首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了盾叶薯蓣细胞悬浮培养过程中细胞生长、薯蓣皂苷元合成、蔗糖和磷酸盐的吸收利用以及酸性磷酸酶活性与薯蓣皂苷元合成的关系。结果表明,对数生长期细胞最大比生长速率μm为0.19 d-1;倍增时间为3.68 d;薯蓣皂苷元的形成与细胞的生长相关,培养6 d时薯蓣皂苷元质量分数和产量分别为0.20%和25.93 mg/L;蔗糖利用率达到95.65%,磷酸盐吸收率达到最大,为90.36%。盾叶薯蓣细胞悬浮培养过程中酸性磷酸酶活性动态变化规律与薯蓣皂苷元的动态合成规律基本一致。此外,研究还发现在相同供磷水平下,酸性磷酸酶活性高低与薯蓣皂苷元合成能力呈正相关;而在不同供磷水平下,酸性磷酸酶活性高低与薯蓣皂苷元合成能力没有相关性。  相似文献   

2.
栝楼毛状根的生长与营养消耗动态研究   总被引:3,自引:0,他引:3  
研究了栝楼毛状根在摇瓶培养条件下的生长与营养消耗规律。栝楼毛状根的生长过程可以分为四个生长阶段。生长迟滞期,缓慢生长期,快速生长期和衰亡期。在迟滞期,培养液中的蔗糖,氮,磷,钾首先被快速吸收,然后又有所回升;在缓慢生长期,培养液中的葡萄糖,果糖,氮,磷和钾的浓度开始降低,到了快速生长期,培养液中的碳源,氮,磷,钾等营养物质被快速消耗,到了衰亡期,以上的营养物质基本被消耗殆尽,Ca^2 从接种开始缓慢下降,当毛状根进入衰亡期以后,由于老化细胞的损伤而有部分钙离子外泻,栝楼毛状根的蛋白质也开始快速分泌。  相似文献   

3.
藻类氮的生态辐是指在一定氮浓度范围内藻类能生长和繁殖的浓度范围。它由藻类生长的最佳氮浓度、氮适宜生长范围和氮耐受限度构成。为了定量计算藻类的氮生态幅,在室内培养条件下,研究了低磷(0.48 μmol/L)、中磷(0.97 μmol/L)和高磷(1.45 μmol/L)3种不同磷起始浓度条件下不同氮对塔玛亚历山大藻细胞数和最大比生长率的影响,依据Shelford耐受性定律建立了塔玛亚历山大藻生长的氮耐受性模型,并得到了藻类生长的最佳氮浓度、氮适宜生长范围和氮耐受范围的定量表达。结果表明,在低磷、中磷和高磷条件下,当氮浓度小于适合藻类生长的最佳氮浓度时,藻类细胞数和最大比生长率均随着氮浓度的增大而增大;当氮浓度大于适合藻类生长的最佳氮浓度时,藻类细胞数和最大比生长率均随着氮浓度的增大而减小。藻类生长的氮耐受性模型与谢尔福德耐受定律较为吻合,定量得到在低磷、中磷和高磷培养条件下塔玛亚历山大藻的最佳氮浓度分别为30.36、62.07和77.85 μmol/L;氮适宜生长范围分别为18.30-42.42、37.71-86.43和41.52-114.18 μmol/L;氮耐受限度分别为6.24-54.48、13.35-110.79和5.19-150.51 μmol/L。研究显示不同磷起始浓度条件下,藻类的氮生态幅也不相同。  相似文献   

4.
岩黄连细胞生长与营养物质消耗的动态学研究   总被引:1,自引:0,他引:1  
程华  熊斌  余龙江 《广西植物》2008,28(6):795-799
在岩黄连细胞悬浮培养过程中,对培养液pH值,碳源、氮源和磷酸盐含量,以及细胞生物量和生物碱含量进行测定,分析其动态变化过程。结果显示培养液pH值在培养初期降低,后逐渐升高;碳源在培养过程中逐渐被利用,磷酸盐和氮源在培养中期几乎耗尽,其中磷酸盐的消耗速率最快;悬浮细胞的生长周期为20 d左右,第18天细胞鲜重和干重达最大,而第21天脱氢卡维丁和小檗碱的含量最高,分别为8.22mg/L和4.31mg/L。结果表明营养物质(碳、氮和磷)的吸收与细胞生长以及生物碱的合成密切相关,营养元素的相对消耗速率为磷>氮>碳,推测氮和磷是影响岩黄连细胞培养的主要因素。  相似文献   

