation (58), while primary maternal infection is a major cause of congenital birth defects including hearing loss and mental retardation (5, 33, 45). Because of the danger posed by this virus, development of an effective vaccine is considered of highest priority (51).HCMV infection requires initial interaction with the cell surface through binding to heparan sulfate proteoglycans (8) and possibly other surface receptors (12, 23, 64, 65). The virus displays a broad host cell range (24, 53), being able to infect several cell types such as endothelial cells, epithelial cells (including retinal cells), smooth muscle cells, fibroblasts, leukocytes, and dendritic cells (21, 37, 44, 54). Endothelial cell tropism has been regarded as a potential virulence factor that might influence the clinical course of infection (16, 55), whereas infection of leukocytes has been considered a mechanism of viral spread (17, 43, 44). Extensive propagation of HCMV laboratory strains in fibroblasts results in deletions or mutations of genes in the UL131A-128 locus (1, 18, 21, 36, 62, 63), which are associated with the loss of the ability to infect endothelial cells, epithelial cells, and leukocytes (15, 43, 55, 61). Consistent with this notion, mouse monoclonal antibodies (MAbs) to UL128 or UL130 block infection of epithelial and endothelial cells but not of fibroblasts (63). Recently, it has been shown that UL128, UL130, and UL131A assemble with gH and gL to form a five-protein complex (thereafter designated gH/gL/UL128-131A) that is an alternative to the previously described gCIII complex made of gH, gL, and gO (22, 28, 48, 63).In immunocompetent individuals T-cell and antibody responses efficiently control HCMV infection and reduce pathological consequences of maternal-fetal transmission (13, 67), although this is usually not sufficient to eradicate the virus. Albeit with controversial results, HCMV immunoglobulins (Igs) have been administered to transplant patients in association with immunosuppressive treatments for prophylaxis of HCMV disease (56, 57), and a recent report suggests that they may be effective in controlling congenital infection and preventing disease in newborns (32). These products are plasma derivatives with relatively low potency in vitro (46) and have to be administered by intravenous infusion at very high doses in order to deliver sufficient amounts of neutralizing antibodies (4, 9, 32, 56, 57, 66).The whole spectrum of antigens targeted by HCMV-neutralizing antibodies remains poorly characterized. Using specific immunoabsorption to recombinant antigens and neutralization assays using fibroblasts as model target cells, it was estimated that 40 to 70% of the serum neutralizing activity is directed against gB (6). Other studies described human neutralizing antibodies specific for gB, gH, or gM/gN viral glycoproteins (6, 14, 26, 29, 34, 41, 52, 60). Remarkably, we have recently shown that human sera exhibit a more-than-100-fold-higher potency in neutralizing infection of endothelial cells than infection of fibroblasts (20). Similarly, CMV hyperimmunoglobulins have on average 48-fold-higher neutralizing activities against epithelial cell entry than against fibroblast entry (10). However, epitopes that are targeted by the antibodies that comprise epithelial or endothelial cell-specific neutralizing activity of human immune sera remain unknown.In this study we report the isolation of a large panel of human monoclonal antibodies with extraordinarily high potency in neutralizing HCMV infection of endothelial and epithelial cells and myeloid cells. With the exception of a single antibody that recognized a conserved epitope of UL128, all other antibodies recognized conformational epitopes that required expression of two or more proteins of the gH/gL/UL128-131A complex.  相似文献   

7.
The discovery of a bacterium, Helicobacter pylori, that is resident in the human stomach and causes chronic disease (peptic ulcer and gastric cancer) was radical on many levels. Whereas the mouth and the colon were both known to host a large number of microorganisms, collectively referred to as the microbiome, the stomach was thought to be a virtual Sahara desert for microbes because of its high acidity. We now know that H. pylori is one of many species of bacteria that live in the stomach, although H. pylori seems to dominate this community. H. pylori does not behave as a classical bacterial pathogen: disease is not solely mediated by production of toxins, although certain H. pylori genes, including those that encode exotoxins, increase the risk of disease development. Instead, disease seems to result from a complex interaction between the bacterium, the host, and the environment. Furthermore, H. pylori was the first bacterium observed to behave as a carcinogen. The innate and adaptive immune defenses of the host, combined with factors in the environment of the stomach, apparently drive a continuously high rate of genomic variation in H. pylori. Studies of this genetic diversity in strains isolated from various locations across the globe show that H. pylori has coevolved with humans throughout our history. This long association has given rise not only to disease, but also to possible protective effects, particularly with respect to diseases of the esophagus. Given this complex relationship with human health, eradication of H. pylori in nonsymptomatic individuals may not be the best course of action. The story of H. pylori teaches us to look more deeply at our resident microbiome and the complexity of its interactions, both in this complex population and within our own tissues, to gain a better understanding of health and disease.Common wisdom circa 1980 suggested that the stomach, with its low pH, was a sterile environment. Then, endoscopy of the stomach became common and, in 1984, pathologist Robin Warren and gastroenterologist Barry Marshall saw an extracellular, curved bacillus, often in dense sheets, lining the stomach epithelium of patients with gastritis (inflammation of the stomach) and ulcer disease [1]. Soon, the medical community understood that the gram-negative bacterium Helicobacter pylori, not stress, is the major cause of stomach inflammation, which, in some infected individuals, precedes peptic ulcer disease (10%–20%), distal gastric adenocarcinoma (1%–2%), and gastric mucosal-associated lymphoid tissue (MALT) lymphoma (<1%) [2][5]. Thus, H. pylori gained distinction as the only known bacterial carcinogen [6]. It is believed that half of the world''s population is infected with H. pylori; however, the burden of disease falls disproportionately on less-developed countries. The incidence of infection in developed countries has fallen dramatically, for unknown reasons, with a corresponding decrease in gastric cancer [7]. This public health success is tempered by the recent demonstration of an inverse relationship between H. pylori infection and esophageal adenocarcinoma, Barrett''s esophagus, and reflux esophagitis [8]. H. pylori has been with humans since our earliest days, thus it is not surprising that its relationship is that of both a commensal bacterium and a pathogen, causing some diseases and possibly protecting against others. In addition, it is genetically diverse, likely as a result of constant exposure to both environmental and immunological selection, suggesting that genetic diversification is a strategy for long-term colonization.  相似文献   

8.
When a pathogen is rare in a host population, there is a chance that it will die out because of stochastic effects instead of causing a major epidemic. Yet no criteria exist to determine when the pathogen increases to a risky level, from which it has a large chance of dying out, to when a major outbreak is almost certain. We introduce such an outbreak threshold (T0), and find that for large and homogeneous host populations, in which the pathogen has a reproductive ratio R0, on the order of 1/Log(R0) infected individuals are needed to prevent stochastic fade-out during the early stages of an epidemic. We also show how this threshold scales with higher heterogeneity and R0 in the host population. These results have implications for controlling emerging and re-emerging pathogens.With the constant risk of pathogens emerging [1], such as Severe Acute Respiratory Syndrome (SARS) or avian influenza virus in humans, foot-and-mouth disease virus in cattle in the United Kingdom [2], or various plant pathogens [3], it is imperative to understand how novel strains gain their initial foothold at the onset of an epidemic. Despite this importance, it has seldom been addressed how many infected individuals are needed to declare that an outbreak is occurring: that is, when the pathogen can go extinct due to stochastic effects, to when it infects a high enough number of hosts such that the outbreak size increases in a deterministic manner (Figure 1A). Generally, the presence of a single infected individual is not sufficient to be classified as an outbreak, so how many infected individuals need to be present to cause this deterministic increase? Understanding at what point this change arises is key in preventing and controlling nascent outbreaks as they are detected, as well as determining the best course of action for prevention or treatment.Open in a separate windowFigure 1The outbreak threshold in homogeneous and heterogeneous populations.(A) A schematic of pathogen emergence. This graph shows the early stages of several strains of an epidemic, where R0 = 1.25. The black line denotes the outbreak threshold (T 0 = 1/Log(R0) = 4.48). Blue thin lines show cases in which the pathogen goes extinct and does not exceed the threshold; the red thick line shows an epidemic that exceeds the threshold and persists for a long period of time. Simulations were based on the Gillespie algorithm [22]. (B) Outbreak threshold in a homogeneous (black thick line) or in a heterogeneous population, for increasing R0. The threshold was calculated following the method described by Lloyd-Smith et al. [11] and is shown for different values of k, the dispersion parameter of the offspring distribution, as obtained from data on previous epidemics [11]. If the threshold lies below one, this means that around only one infected individual is needed to give a high outbreak probability.The classic prediction for pathogen outbreak is that the pathogen''s reproductive ratio (R0), the number of secondary infections caused by an infected host in a susceptible population, has to exceed one [4], [5]. This criterion only strictly holds in deterministic (infinite population) models; in finite populations, there is still a chance that the infection will go extinct by chance rather than sustain itself [4][6]. Existing studies usually consider random drift affecting outbreaks in the context of estimating how large a host population needs to be to sustain an epidemic (the “Critical Community Size” [4], [7], [8]), calculating the outbreak probability in general [9][12], or ascertaining whether a sustained increase in cases over an area has occurred [13]. Here we discuss the fundamental question of how many infected individuals are needed to almost guarantee that a pathogen will cause an outbreak, as opposed to the population size needed to maintain an epidemic once it has appeared (Critical Community Size; see also Box 1). We find that only a small number of infected individuals are often needed to ensure that an epidemic will spread.

Box 1. Glossary of Key Terms

  • The Basic Reproductive Ratio (R0) is the number of secondary infections caused by a single infected individual, in a susceptible population. It is classically used to measure the rate of pathogen spread. In infinite-population models, a pathogen can emerge if R0>1. In a finite population, the pathogen can emerge from a single infection with probability 1-1/R0 if R0>1, otherwise extinction is certain.
  • The Critical Community Size (CCS) is defined as the total population size (of susceptible and infected individuals, or others) needed to sustain an outbreak once it has appeared. This idea was classically applied to determining what towns were most likely to maintain measles epidemics [7], so that there would always be some infected individuals present, unless intervention measures were taken.
  • The Outbreak Threshold (T0) has a similar definition to the CSS, but is instead for use at the onset of an outbreak, rather than once it has appeared. It measures how many infected individuals (not the total population size) are needed to ensure that an outbreak is very unlikely to go extinct by drift. Note that the outbreak can still go extinct in the long term, even if T0 is exceeded, if there are not enough susceptible individuals present to carry the infection afterwards.
We introduce the concept of the outbreak threshold (denoted T0), which we define as the number of infected individuals needed for the disease to spread in an approximately deterministic manner. T0 can be given by simple equations. Indeed, if the host population is homogeneous (that is, where there is no individual variability in reproductive rates) and large enough so that depletion of the pool of susceptible hosts is negligible, then the probability of pathogen extinction if I infected hosts are present is (1/R0)I ([6], details in Material S.1 in Text S1). By solving this equation in the limit of extinction probability going to zero, we find that on the order of 1/Log(R0) infected hosts are needed for an outbreak to be likely (black thick curve in Figure 1B), a result that reflects similar theory from population genetics [14][16]. Note that this result only holds in a finite population, as an outbreak in a fully susceptible infinite population is certain if R0>1 ([4], see also Material S.1 in Text S1).This basic result can be modified to consider more realistic or precise cases, and T0 can be scaled up if an exact outbreak risk is desired. For example, for the pathogen extinction probability to be less than 1%, there needs to be at least 5/Log(R0) infected individuals. More generally, the pathogen extinction probability is lower than a given threshold c if there are at least −Log(c)/Log(R0) infected individuals. Furthermore, if only a proportion p<1 of all infected individuals are detected, then the outbreak threshold order is p/Log(R0). Also, if there exists a time-lag τ between an infection occurring and its report, then the order of T0 is e−τ(β-δ)/Log(R0), where β is the infection transmission rate and 1/δ the mean duration of the infectious period (Material S.1 in Text S1). Finally, we can estimate how long it would take, on average, for the threshold to be reached and find that, if the depletion in susceptible hosts is negligible, this duration is on the order of 1/(β-δ) (Material S.1 in Text S1).So far we have only considered homogenous outbreaks, where on average each individual has the same pathogen transmission rate. In reality, there will be a large variance among individual transmission rates, especially if “super-spreaders” are present [17]. This population heterogeneity can either be deterministic, due to differences in immune history among hosts or differences in host behavior, or stochastic, due to sudden environmental or social changes. Spatial structure can also act as a form of heterogeneity, if each region or infected individual is subject to different transmission rates, or degree of contact with other individuals [18]. In such heterogeneous host populations, the number of secondary cases an infected individual engenders is jointly captured by R0 and a dispersion parameter k (see Box 2). This dispersion parameter controls the degree of variation in individual transmission rates, while fixing the average R0. The consequence of this model is that the majority of infected hosts tend to cause few secondary infections, while the minority behave as super-spreaders, causing many secondary infections. Host population heterogeneity (obtained with lower values of k) increases the probability that an outbreak will go extinct, as the pathogen can only really spread via one of the dwindling super-spreading individuals. In this heterogeneous case, we can find accurate values of T0 numerically. As shown in Figure 1B, if R0 is close to 1, host heterogeneity (k) does not really matter (T0 tends to be high). However, if the pathogen has a high R0 and thus spreads well, then host heterogeneity strongly affects T0. Additionally, we find that the heterogeneous threshold simply scales as a function of k and R02 (see Box 2). As an example, if k = 0.16, as estimated for SARS infections [11], the number of infected individuals needed to guarantee an outbreak increases 4-fold compared to a homogeneous population (Material S.3 in Text S1).

Box 2. Heterogeneous Outbreak Threshold

In a heterogeneous host population (see the main text for the bases of this heterogeneity), it has been shown that the number of secondary infections generated per infected individual can be well described by a negative binomial distribution with mean R0 and dispersion parameter k [11]. The dispersion parameter determines the level of variation in the number of secondary infections: if k = 1, we have a homogeneous outbreak, but heterogeneity increases as k drops below 1; that is, it enlarges the proportion of infected individuals that are either “super-spreaders” or “dead-ends” (those that do not transmit the pathogen). Lloyd-Smith et al. [11] showed how to estimate R0 and k from previous epidemics through applying a maximum-likelihood model to individual transmission data.Although in this case it is not possible to find a strict analytical form for the outbreak threshold, progress can be made if we measure the ratio of the heterogeneous and homogeneous thresholds. This function yields values that are independent of a strict cutoff probability (Material S.3 in Text S1). By investigating this ratio, we first found that for a fixed R0, a function of order 1/k fitted the numerical solutions very well. By measuring these curves for different R0 values, we further found that a function of order 1/R0 2 provided a good fit to the coefficients. By fitting a function of order 1/kR0 2 to the numerical data using least-squares regression in Mathematica 8.0 [19], we obtained the following adjusted form for the outbreak threshold T0 in a heterogeneous population:(1)As in the homogeneous case, T0 only provides us with an order of magnitude and it can be multiplied by −Log(c) to find the number of infected hosts required for there to be a probability of outbreak equal to 1-c. A sensitivity analysis shows that Equation 1 tends to be more strongly affected by changes in R0 than in k (Material S.3 in Text S1).The outbreak threshold T0 of an epidemic, which we define as the number of infected hosts above which there is very likely to be a major outbreak, can be estimated using simple formulae. Currently, to declare that an outbreak has occurred, studies choose an arbitrary low or high threshold depending, for instance, on whether they are monitoring disease outbreaks or modeling probabilities of emergence. We show that the outbreak threshold can be defined without resorting to an arbitrary cutoff. Of course, the generality of this definition has a cost, which is that the corresponding value of T0 is only an order of magnitude. Modifications are needed to set a specific cutoff value or to capture host heterogeneity in transmission or incomplete sampling.These results are valid if there are enough susceptible individuals present to maintain an epidemic in the initial stages, as assumed in most studies on emergence [6], [11][13], otherwise the pathogen may die out before the outbreak threshold is reached (Box 3 and Material S.2 in Text S1). Yet the key message generally holds that while the number of infections lies below the threshold, there is a strong chance that the pathogen will vanish without causing a major outbreak. From a biological viewpoint, unless R0 is close to one, these thresholds tend to be small (on the order of 5 to 20 individuals). This contrasts with estimates of the Critical Community Size, which tend to lie in the hundreds of thousands of susceptible individuals [3], [7], [8]. Therefore, while only a small infected population is needed to trigger a full-scale epidemic, a much larger pool of individuals are required to maintain an epidemic, once it appears, and prevent it from fading out. This makes sense, since there tends to be more susceptible hosts early on in the outbreak than late on.

Box 3. Effect of Limiting Host Population Size

The basic result for the homogeneous population, T0∼1/Log(R0), assumes that during the time to pathogen outbreak, there are always enough susceptible individuals available to transmit to, so R0 remains approximately constant during emergence. This assumption can be violated if R0 is close to 1, or if the population size is small. More precisely, if the maximum outbreak size in a Susceptible-Infected-Recovered (SIR) epidemic, which is given byis less than 1/Log(R0), then the threshold cannot be reached. Since this maximum is dependent on the population size, outbreaks in smaller populations are less likely to reach the outbreak threshold. For example, if N = 10,000 then R0 needs to exceed 1.06 for 1/Log(R0) to be reached; this increases to 1.34 if N decreases to 100. Further details are in Material S.2 in Text S1.Estimates of R0 and k from previous outbreaks can be used to infer the approximate size of this threshold, to determine whether a handful or hundreds of infected individuals are needed for an outbreak to establish itself. Box 4 outlines two case studies (smallpox in England and SARS in Singapore), estimates of T0 for these, and how knowledge of the threshold could have aided their control. These examples highlight how the simplicity and rigorousness of the definition of T0 opens a wide range of applications, as it can be readily applied to specific situations in order to determine the most adequate policies to prevent pathogen outbreaks.