5.
吕虎  华萍  余继红  冷和平  蒋献猷  华东   《广西植物》2007,27(3):457-461
以婺源绿茶为材料进行茶叶愈伤组织悬浮培养,采用正交实验设计进行了大规模茶叶细胞悬浮培养合成茶氨酸工艺条件优化研究。结果显示,NH4+/NO-30.0/60.0mmol/L、K+100.0mmol/L、Mg++3.0mmol/L、H2PO-43.0mmol/L、蔗糖30.0g/L、水解酪蛋白2.0g/L条件下,茶叶细胞生长量(速率)和茶氨酸积累量均达到最高值;提高培养基中蔗糖和水解酪蛋白浓度可延长细胞对数生长期和稳定生长期,从而有利于茶氨酸积累;H2PO-4浓度主要影响细胞生长速率和茶氨酸积累速率的同步性,低H2PO4-浓度环境中茶氨酸积累速率峰值滞后于细胞增长速率峰值,高H2PO4-浓度环境中早于细胞生长速率峰值出现时间;K+和Mg++对细胞生长的影响不明显,但影响茶氨酸合成酶活性,维持适量的K+和Mg++有利于茶氨酸积累。先加入一定量盐酸乙胺再每天进行少量补充,茶氨酸合成量比一次性加入的效果要好。从生产效率考虑,培养周期以19~22d为宜。  相似文献   

6.
研究了不同浓度CO2 对转基因聚球藻 794 2生长、胸腺素α1表达和光合作用的影响 ,结果表明 :不同浓度的CO2 对藻细胞指数生长期的比生长速率没有明显的影响 ,通入空气与 5 %CO2 空气对藻细胞线性生长速率和最终藻细胞浓度影响也不显著 ;高浓度CO2 会减少NO-3 的吸收 ,提高硝酸还原酶的活性 ,这表明NO-3 的吸收与还原是不偶联的。低浓度CO2 对藻细胞的生化组成和胸腺素α1表达没有影响。而高浓度的CO2 明显降低可溶性蛋白及光合色素叶绿素a、类胡萝卜素和藻蓝蛋白的含量 ,胸腺素α1含量也显著降低。不同CO2 浓度培养的藻细胞P I曲线表明 ,不同浓度的CO2 对藻细胞的光合作用效率没有明显的影响 ,但生长在高浓度CO2 中藻细胞的最大光合速率明显增加。  相似文献   

7.
在初始磷浓度为1.25 mmol.L-1的MS培养基中,甘蔗悬浮细胞在继代后的1 d之内几乎将磷完全吸收.此后,细胞在数天内仍能继续生长.缺磷细胞对磷的吸收动力学参数Imax增加,Km减少.在培养过程中,缺磷细胞的无机磷含量变化不大,但随着培养时间的延长,细胞酸性磷酸酶活性逐渐升高,且在培养的第8天,活性增加4倍.甘蔗悬浮细胞中不仅有植酸酶的存在,且在培养的第8天,缺磷细胞植酸酶活性比不缺磷的增高2.5倍.  相似文献   

8.
塔玛亚历山大藻对氮和磷的吸收及其生长特性   总被引:24,自引:3,他引:24  
参照塔玛亚历山大藻(Alexandrium tamarense)赤潮爆发时的物理条件,以f/2加富的人工海水为培养基,设定了不同的氮、磷水平,研究了在室内批量培养条件下,塔玛亚历山大藻对无机氮、磷的吸收和无机氮、磷对塔玛亚历山大藻细胞生长的影响.结果表明,3种氮浓度条件下,塔玛亚历山大藻的比生长速率几乎没有差异,但低氮(0.0882mmol·L-1)条件下,藻细胞的生物量最低;中氮(0.882mmol·L-1)条件下,藻细胞具有最大的生物量,分别比高氮(2.646mmol·L-1)和低氮下增加44.7%和53.6%.随着培养基中磷浓度的升高,藻细胞生物量也升高,在高磷(0.108mmol·L-1)条件下达到最大值17200cell·ml-1,但在中磷(0.036mmol.L-1)条件下藻细胞具有最大的比生长速率.藻细胞对氮、磷的吸收速率与生长状态有密切关系,氮、磷限制条件下生长的藻细胞对氮、磷有快速的吸收.研究显示,低的N/P比有利于塔玛亚历山大藻的生长分裂,对数生长后期适当补氮则有利于其生物量的积累.  相似文献   