Box 4. Two Case Studies: Smallpox in England and SARS in Singapore

A smallpox outbreak (Variola minor) was initiated in Birmingham, United Kingdom in 1966 due to laboratory release. We calculate a threshold such that the chance of extinction is less than 0.1%, which means that T0 is equal to 7 times Equation 1. With an estimated R0 of 1.6 and dispersion parameter k = 0.65 [11], T0 is approximately equal to 9 infections. The transmission chain for this outbreak is now well-known [20]. Due to prior eradication of smallpox in the United Kingdom, the pathogen was not recognised until around the 45th case was detected, by which point a full-scale epidemic was underway. A second laboratory outbreak arose in 1978, but the initial case (as well as a single secondary case) was quickly isolated, preventing a larger spread of the pathogen. Given the fairly low T0 for the previous epidemic, early containment was probably essential in preventing a larger outbreak.The SARS outbreak in Singapore in 2003 is an example of an outbreak with known super-spreaders [21], with an estimated initial R0 of 1.63 and a low k of 0.16 [11]. T0 is estimated to be around 27 infections. The first cases were observed in late February, with patients being admitted for pneumonia. Strict control measures were invoked from March 22nd onwards, including home quarantining of those exposed to SARS patients and closing down of a market where a SARS outbreak was observed. By this date, 57 cases were detected, although it is unclear how many of those cases were still ongoing on the date. This point is important, as it is the infected population size that determines T0.Overall, very early measures were necessary to successfully prevent a smallpox outbreak due to its rapid spread. In theory, it should have been “easier” to contain the SARS outbreak, as its threshold is three times greater than that for smallpox due to higher host heterogeneity (k). However, the first reported infected individual was a super-spreader, who infected at least 21 others. This reflects that in heterogeneous outbreaks, although the emergence probability is lower, the disease spread is faster (compared to homogeneous infections) once it does appear [11]. Quick containment of the outbreak was difficult to achieve since SARS was not immediately recognised, as well as the fact that the incubation period is around 5 days, by which point it had easily caused more secondary cases. However, in subsequent outbreaks super-spreaders might not be infected early on, allowing more time to contain the spread.For newly-arising outbreaks, T0 can be applied in several ways. If the epidemic initially spreads slowly, then R0 and T0 can be measured directly. Alternatively, estimates of T0 can be calculated from previous outbreaks, as outlined above. In both cases, knowing what infected population size is needed to guarantee emergence can help to assess how critical a situation is. More generally, due to the difficulty in detecting real-world outbreaks that go extinct very quickly, experimental methods might be useful in determining to what extent different levels of T0 capture the likelihood of full epidemic emergence.  相似文献   

9.
10.
Cellular integrins were identified as human cytomegalovirus (HCMV) entry receptors and signaling mediators in both fibroblasts and endothelial cells. The goal of these studies was to determine the mechanism by which HCMV binds to cellular integrins to mediate virus entry. HCMV envelope glycoprotein B (gB) has sequence similarity to the integrin-binding disintegrin-like domain found in the ADAM (a disintegrin and metalloprotease) family of proteins. To test the ability of this region to bind to cellular integrins, we generated a recombinant soluble version of the gB disintegrin-like domain (gB-DLD). The gB-DLD protein bound to human fibroblasts in a specific, dose-dependent and saturable manner that required the expression of an intact β1 integrin ectodomain. Furthermore, a physical association between gB-DLD and β1 integrin was demonstrated through in vitro pull-down assays. The function of this interaction was shown by the ability of cell-bound gB-DLD to efficiently block HCMV entry and the infectivity of multiple in vivo target cells. Additionally, rabbit polyclonal antibodies raised against gB-DLD neutralized HCMV infection. Mimicry of the ADAM family disintegrin-like domain by HCMV gB represents a novel mechanism for integrin engagement by a virus and reveals a unique therapeutic target for HCMV neutralization. The strong conservation of the DLD across beta- and gammaherpesviruses suggests that integrin recognition and utilization may be a more broadly conserved feature throughout the Herpesviridae.Like many other herpesviruses, human cytomegalovirus (HCMV) is an opportunistic pathogen that is able to asymptomatically infect the human population with high incidence throughout the world. Primary infection is followed by a life-long latent phase that may reactivate and cause disease during the immunosuppression experienced by AIDS patients and organ transplant recipients (14, 52). HCMV disease is also a cause of significant morbidity and mortality during primary congenital infections (66). Currently there is no effective HCMV vaccine, and HCMV antiviral therapies, such as ganciclovir, are highly toxic and unsuitable for treating pregnant women in the congenital setting (92).HCMV disease can manifest itself in most organ systems and tissue types. Pathology from HCMV-infected individuals reveals that HCMV can infect most cell types, including fibroblasts, endothelial cells, epithelial cells, smooth muscle cells, stromal cells, monocytes/macrophages, neutrophils, neuronal cells, and hepatocytes (20, 25, 77, 83, 87). The broad intrahost organ and tissue tropism of HCMV is paralleled in vitro with the virus'' ability to bind and fuse with nearly every vertebrate cell type tested (40, 62, 78). However, full productive infection is limited to secondary strains of fibroblasts and endothelial cells. The ability of HCMV to enter such a diverse range of cell types is indicative of multiple cell-specific receptors, broadly expressed receptors, or a complex entry pathway in which a combination of both cell-specific and broadly expressed cellular receptors are utilized.The genes that encode envelope glycoprotein B (gB) and gH are essential (37), play several key roles during virus entry and egress, and are conserved throughout the Herpesviridae (reviewed in reference 80). A soluble form of gB truncated at the transmembrane domain (gBs) binds to permissive cells specifically, blocks virus entry, and is sufficient to trigger signal transduction events that result in the activation of an interferon-responsive pathway that is also activated by HCMV virions (10, 12, 13).HCMV entry requires initial tethering of virions to cell surface heparan sulfate proteoglycans (HSPGs) (22, 80). The HCMV envelope contains at least two separate glycoprotein complexes with affinities for heparan sulfate: gB (22) and the gM/gN complex (48). The gM/gN complex is more abundant than gB within the envelope (88) and binds heparin with higher affinity (49). Thus, the gM/gN complex is thought to be the primary heparin-binding component of the HCMV envelope.Virus-cell tethering via HSPGs is followed by a more stable interaction and subsequent signal transduction cascades. This interaction was proposed to be mediated via cell surface epidermal growth factor receptor (EGFR) (17, 95). These data, however, conflicted with more recent reports that demonstrate EGFR is not explicitly required for infection (21, 42). Platelet-derived growth factor receptor (PDGFR) has also been reported to function as an attachment receptor that functions to activate signaling cascades required for infection (79). The relative contribution of signaling and virus-host cell attachment for each of these growth factor receptors remains to be further characterized. The possibility also exists that additional attachment receptors still remain unidentified.Integrins are expressed on the cell surfaces of all vertebrate cells, a characteristic that parallels the promiscuity of HCMV entry. Additionally, β1 integrins are capable of mediating many of the same signal transduction pathways that are triggered during HCMV entry into host cells. Upon binding and fusing with host cell surfaces, HCMV triggers changes in Ca2+ homeostasis (36) and the activation of phospholipases C and A2, as well as an increased release of arachidonic acid and its metabolites (2). Additionally, mitogen-activated protein kinase (MAPK) (44, 45), phosphatidylinositol-3-OH kinase (PI3-K) (46), and G proteins are activated (73). Indeed, it was shown that HCMV entry led to an activation of integrin signaling pathways that reorganized the actin cytoskeleton (31) and phosphorylated β1 and β3 integrin cytoplasmic domains (31), focal adhesion kinase (FAK) (31), and Src (94). Integrin antibody blocking studies in combination with HCMV infectivity assays in β1 integrin-null GD25 cells identified α2β1, α6β1, and αVβ3 integrins as HCMV “postattachment” entry receptors (31). Certain integrin signaling events could be triggered by both HCMV and a soluble version of gB and require the expression of β1 integrin, identifying this specific viral ligand in integrin engagement (31).ADAM family members are multifunctional proteins that contain a metalloproteinase domain involved in ectodomain shedding and a disintegrin module of approximately 90 amino acids that confers RGD-independent integrin binding (43, 81, 99). The minimum component of the disintegrin module required for integrin engagement is the 12- to 13-amino-acid disintegrin loop, for which a consensus sequence has been described: RX6DLXXF (29). The 20-amino-acid stretch encompassing the gB disintegrin-like domain is highly conserved, with greater than 98% amino acid identity among HCMV clinical isolates. Additionally, this domain is present in most gammaherpesviruses and all betaherpesviruses, suggesting that integrin engagement may be a conserved feature for most of the Herpesviridae. Synthetic peptides of the gB disintegrin loop block virus fusion (tegument delivery) but not virus attachment (31). This fact suggests a disintegrin-mediated molecular mechanism of herpesvirus-integrin engagement. Glycoprotein H (gH) has also been identified as an αVβ3 integrin ligand (94). However, gH contains no previously identified integrin recognition motifs, and the αVβ3 integrin heterodimer does not typically engage ADAM family proteins.Herein, we explore the molecular mechanism of integrin engagement by HCMV envelope gB. We provide multiple lines of evidence that demonstrate a physical interaction between the gB disintegrin module with β1 integrin. Furthermore, this interaction has significant consequences to the viral life cycle, since a soluble version of the gB disintegrin module efficiently blocks HCMV infection at a postattachment step during entry into multiple in vivo cell targets. Similarly, polyclonal antibodies directed against the gB disintegrin-like domain neutralize HCMV infectivity. These data identify the molecular mechanism of an HCMV ligand-receptor interaction required for virus-host fusion.  相似文献   