9.
影响南方红豆杉细胞生长及紫杉醇含量的因素   总被引:4,自引:0,他引:4  
研究了影响南方红豆杉细胞生长及紫杉醇含量的稀土和氮源.结果表明 ,较低浓度(1×10-5 mol/L)的稀土元素对南方红豆杉细胞的生长及紫杉醇的合成有一定促进作用,较高浓度(1×10-4 mol/L)的稀土元素则起抑制作用.3种稀土中以使用10-5 mol/L的镱效果最好.当NH+4/NO-3质量浓度比例为2/25以及总氮源浓度为27 mmol/L时,细胞的生长率和紫杉醇的含量达到最大.  相似文献   

10.
在确定了最适接种量和外植体细胞生理时间的基础上,研究了在不同起始磷浓度下,霍山石斛类原球茎生长、碳、氮消耗和多糖积累的动力学特性。以生长30d的类原球茎为材料,在接种量为100g/L时,类原球茎生长的最佳起始磷浓度为2.5mmol/L,培养36d时,类原球茎鲜重达496.5g/L。动力学分析表明,磷是霍山石斛类原球茎生长的限制性因素,胞内磷的积累水平与细胞生长具有相关性,2.5mmol/L的磷酸盐有利于碳、氮等营养物质的吸收;而多糖积累的最佳起始磷浓度为0.312mmol/L,培养36d时,其产量为2.22g/L。  相似文献   

11.
抗p185erbB-2基因工程抗体是一种有潜力的抗肿瘤药物。以稳定表达抗p185嵌合抗体的重组工程CHO细胞株为对象,分别用不同浓度丁酸钠(0~2mmol/L)和丙酸钠(0~10mmol/L)对处在对数生长期的细胞进行处理,在连续5d的培养过程中,每隔24h取样测活细胞数量,并用ELISA检测上清中抗体含量,5d后结束培养用FACS检测细胞周期。同时还用丁酸钠和丙酸钠处理长至90%满度的细胞,然后每隔12h取样一次检测葡萄糖和乳酸的含量。结果表明丁酸钠和丙酸钠可以有效地提高嵌合抗体在工程CHO细胞中的表达,表达量最高时可达58.3~59.6mg/L,是对照组的1.5倍。同时抑制细胞生长和阻断细胞周期在G1期,并且可减少培养过程中葡萄糖的消耗和乳酸的生成。和丁酸钠相比,丙酸钠具有较小的细胞毒性,是一种有潜力的替代品。  相似文献   

12.
【目的】为了研究不同磷、硫及二氧化碳浓度对标志链带藻(Desmodesmus insignis)生长与碳水化合物积累的影响,本实验以改良BG11培养基为基础,设计了8种不同初始K_2HPO_4浓度、8种不同初始MgSO_4浓度及4种二氧化碳浓度培养标志链带藻。【方法】采用干重法和苯酚-硫酸法分别测定其生物质浓度与总碳水化合物的含量。【结果】实验结果显示,在高磷浓度(0.460 mmol/L)下生物量达到最高为6.37 g/L,磷浓度为0.230 mmol/L (对照组)时总碳水化合物含量及单位体积产率达到最高,分别为45.40%(%干重)和0.20 g/(L·d)。不同初始MgSO_4浓度实验结果显示,高硫浓度有利于标志链带藻生长及碳水化合物的积累,生物量、总碳水化合物含量及单位体积产率分别在硫浓度为1.217 mmol/L、0.609 mmol/L和1.824 mmol/L时达到最高,分别为7.02 g/L、51.6%(%干重)及0.26 g/(L·d)。当二氧化碳浓度为3%(V/V)时,标志链带藻生物量、总碳水化合物含量及单位体积产率均达到最高,分别为6.81 g/L、44.03%和0.20 g/(L·d)。【结论】因此,磷浓度为0.230 mmol/L、硫浓度为1.824 mmol/L和二氧化碳浓度为3%时最有利于标志链带藻生长及碳水化合物的积累。  相似文献   