11.
12.
Hantaviruses, similar to several emerging zoonotic viruses, persistently infect their natural reservoir hosts, without causing overt signs of disease. Spillover to incidental human hosts results in morbidity and mortality mediated by excessive proinflammatory and cellular immune responses. The mechanisms mediating the persistence of hantaviruses and the absence of clinical symptoms in rodent reservoirs are only starting to be uncovered. Recent studies indicate that during hantavirus infection, proinflammatory and antiviral responses are reduced and regulatory responses are elevated at sites of increased virus replication in rodents. The recent discovery of structural and non-structural proteins that suppress type I interferon responses in humans suggests that immune responses in rodent hosts could be mediated directly by the virus. Alternatively, several host factors, including sex steroids, glucocorticoids, and genetic factors, are reported to alter host susceptibility and may contribute to persistence of hantaviruses in rodents. Humans and reservoir hosts differ in infection outcomes and in immune responses to hantavirus infection; thus, understanding the mechanisms mediating viral persistence and the absence of disease in rodents may provide insight into the prevention and treatment of disease in humans. Consideration of the coevolutionary mechanisms mediating hantaviral persistence and rodent host survival is providing insight into the mechanisms by which zoonotic viruses have remained in the environment for millions of years and continue to be transmitted to humans.Hantaviruses are negative sense, enveloped RNA viruses (family: Bunyaviridae) that are comprised of three RNA segments, designated small (S), medium (M), and large (L), which encode the viral nucleocapsid (N), envelope glycoproteins (GN and GC), and an RNA polymerase (Pol), respectively. More than 50 hantaviruses have been found worldwide [1]. Each hantavirus appears to have coevolved with a specific rodent or insectivore host as similar phylogenetic trees are produced from virus and host mitochondrial gene sequences [2]. Spillover to humans causes hemorrhagic fever with renal syndrome (HFRS) or hantavirus cardiopulmonary syndrome (HCPS), depending on the virus [3][5]. Although symptoms vary, a common feature of both HFRS and HCPS is increased permeability of the vasculature and mononuclear infiltration [4]. Pathogenesis of HRFS and HCPS in humans is hypothesized to be mediated by excessive proinflammatory and CD8+ T cell responses ().

Table 1

Summary of Immune Responses in Humans during Hantavirus Infection.
Categorical ResponseImmune MarkerEffect of InfectionVirus Speciesa In Vitro/In VivoTissue or Cell Typeb, Phase of Infectionc References
Innate RIG-IElevatedSNVIn vitroHUVEC, ≤24 h p.i. [79]
ReducedNY-1VIn vitroHUVEC, ≤24 h p.i. [37]
TLR3ElevatedSNVIn vitroHUVEC, ≤24 h p.i. [79]
IFN-βElevatedPUUV, PHV, ANDVIn vitroHSVEC, HMVEC-L, ≤24 h p.i. [36],[80]
ReducedTULV, PUUV NSsIn vitroCOS-7 and MRC5 cells, ≤24 h p.i. [32],[33]
IFN-αElevatedPUUV, HTNVIn vitroMФ, DCs, 4 days p.i. [30]
No changeHTNVIn vivoBlood, acute [81]
IRF-3, IRF-7ElevatedSNV, HTNV, PHV, ANDVIn vitroHMVEC-L, ≤24 h p.i. [33],[38]
MxAElevatedHTNV, NY-1V, PHV, PUUV, ANDV, SNV, TULVIn vitroMФ,HUVEC,HMVEC-L, 6 h–4 days p.i. [36], [39][41],[79]
MHC I and IIElevatedHTNVIn vitroDCs, 4 days p.i. [30]
CD11bElevatedPUUVIn vivoBlood, acute [82]
CD40, CD80, CD86ElevatedHTNVIn vitroDCs, 4 days p.i. [30],[83]
NK cellsElevatedPUUVIn vivoBAL, acute [84]
Proinflammatory/Adhesion IL-1βElevatedSNV, HTNVIn vivoBlood, lungs, acute [85],[86]
IL-6ElevatedSNV, PUUVIn vivoBlood, lungs, acute [85],[87],[88]
TNF-αElevatedPUUV, SNV, HTNVIn vivoBlood, lungs, kidney, acute [85],[86],[88],[89]
ElevatedHTNVIn vitroDCs, 4 days p.i. [30]
CCL5ElevatedSNV, HTNVIn vitroHMVEC-L, HUVEC, 12 h–4 days p.i. [38],[39],[90]
CXCL8ElevatedPUUVIn vivoBlood, acute [82]
ElevatedPUUVIn vivoMen, blood, acute [62]
ElevatedTULV, PHV, HTNVIn vitroHUVEC, MФ, 2–4 days p.i. [39],[91]
CXCL10ElevatedSNV, HTNV, PHVIn vitroHMVEC-L,HUVEC, 3–4 days p.i. [38],[39]
ElevatedPUUVIn vivoMen, blood, acute [62]
IL-2ElevatedSNV, HTNV, PUUVIn vivoBlood, lungs, acute [82],[86]
Nitric oxideElevatedPUUVIn vivoBlood, acute [92]
GM-CSFElevatedPUUVIn vivoWomen, blood, acute [62]
ICAM, VCAMElevatedPUUVIn vivoKidney, acute [87]
ElevatedHTNV, PHVIn vitroHUVEC, 3–4 days p.i. [30],[39]
E-selectinElevatedPUUVIn vivoBlood, acute [82]
CD8+ and CD4+ T cells IFN-γElevatedHTNV, SNVIn vivoBlood, CD4+,CD8+, lungs, acute [81],[86]
CD8+ElevatedDOBV, PUUV, HTNVIn vivoBlood, BAL, acute [52],[84],[93]
Virus-specific IFN-γ+CD8+ElevatedPUUV, SNVIn vivoPBMC, acute [45],[94]
Perforin, Granzyme BElevatedPUUVIn vivoBlood, acute [95]
CD4+CD25+ “activated”ElevatedDOBV, PUUVIn vivoPBMC, acute [89],[93]
IL-4ElevatedSNVIn vivoLungs, acute [86]
Regulatory “suppressor T cells”d ReducedHTNVIn vivoBlood, acute [52]
IL-10ElevatedPUUVIn vivoBlood, acute [86]
TGF-βElevatedPUUVIn vivoKidney, acute [89]
Humoral IgM, IgG, IgA, IgEElevatedAll hantavirusesIn vivoBlood [4]
Open in a separate windowaSNV, Sin Nombre virus; NY-1V, New York-1 virus; PUUV, Puumala virus; PHV, Prospect Hill virus; ANDV, Andes virus; TULV, Tula virus; HTNV, Hantaan virus; DOBV, Dobrava virus.bHUVEC, human umbilical vascular endothelial cells; HSVEC, human saphenous vein endothelial cells; HMVEC-L, human lung microvascular endothelial cells; COS-7, African green monkey kidney fibroblasts transformed with Simian virus 40; MRC5, human fetal lung fibroblasts; MФ, macrophages; DCs, dendritic cells; BAL, bronchoalveolar lavage, PBMC, human peripheral blood mononuclear cells.cAcute infection is during symptomatic disease in patients.dSuppressor T cells likely represent cells currently referred to as regulatory T cells.

Table 2

Summary of Immune Responses in Rodents during Hantavirus Infection.
Categorical ResponseImmune MarkerEffect of InfectionVirus Speciesa Host, Tissue or Cell Typeb Phase of Infectionc References
Innate TLR7ReducedSEOVMale Norway rats, lungsAcute, Persistent [19]
ElevatedSEOVFemale Norway rats, lungsAcute, Persistent [19]
RIG-IElevatedSEOVFemale Norway rats, lungsAcute, Persistent [19]
ElevatedSEOVNewborn rats, thalamusAcute [96]
TLR3ElevatedSEOVMale Norway rats, lungsAcute, Persistent [19]
IFN-βReducedSEOVMale Norway rats, lungsAcute, Persistent [19],[61]
ElevatedSEOVFemale Norway rat lungsAcute [19],[61]
Mx2ReducedSEOVMale Norway rats, lungsAcute, Persistent [19],[60]
ElevatedSEOVFemale Norway rats, lungsAcute, Persistent [19],[60]
ElevatedHTNV, SEOVMiced, fibroblasts transfected with Mx23–4 days p.i. [97]
JAK2ElevatedSEOVFemale Norway rats, lungsAcute [60]
MHC IIElevatedPUUVBank volesGenetic susceptibility [74]
Proinflammatory/Adhesion IL-1βReducedSEOVMale Norway rats, lungsPersistent [29]
IL-6ReducedSEOVMale and female Norway rats, lungsAcute, Persistent [29],[61]
ElevatedSEOVMale rats, spleenAcute [29]
TNF-αReducedHTNVNewborn miced, CD8+, spleenAcute [49],[50]
ReducedSEOVMale Norway rats, lungsAcute, Persistent [29],[42],[61]
ElevatedSEOVFemale Norway rats, lungsPersistent [61]
CX3CL1, CXCL10ReducedSEOVMale Norway rats, lungsAcute, Persistent [29]
ElevatedSEOVMale Norway rats, spleenAcute [29]
CCL2, CCL5ElevatedSEOVMale Norway rats, spleenAcute [29]
NOS2ReducedSEOVMale Norway rats, lungsAcute, Persistent [29],[61]
ElevatedSEOVMale Norway rats, spleenAcute [29]
ElevatedHTNVMouse MФd, in vitro6 h p.i. [98]
VCAM, VEGFElevatedSEOVMale Norway rats, spleenAcute [29]
CD8+ and CD4+ T cells CD8+ReducedHTNVNewborn miced, spleenPersistent [50]
ElevatedHTNVSCID miced, CD8+ transferred, spleenPersistence [49]
ElevatedSEOVFemale Norway rats, lungsPersistent [61]
IFN-γElevatedSEOVFemale Norway rats, lungsPersistent [61]
ElevatedSEOVMale Norway rats, spleenAcute [29]
ElevatedSEOVMale and female Norway rats, splenocytesAcute [20]
ElevatedSNVDeer mice, CD4+ T cellsAcute [48]
ElevatedHTNVNewborn miced, CD8+ T cells, spleenAcute [50]
ReducedHTNVNewborn miced, CD8+ T cells, spleenPersistent [99]
IFN-γRElevatedSEOVFemale Norway rats, lungsAcute, Persistent [60]
ReducedSEOVMale Norway rats, lungsPersistent [60]
T cellsElevatedSEOVNude ratsPersistence [47]
ElevatedHTNVNude miced Persistence [100]
IL-4ReducedSEOVMale Norway rats, lungsAcute, Persistent [61]
ElevatedSNVDeer mice, CD4+ T cellsAcute [48]
ElevatedSEOVMale and female Norway rats, splenocytesAcute [20]
Regulatory Regulatory T cellsElevatedSEOVMale Norway rats, lungsPersistent [42],[61]
FoxP3ElevatedSEOVMale Norway rats, lungsPersistent [29],[42],[61]
TGF-βElevatedSEOVMale Norway rats, lungsPersistent [29]
SNVDeer mice, CD4+ T cellsPersistent [48]
IL-10ReducedSEOVMale Norway rats, lungs and spleenAcute, Persistent [29]
ElevatedSNVDeer mice, CD4+ T cellsAcute [48]
Humoral IgGElevatedSNVDeer micePersistent [12],[57]
ElevatedSEOVNorway ratsPersistent [16],[17]
ElevatedHTNVField micePersistent [15]
ElevatedPUUVBank volesPersistent [14]
ElevatedBCCVCotton ratsPersistent [18],[58]
Open in a separate windowaSEOV, Seoul virus; HTNV, Hantaan virus, PUUV, Puumala virus; SNV, Sin Nombre virus; PUUV, Puumala virus; BCCV, Black Creek Canal virus.bMФ, macrophages.cAcute infection is <30 days p.i. and persistent infection is ≥30 days p.i.d Mus musculus, non-natural reservoir host for hantaviruses.In contrast to humans, hantaviruses persistently infect their reservoir hosts, presumably causing lifelong infections [6]. Hantaviruses are shed in saliva, urine, and feces, and transmission among rodents or from rodents to humans occurs by inhalation of aerosolized virus in excrement or by transmission of virus in saliva during wounding [7],[8]. Although widely disseminated throughout the rodent host, high amounts of hantaviral RNA and antigen are consistently identified in the lungs of their rodent hosts, suggesting that the lungs may be an important site for maintenance of hantaviruses during persistent infection [9][18]. Hantavirus infection in rodents is characterized by an acute phase of peak viremia, viral shedding, and virus replication in target tissues, followed by a persistent phase of reduced, cyclical virus replication despite the presence of high antibody titers (Figure 1) [12][16], [18][20]. The onset of persistent infection varies across hantavirus–rodent systems, but generally the acute phase occurs during the first 2–3 weeks of infection and virus persistence is established thereafter (Figure 1).Open in a separate windowFigure 1Kinetics of Hantavirus Infection in Rodents.Adapted from Lee et al. [15] and others [12][14],[16],[18],[20], the kinetics of relative hantaviral load in blood (red), saliva (green), and lung tissue (blue) and antibody responses (black) during the acute and persistent phases of infection are represented. The amount of genomic viral RNA, infectious virus titer, and/or relative amount of viral antigen have been incorporated as relative hantaviral load. The antibody response is integrated as the relative amount of anti-hantavirus IgG and/or neutralizing antibody titers.Hantavirus infection alone does not cause disease, as reservoir hosts and non-natural hosts (e.g., hamsters infected with Sin Nombre virus [SNV] or Choclo virus) may support replicating virus in the absence of overt disease [12],[14],[16],[18],[21],[22]. Our primary hypothesis is that certain immune responses that are mounted in humans during hantavirus infection are suppressed in rodent reservoirs to establish and maintain viral persistence, while preventing disease (相似文献   