13.
本文报道丁酸钠对大鼠肝癌细胞(CBRH—7919)的形态、生长和甲胎蛋白合成产生的影响。5mM丁酸钠作用24小时后,细胞体积增大,形态改变呈现上皮样;细胞生长率降低;~3H-TdR脉冲标记细胞,显示细胞的标记指数明显下降;扫描电镜观察细胞的表面形态,结构特点近似于这株细胞的G_1期,说明细胞生长受抑制与细胞被阻止在G_1期有关。此时,免疫荧光和免疫沉淀方法显示细胞内合成的甲胎蛋白受抑制。除去丁酸钠作用后,细胞的形态和生长率恢复,甲胎蛋白合成增多,表明CBRH-7919细胞的甲胎蛋白合成能力与细胞的增殖分裂有平行关系,丁酸钠通过控制细胞周期进程抑制细胞的增殖,可以调节肝癌细胞的甲胎蛋白合成。  相似文献   

14.
为了探讨利用南美蟛蜞菊毛状根来改良其观赏性状和生产次生物质,研究了南美蟛蜞菊Wedelia trilobata(L.)A.S.Hitche毛状根的诱导及其离体培养过程中培养基N源、碳源、磷和钙的消耗变化。结果表明,发根农杆菌Agrobacterium rhizogenes ATCC15834感染南美蟛蜞菊幼嫩叶片外植体7d后从其叶片切口中脉处产生毛状根。毛状根能在无外源激素的培养基上自主生长。PCR扩增结果显示发根农杆菌Ri质粒的rol B和rol C基因已在南美蟛蜞菊毛状根基因组中插入、整合并得到表达。毛状根液体培养0~7d内处于生长迟滞期、7~21d为快速生长期、21d后进入生长平台期。在毛状根液体培养过程中培养基的蔗糖、硝态氮、PO43?、Ca2+被逐渐吸收和消耗,培养至7d时,蔗糖被消耗近50%;硝态氮含量只剩下起始硝态氮含量的5.8%;至35d时,蔗糖和硝态氮含量分别约为其起始浓度的3.39%和1.82%。与Ca2+浓度变化不同的是,培养基的无机磷被快速消耗,培养至7d时其浓度约为其起始浓度的1.76%;但培养至35d时培养基中仍残存有占起始浓度约61.3%的Ca2+。该结果为今后利用南美蟛蜞菊毛状根来改良其观赏性状和设计合适的培养基来规模培养生产其次生物质提供了可能性。  相似文献   

15.
光照和营养盐磷对微型及微微型浮游植物生长的影响   总被引:6,自引:2,他引:6  
方涛  李道季  余立华  高磊  张利华 《生态学报》2006,26(9):2783-2790
2004年9月,在长江口及邻近水域通过在培养水体中添加不同量的磷酸盐和改变光照强度进行现场受控培养实验,对光照和营养盐磷耦合培养作用下浮游植物生长及对磷营养盐的吸收变化进行了研究,结果表明:高光照条件下(100﹪自然光照),磷酸盐浓度在高磷水平(0.60μmol/L)培养水体中下降速率明显比中磷(0.41μmol/L)、低磷水平(0.25μmol/L)快,浮游植物生长存在着显著的磷限制性,微型浮游植物(nanophytoplankton,简称Nano,2~20μm)在高磷水平下的生长明显得到促进,聚球藻(Synechococcus sp.,简称Syn,<2μm)密度在培养初期有小幅度增加,而微微型真核浮游植物(picoeukaryote,简称Euk,<2μm)在低磷水平下生长较快;在低光照条件下(50﹪自然光照),磷酸盐浓度在高磷水平培养水体中的下降是受到抑制的,Nano和Syn也都更宜在中磷水平培养水体中生长,Euk在高磷水平下的生长也是受到抑制的,且在中磷水平培养水体中,三类浮游植物的生长周期都得到延长;无光照暗环境培养条件下磷酸盐浓度在不同磷水平下始终保持着增加趋势,三类浮游植物也都无法生长,磷酸盐浓度随培养时间呈线性增加趋势,浮游植物细胞密度则呈指数下降趋势,且磷酸盐的添加对其本身的释放速率和浮游植物衰减速率都没有影响.  相似文献   

16.
硝酸盐供应对玉米侧根生长的影响   总被引:21,自引:0,他引:21  
以两个玉米(Zea mays L.)自交系478和Wu312为研究材料,采用琼脂培养方法,研究不同浓度NO-3对侧根生长的影响.结果表明,在外部浓度0.01~1.0mmol/L范围内,NO-3供应能显著增加侧根的长度及根生物量.但当NO-3供应超过1.0 mmo1/L后,侧根长度开始下降.当NO-3供应分别在超过5.0(Wu312)与10(478)mmol/L后,侧根密度显著下降.在10 mmol/LNO-3下,Wu312的侧根生长几乎完全被抑制.而478在20 mmol/L时,侧根密度仍可达到其最大值的30%(主根)~50%(胚根).植株地上部全氮及硝酸盐含量随NO-3供应的增加而升高,二者与侧根长度、侧根密度及冠根比的数学函数关系相同.  相似文献   