13.
14.
Human cytomegalovirus (HCMV) depends upon a five-protein complex, gH/gL/UL128-131, to enter epithelial and endothelial cells. A separate HCMV gH/gL-containing complex, gH/gL/gO, has been described. Our prevailing model is that gH/gL/UL128-131 is required for entry into biologically important epithelial and endothelial cells and that gH/gL/gO is required for infection of fibroblasts. Genes encoding UL128-131 are rapidly mutated during laboratory propagation of HCMV on fibroblasts, apparently related to selective pressure for the fibroblast entry pathway. Arguing against this model in the accompanying paper by B. J. Ryckman et al. (J. Virol., 84:2597-2609, 2010), we describe evidence that clinical HCMV strain TR expresses a gO molecule that acts to promote endoplasmic reticulum (ER) export of gH/gL and that gO is not stably incorporated into the virus envelope. This was different from results involving fibroblast-adapted HCMV strain AD169, which incorporates gO into the virion envelope. Here, we constructed a TR gO-null mutant, TRΔgO, that replicated to low titers, spread poorly among fibroblasts, but produced normal quantities of extracellular virus particles. TRΔgO particles released from fibroblasts failed to infect fibroblasts and epithelial and endothelial cells, but the chemical fusogen polyethylene glycol (PEG) could partially overcome defects in infection. Therefore, TRΔgO is defective for entry into all three cell types. Defects in entry were explained by observations showing that TRΔgO incorporated about 5% of the quantities of gH/gL in extracellular virus particles compared with that in wild-type virions. Although TRΔgO particles could not enter cells, cell-to-cell spread involving epithelial and endothelial cells was increased relative to TR, apparently resulting from increased quantities of gH/gL/UL128-131 in virions. Together, our data suggest that TR gO acts as a chaperone to promote ER export and the incorporation of gH/gL complexes into the HCMV envelope. Moreover, these data suggest that it is gH/gL, and not gH/gL/gO, that is present in virions and is required for infection of fibroblasts and epithelial and endothelial cells. Our observations that both gH/gL and gH/gL/UL128-131 are required for entry into epithelial/endothelial cells differ from models for other beta- and gammaherpesviruses that use one of two different gH/gL complexes to enter different cells.Human cytomegalovirus (HCMV) infects a broad spectrum of cell types in vivo, including epithelial and endothelial cells, fibroblasts, monocyte-macrophages, dendritic cells, hepatocytes, neurons, glial cells, and leukocytes (6, 28, 36). Infection of this diverse spectrum of cell types contributes to the multiplicity of CMV-associated disease. HCMV infection of hepatocytes and epithelial cells in the gut and lungs following transplant immunosuppression is directly associated with CMV disease (3, 44). HCMV can be transported in the blood by monocyte-macrophages, and virus produced in these cells can infect endothelial cells, leading to virus spread into solid tissues such as the brain, liver, and lungs, etc. (16). Despite the broad spectrum of cells infected in vivo, propagation of HCMV in the laboratory is largely limited to normal human fibroblasts because other cells produce little virus. HCMV rapidly adapts to laboratory propagation in fibroblasts, losing the capacity to infect other cell types, i.e., epithelial and endothelial cells and monocyte-macrophages (9, 16, 18, 43). This adaptation to fibroblasts involves mutations in the unique long b′ (ULb′) region of the HCMV genome, which includes 22 genes (9). Targeted mutation of three of the ULb′ genes, UL128, UL130, and UL131, abolished HCMV infection of endothelial cells, transmission to leukocytes, and infection of dendritic cells (17, 18). Restoration of UL128-131 genes in HCMV laboratory strain AD169 (which cannot infect epithelial and endothelial cells) produced viruses capable of infecting these cells (18, 48). There is also evidence that the UL128-131 proteins are deleterious to HCMV replication in fibroblasts, resulting in rapid loss or mutation of one or more of the UL128-131 genes during passage in fibroblasts (2).A major step forward in understanding how the UL128-131 genes promote HCMV infection of epithelial and endothelial cells involved observations that the UL128-131 proteins assemble onto the extracellular domain of the membrane-anchored HCMV glycoprotein heterodimer gH/gL (1, 49). Antibodies to UL128, UL130, and UL131 each neutralized HCMV for infection of endothelial or epithelial cells (1, 49). All herpesviruses express gH/gL homologues and, where this has been tested, all depend upon gH/gL for replication and, more specifically, for entry into cells (14, 15, 31, 38). Indeed, we showed that the gH/gL/UL128-131 complex mediated entry into epithelial and endothelial cells (40). All five members of the gH/gL/UL128-131 complex were required for proper assembly and export from the endoplasmic reticulum (ER) and for function (39, 41). In addition, the expression of gH/gL/UL128-131, but not gH/gL or gB, in epithelial cells interfered with HCMV entry into these cells (39). This interference suggested that there are saturable gH/gL/UL128-131 receptors present on epithelial cells, molecules that HCMV uses for entry. There was no interference in fibroblasts expressing gH/gL/UL128-131, although some interference was observed with gH/gL (39). As noted above, gH/gL/UL128-131 plays no obvious role in entry into fibroblasts and, in fact, appears to be deleterious in this respect (2, 18, 40).HCMV also expresses a second gH/gL complex, as follows: gH/gL/gO (20, 21, 22, 30, 48). Fibroblast-adapted HCMV strain AD169 expresses a gO protein that is a 110- to 125-kDa glycoprotein (21). Pulse-chase studies suggest that gH/gL assembles first in the ER before binding and forming disulfide links with gO (21, 22). The 220-kDa immature gH/gL/gO complex is transported from the ER to the Golgi apparatus and increases in size to ∼280 to 300 kDa before incorporation into the virion envelope (21). gH/gL/gO complexes are apparently distinct from gH/gL/UL128-131 complexes because gO-specific antibodies do not detect complexes containing either UL128 or UL130 and UL128-specific antibodies do not precipitate gO (49). Towne and AD169 gO-null mutant laboratory strains can produce small plaques on fibroblasts, leading to the conclusion that gO is not essential. However, the AD169 and Towne mutants produced ∼1,000-fold less infectious virus than wild-type HCMV (14, 19), which might also be interpreted to mean that gO is very important or even essential for replication. Thus, the prevailing model has been that wild-type HCMV particles contain the following two gH/gL complexes: gH/gL/gO, which promotes infection of fibroblasts, and gH/gL/UL128-131, which promotes entry into epithelial and endothelial cells. Supporting this model, there are two different entry mechanisms, as follows: HCMV enters fibroblasts by fusion at the plasma membrane at neutral pH (12), whereas entry into epithelial and endothelial cells involves endocytosis and a low pH-dependent fusion with endosomes (40). This model of HCMV entry parallels models for Epstein-Barr virus (EBV) entry that use gH/gL to enter epithelial cells and gH/gL/gp42 to enter B cells (24). Similarly, HHV-6 uses gH/gL/gO and gH/gL/gQ, which bind to different receptors (33).Many of the studies of gH/gL/gO have involved the fibroblast-adapted HCMV strain AD169, which fails to express UL131 and assemble gH/gL/UL128-131 or AD169 recombinants in which UL131 expression was restored (20, 21, 22, 48, 49). It seemed possible that the adaptation of AD169 to long-term passage in fibroblasts might also involve alterations in gO. HCMV gO is unusually variable (15 to 25% amino acid differences) among different HCMV strains compared with other viral genes (13, 34, 35, 37, 46). In recent studies, Jiang et al. (26) described a gO-null mutant derived from the HCMV strain TB40/E, a strain that can infect endothelial cells following extensive passage on these cells. The TB40/E gO-null mutant spread poorly on fibroblasts compared with wild-type TB40/E, and there was little infectious virus detected in fibroblast culture supernatants. However, the few TB40/E gO-null mutant particles produced by fibroblasts that could initiate infection of endothelial cells were able to spread to form normal-sized plaques on endothelial cells. These results further supported the model for which gH/gL/gO is required for infection of fibroblasts but not for epithelial/endothelial cells. Those authors also concluded that gO is important for the assembly of enveloped particles in fibroblasts, based on observations of few infectious virus particles in supernatants and cytoplasmic accumulation of unenveloped capsids (26).Our studies of gH/gL/UL128-131 have involved the clinical HCMV strain TR (39, 40, 41, 47). HCMV TR was originally an ocular isolate from an AIDS patient (45) and was passaged only a few times on fibroblasts before being genetically frozen in the form of a bacterial artificial chromosome (BAC) (34, 40). HCMV TR infects epithelial and endothelial cells (40) and monocyte-macrophages (D. Streblow and J. Nelson, unpublished results) well. In the accompanying paper (42), we characterized the biochemistry and intracellular trafficking of TR gO. TR gO expressed either in TR-infected cells or by using adenovirus vectors (expressed without other HCMV proteins) was largely retained in the ER. Coexpression of gO with gH/gL promoted transport of gH/gL beyond the ER. Importantly, TR gO was not found in extracellular virions. In contrast, AD169 gO was present in extracellular virus particles, as described previously (20, 21). We concluded that TR gO is a chaperone that promotes ER export of the gH/gL complex, but gO dissociates prior to incorporation into the virus envelope. Moreover, these differences highlight major differences between gO molecules expressed by fibroblast-adapted strain AD169 and low-passage TR.To extend these results and characterize how TR gO functions, whether in virus entry or virus assembly/egress, we constructed a TR gO-null mutant. TRΔgO exhibited major defects in entering fibroblasts, as evidenced by increased virus infection following treatment with the chemical fusogen polyethylene glycol (PEG). Unexpectedly, the mutant also failed to enter epithelial and endothelial cells, and again, PEG partially restored entry. Relatively normal numbers of TRΔgO particles were produced and released into cell culture supernatants, although even with PEG treatment, most of these virus particles remained defective in initiating immediate-early HCMV protein synthesis. Western blot analyses of TRΔgO extracellular particles demonstrated very low levels of gH/gL incorporated into virions, which likely explains the reduced entry of TRΔgO. However, the small amounts of gH/gL complexes that were present in TRΔgO virions were associated with increased quantities of UL130, and these TRΔgO particles spread better than wild-type HCMV on epithelial cell monolayers. Together with the results shown in the accompanying paper (42), we concluded that HCMV TR gO functions as a chaperone to promote ER export of gH/gL to HCMV assembly compartments and the incorporation of gH/gL into the virion envelope. The highly reduced quantities of gH/gL in virions are apparently responsible for the inability of HCMV to enter fibroblasts and epithelial and endothelial cells. These results suggest a modified version of our model, in which gH/gL, not gH/gL/gO, mediates entry into fibroblasts and both gH/gL and gH/gL/UL128-131 are required for entry into epithelial and endothelial cells.  相似文献   

15.
16.
17.
Human cytomegalovirus (HCMV) virion assembly takes place in the nucleus and cytoplasm of infected cells. The HCMV virion tegument protein pp150 (ppUL32) is an essential protein of HCMV and has been suggested to play a role in the cytoplasmic phase of HCMV assembly. To further define its role in viral assembly and to identify host cell proteins that interact with pp150 during viral assembly, we utilized yeast two-hybrid analyses to detect an interaction between pp150 and Bicaudal D1 (BicD1), a protein thought to play a role in trafficking within the secretory pathway. BicD1 is known to interact with the dynein motor complex and the Rab6 GTPase. The interaction between pp150 and BicD1 was confirmed by coimmunoprecipitation and fluorescence resonance energy transfer. Depletion of BicD1 with short hairpin RNA (shRNA) caused decreased virus yield and a defect in trafficking of pp150 to the cytoplasmic viral assembly compartment (AC), without altering trafficking to the AC of another essential tegument protein, pp28, or the viral glycoprotein complex gM/gN. The C terminus of BicD1 has been previously shown to interact with the GTPase Rab6, suggesting a potential role for Rab6-mediated vesicular trafficking in HCMV assembly. Finally, overexpression of the N terminus of truncated BicD1 acts in a dominant-negative manner and leads to disruption of the AC and a decrease in the assembly of infectious virus. This phenotype was similar to that observed following overexpression of dynamitin (p50) and provided additional evidence that morphogenesis of the AC and virus assembly were dynein dependent.Human cytomegalovirus (HCMV) (human herpesvirus 5 [HHV-5]), the prototypical betaherpesvirus, is ubiquitous in humans and establishes a persistent infection in the host (19). HCMV also reinfects healthy seropositive individuals, suggesting another mechanism for maintaining persistence in a population (9). Intrauterine transmission and HCMV infection of the developing fetus constitute a leading viral cause of birth defects (32). HCMV is also a leading cause of opportunistic infections in immunocompromised patients, including transplant recipients and patients with AIDS (10, 20). HCMV infection has also been implicated as a cofactor in such diverse diseases as atherosclerosis and cancer (8, 17, 33, 66).HCMV replicates its genome in the nucleus, and acquisition of the final tegument and envelope is thought to occur in the cytoplasm of infected cells (73, 77). Envelopment of HCMV has been reported to occur by budding into cytoplasmic vacuoles that are composed of HCMV glycoproteins required for the assembly of infectious virions (37). The fully mature virus is released from the cell through either exocytosis or, possibly, lysis of the infected cells (56). The nucleic acid-containing capsid is embedded in a proteinaceous tegument layer that occupies the space between the nucleocapsid and the envelope. The tegument contains approximately 40% of the virion protein mass and approximately 20 to 25 known virion proteins, most of which are phosphorylated (40, 44). The assembly pathway and protein interactions required for formation of the tegument layer and the role of individual tegument proteins in the replication and assembly of infectious HCMV remain poorly understood. Deletion of viral genes encoding some tegument proteins results in varying levels of impairment in virus production (11-13, 35, 43, 45, 53, 68). Some tegument proteins, such as pp28 (pUL99) and ppUL25, are expressed only in the cytoplasm of infected cells during HCMV replication, whereas others, such as ppUL53 and pp65 (pUL83), are expressed in the nuclei of cells early in infection but are localized predominantly in the cytoplasm late in infection (68). Others, such as the tegument protein ppUL69, are expressed only in the nuclei of infected cells. Finally, the intracellular localization of other tegument proteins, such as pp150 (pUL32), is less well defined in that both nuclear and cytoplasmic localizations have been described (34, 68).HCMV pp150 (basic phosphoprotein [BPP], pUL32) is the 1,048-amino-acid product of the UL32 gene of HCMV and an abundant constituent of the HCMV virion. Homologues of pp150 are found in other betaherpesviruses, including chimpanzee CMV, rat CMV, mouse CMV, HHV-6, and HHV-7, but not in alpha- or gammaherpesviruses (2). It is expressed late in HCMV infection (15, 68). It comprises 9.1% of infectious virion mass and 2% of the mass of dense bodies, suggesting that it is preferentially incorporated into virions (87). It has an estimated molecular mass of 113 kDa and is posttranslationally modified by phosphorylation and glycosylation, resulting in a molecular mass of 150 kDa in purified virus preparations analyzed by SDS-PAGE (41, 42, 65). pp150 has been classified as a tegument protein based on its presence in virion preparation, noninfectious enveloped particles, and cytoplasmic nucleocapsids but not in immature nuclear capsids (27, 28, 40). It has been suggested that pp150 contacts the capsids through the distal end of the capsomeres or through the triplex subunits that interlink them (16, 86). It has been reported to bind HCMV capsids in vitro through its amino one-third (6). We have also noted association of pp150 with the virion capsid by cryo-immunoelectron microscopy (W. Britt and H. Zhou, UCLA, Los Angeles, CA, unpublished findings). In primary human foreskin fibroblast (HFF) cells infected with HCMV, pp150 accumulates in a juxtanuclear structure that is termed the assembly compartment (AC), which colocalizes with markers of the distal secretory pathway and with other tegument proteins, including pp28 and pp65 and envelope glycoproteins gB, gH, and gM/gN (68). The virus-induced AC appears to overlap with microtubules emanating from the microtubule-organizing center (MTOC) and is proposed to be a cytoplasmic site of virion assembly (37, 68).The function of pp150 is unknown, although its close association with the nucleocapsid suggests potential involvement in nuclear targeting during entry and in nuclear targeting of the encapsidated viral DNA, capsid tegumentation, and/or envelopment late in infection. It is essential for production of infectious virus, since the deletion of the UL32 open reading frame (ORF) leads to loss of virus replication and has been reported to be important in cytoplasmic maturation of HCMV, especially in viral egress (2, 22, 84, 91, 92). In cells infected with ΔUL32 virus, which lacks pp150, fewer virus particles accumulated in the cytoplasm, although nuclear steps in virus assembly were not affected (84). It was also observed that in the absence of pp150, nucleocapsids were present in the viral assembly compartment but failed to proceed further to vesicle transport-associated release (84). These observations, together with pp150 abundance in the virion, suggest a primary contribution for this structural protein in the morphogenesis and/or cytoplasmic transport of progeny virion particles to sites of virion envelopment.Since pp150 has no predicted intracellular trafficking signals, its localization to the AC in virus-infected cells has been postulated to be dependent on interactions with cellular and/or viral proteins. Using yeast two-hybrid (Y2H) screening experiments we identified the cellular protein Bicaudal D1 (BicD1) as an interacting cellular protein. Bicaudal D was originally defined as a Drosophila protein that is involved in establishing the asymmetric cytoplasm in the developing oocyte (82, 89). Two homologues of Bicaudal D, BicD1 and BicD2, have been reported in humans, and these proteins have been reported to be involved in dynein-mediated microtubule transport as well as in COPI-independent Golgi-endoplasmic reticulum (ER) transport (38, 39, 55). Microtubule-dependent transport is an energy-dependent active transport system that includes both positive-end (directed away from the MTOC) and negative-end (directed toward the MTOC) transport. The direction of transport depends on cargo interactions with the molecular motors directing this transport, with dynein being associated with negative-end transport and kinesin with positive-end transport. BicD1 colocalizes with Rab6a in the trans-Golgi network and on cytoplasmic vesicles that associate with Golgi membranes in a Rab6-dependent manner secondary to a Rab6 binding domain at the C terminus of BicD1, suggesting an important role for BicD1 as an adaptor for dynein-dependent transport in the cell (55). In addition to having a role in the Golgi-ER trafficking, BicD1 has been shown to regulate anchoring of microtubules to the centrosome, as BICD1/2 knockdown induced microtubule unfocusing, with microtubules no longer appearing to radiate from the centrosome (26). BicD1 binds to its cargo via its C-terminal domain and to the dynein motor via its N-terminal domain (38). In this study we demonstrated that pp150 and BicD1 interact and that this interaction was required for localization of pp150 to the AC in virus-infected cells. In addition, we demonstrated that inhibition of BicD1 expression by short hairpin RNA (shRNA) led to a reduction in the yield of infectious virus. Finally, we demonstrated that formation of the AC and the assembly of infectious virions were dynein dependent, suggesting a critical role in microtubules in the production of infectious HCMV. Together, these results argue that HCMV replication is dependent on efficient localization of pp150 to the AC through its interaction with BicD1 and that pp150 localization to the AC is dynein dependent.  相似文献   

18.
19.
A substantial proportion of human immunodeficiency virus type 1 (HIV-1)-infected individuals has cross-reactive neutralizing activity in serum, with a similar prevalence in progressors and long-term nonprogressors (LTNP). We studied whether disease progression in the face of cross-reactive neutralizing serum activity is due to fading neutralizing humoral immunity over time or to viral escape. In three LTNP and three progressors, high-titer cross-reactive HIV-1-specific neutralizing activity in serum against a multiclade pseudovirus panel was preserved during the entire clinical course of infection, even after AIDS diagnosis in progressors. However, while early HIV-1 variants from all six individuals could be neutralized by autologous serum, the autologous neutralizing activity declined during chronic infection. This could be attributed to viral escape and the apparent inability of the host to elicit neutralizing antibodies to the newly emerging viral escape variants. Escape from autologous neutralizing activity was not associated with a reduction in the viral replication rate in vitro. Escape from autologous serum with cross-reactive neutralizing activity coincided with an increase in the length of the variable loops and in the number of potential N-linked glycosylation sites in the viral envelope. Positive selection pressure was observed in the variable regions in envelope, suggesting that, at least in these individuals, these regions are targeted by humoral immunity with cross-reactive potential. Our results may imply that the ability of HIV-1 to rapidly escape cross-reactive autologous neutralizing antibody responses without the loss of viral fitness is the underlying explanation for the absent effect of potent cross-reactive neutralizing humoral immunity on the clinical course of infection.The need for an effective vaccine to prevent the global spread of human immunodeficiency virus type 1 (HIV-1) is well recognized. The ability to elicit broadly neutralizing antibodies (BrNAbs) is believed to be crucial to developing a successful vaccine, ideally to acquire protective immunity or, alternatively, to achieve a nonprogressive infection with viral loads sufficiently low to limit HIV-1 transmission (1, 39).During natural infection, antibodies that are able to neutralize autologous virus variants are elicited in the majority of HIV-1-infected individuals. Early in infection, these neutralizing antibodies (NAbs) are mainly type specific, due to the fact that they are primarily directed against the variable domains in the viral envelope, and allow for the rapid escape of HIV-1 from antibody neutralization (8, 9, 14, 15, 20, 28, 41). Escape from type-specific neutralizing humoral immunity has been associated with enormous sequence variation, particularly in variable loops 1 and 2 (V1V2) of the envelope protein where large insertions and deletions are observed, as well as with changes in the number of potential N-linked glycosylation sites (PNGS) in the envelope protein (8, 15, 19, 22, 25, 27-31, 41). The rapid escape of HIV-1 from autologous type-specific NAbs seems to be the underlying explanation for the absent correlation between autologous humoral immunity and HIV-1 disease course. Furthermore, we recently observed that the changes in envelope that are associated with escape from autologous neutralizing humoral immunity do not coincide with a loss of viral fitness (7), providing an additional explanation for the lack of protection from disease progression by the autologous type-specific NAb response.In the last couple of years, the focus of research has shifted toward neutralizing humoral immunity with cross-reactive activity, defined as the ability to neutralize a range of heterologous HIV-1 variants from different subtypes. It has become apparent that about one-third of HIV-1-infected individuals develop cross-reactive neutralizing activity in serum. However, the prevalence of cross-reactive neutralizing activity in serum was similar for HIV-infected individuals with a progressive disease course and long-term nonprogressors (LTNP) (11, 12, 34, 37).We studied the underlying explanation for this observation in three LTNP and three progressors who all had high-titer cross-reactive neutralizing activity in serum within 2 to 4 years after seroconversion (SC). In all individuals, we observed that the potent and cross-reactive neutralizing immunity was preserved during the entire course of infection. However, the presence of cross-reactive neutralizing activity in serum did not prevent rapid viral escape from humoral immunity, which coincided with changes in envelope similar to those described for escape from type-specific autologous humoral immunity. Although broadly neutralizing antibodies are assumed to target the more conserved epitopes that may lie in crucial parts of the viral envelope, escape from cross-reactive neutralizing activity did not coincide with a loss in viral fitness. Our findings underscore that vaccine-elicited cross-reactive neutralizing immunity should protect against HIV-1 acquisition, since protection from disease progression, even by humoral immunity with strong cross-reactivity, may be an unachievable goal.  相似文献   

20.
The UL130 gene is one of the major determinants of endothelial cell (EC) tropism of human cytomegalovirus (HCMV). In order to define functionally important peptides within this protein, we have performed a charge-cluster-to-alanine (CCTA) mutational scanning of UL130 in the genetic background of a bacterial artificial chromosome-cloned endotheliotropic HCMV strain. A total of 10 charge clusters were defined, and in each of them two or three charged amino acids were replaced with alanines. While the six N-terminal clusters were phenotypically irrelevant, mutation of the four C-terminal clusters each caused a reduction of EC tropism. The importance of this protein domain was further emphasized by the fact that the C-terminal pentapeptide PNLIV was essential for infection of ECs, and the cell tropism could not be rescued by a scrambled version of this sequence. We conclude that the C terminus of the UL130 protein serves an important function for infection of ECs by HCMV. This makes UL130 a promising molecular target for antiviral strategies, e.g., the development of antiviral peptides.Human cytomegalovirus (HCMV) is a widespread betaherpesvirus that causes lifelong persistent infections with occasional reactivations. While HCMV infection is usually clinically unapparent in the immunocompetent host, it can cause severe disseminated infections under conditions of immunosuppression, with manifestations in the lung, retina, and gastrointestinal tract, among others (12). Various cell types support viral replication, including epithelial cells and endothelial cells (ECs), smooth muscle cells, fibroblasts, and cells of hematopoietic origin (13, 14, 18, 19, 25, 26, 37). Among these target cells, endothelial cells are assumed to contribute particularly to hematogenous dissemination of HCMV (24).While recent clinical HCMV isolates are characterized by this broad cell tropism, the target cell range becomes restricted during long-term propagation on fibroblasts (28, 33). The underlying mechanism for this cell culture adaptation is a modulation within the viral genes UL128, UL130, and UL131A (8, 11). These three genes have been shown to be essential for infection of granulocytes, dendritic cells, epithelial cells, and endothelial cells but are dispensable for infection of fibroblasts (1, 9, 11, 34, 35). The encoded proteins pUL128, pUL130, and pUL131A were reported to form a complex with the viral glycoproteins gH and gL that is distinct from the glycoprotein complex gCIII (gH/gL/gO) (35). Whereas poorly endotheliotropic HCMV strains bear just the gH/gL/gO complex in their envelopes, highly endotheliotropic strains bear both gCIII variants: gH/gL/gO and gH/gL/pUL128-131A. Deletion of any of the three genes UL128-131A results in loss of EC tropism (11), most likely because only a complete complex of gH/gL and pUL128, pUL130, and pUL131A can efficiently function in endocytic entry in ECs (21). However, functional sites within the proteins (e.g., mediating binding to the viral complex partners or interaction with a putative cellular receptor) have not yet been identified. One approach to search for candidate protein-protein interaction sites is charge-cluster-to-alanine (CCTA) mutagenesis. This method is based on the assumption that clusters of charged amino acids tend to be exposed in the tertiary structure of a protein and are thus likely to be sites of interaction with other proteins. Replacement of these charged amino acids by uncharged alanines should then target protein-protein interaction sites without destroying the protein backbone (5, 7). Applying this method to HCMV pUL128, we were able to identify a central core region within pUL128 essential for EC infection as well as contributing sites in the N-terminal half and the C terminus of the protein (22). We now aimed to extend the study to the scanning of UL130 by markerless mutagenesis in the context of a highly endotheliotropic HCMV BACmid, TB40-BAC4. The resulting mutant viruses were then characterized with regard to their ability to infect ECs to identify the relevant parts of the protein.With regard to the role of UL130 in EC infection by endocytosis, the C-terminal part of pUL130 was of special interest. A frameshift mutation that changes the last 11 amino acids (aa) of pUL130 is the most prominent difference between the poorly endotheliotropic HCMV strain Towne and the highly endotheliotropic strain HCMV-TB40-BAC4 in this region (8, 11, 27). Rhee and Davis have described a cell-penetrating pentapeptide (CPP) motif (PFVYLI) mediating internalization by endocytosis, which is clathrin and caveolin independent but may involve lipid rafts (17). Not only do the last five amino acids of pUL130 (PNLIV) bear a striking similarity to this motif, but also the entry of HCMV into ECs has been reported to occur by an endocytic pathway (20, 23). Thus, we hypothesized that the pentapeptide motif PNLIV in pUL130 might be involved in mediating endocytic uptake of HCMV in ECs, and if so, deletion of this motif should result in a nonendotheliotropic virus. A number of CPPs that are thought to be taken up by endocytosis have now been described, including VPMLK, PMLKE, VPTLK, KLPVM, and others (32). These CPPs all bear some similarity, but the exact amino acid sequence seems to be irrelevant. We thus hypothesized for UL130 that a scrambled mutant (PNLIV changed to PINVL) should still be able to mediate endocytosis of HCMV in ECs. To test these assumptions we generated a series of mutant viruses where the PNLIV motif was either deleted, scrambled (PNLIV changed to PINVL), or exchanged against a known CPP (PFVYLI [17]) and characterized them with regard to EC infectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号