17.
采用正交实验检测中国红豆杉[Taxus chinensis(Pilger)Rehd.]细胞悬浮培养中水杨酸、硝酸银、氨基酸前体、D-果糖和硫酸镧的添加时间对细胞生长和紫杉醇(taxol)积累的影响.这些促进剂的添加时间对中国红豆杉细胞悬浮培养的生长没有明显的影响,但能明显促进紫杉醇的合成,当在细胞培养的第14 d添加1.67 mg/L硝酸银,第18 d添加0.1 mg/L水杨酸,第21 d添加氨基酸前体,第21 d添加10 g/L D-果糖和2 mg/L硫酸镧时对紫杉醇的促进作用最明显,在此最优组合处理时紫杉醇含量达到10.05 mg/L,相对于最差组合处理时紫杉醇含量仅有1.77 mg/L,紫杉醇含量提高5.7倍,这些因素的添加时间对紫杉醇合成的相互作用达不到显著水平.  相似文献   

18.
外来植物成功入侵受非生物因素与生物因素的共同调控。本研究以典型入侵植物白车轴草(Trifolium repens L.)为研究对象,通过三因素两水平正交实验,探究光照(L)、磷(P)和丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)及其交互作用对其生长的影响。结果显示:(1)高光照、高磷和接种AMF均显著提高白车轴草的生物量及生长速率,且接种AMF对生物量的促进作用随着光照的增加而增强,低磷条件下AMF对总生物量和相对生长速率的促进效应更明显;(2)高光照降低比叶面积;高磷和接种AMF显著增加叶片数和总叶面积,在高光强下尤为明显;(3)高光照可显著提高根表面积、根直径和根质量分数,但降低细根占比和比根长。高磷显著降低根质量分数。不接种AMF时,高磷增加根表面积与根直径,降低细根长占比;但接种AMF后,高磷则降低根表面积与根直径,增加细根长占比。AMF显著降低根质量分数和比根长。研究结果表明,三种因素对白车轴草的生长具有显著影响,且磷和AMF对其生长及地上性状的影响与光照强度相关,AMF对其地下性状的影响与磷浓度相关。  相似文献   

19.
累积番茄红素的大肠杆菌工程菌及其培养条件的研究   总被引:1,自引:0,他引:1  
噬夏孢欧文氏菌番茄红素合成相关基因crtE, crtB, crtI同时克隆进表达载体pET-15b构建pET-15bcrtIEB,将该重组质粒转化E.coliBL21(DE3)构建工程菌,IPTG诱导工程菌累积红色色素,经HPLC和吸收光谱分析,工程菌中合成的色素为番茄红素。研究了碳源、金属离子、培养温度、诱导剂浓度、诱导时间等参数对工程菌生长及色素累积的影响,确定了合适的培养条件:培养基为改良LB培养基(蛋白胨10g/L、酵母提取物5g/L、麦芽糖5g/L、MgCl2 0.1g/L,NaCl 10g/L);起始培养温度为37℃;培养至OD600为0.6左右时加入IPTG,终浓度为0.5mmol/L,诱导温度降至30℃;诱导时间为14h。发酵完成后工程菌的生物量(干重)为3.45g/L,番茄红素的最高含量可达5.8mg/gDW。  相似文献   

20.
红豆杉悬浮细胞放大培养的细胞生长与紫杉醇合成动力学   总被引:2,自引:0,他引:2  
研究了在Murashige&skoog s(MS)和 6 2号两种不同的培养基中 ,红豆杉细胞悬浮细胞从摇瓶到 1 0L机械通气搅拌式反应器放大培养过程中细胞生长与紫杉醇合成动力学 .结果表明 :尽管在不同的培养条件下 ,细胞生长曲线均呈现“S”型 .紫杉醇在延迟期与指数生长期中基本上没有积累 ,而且随着培养规模的增大 ,紫杉醇的含量逐渐降低 .进一步对各级放大培养的细胞生长 ,比生长率与胞内外紫杉醇合成量进行分析 ,发现MS利于细胞生长但不利于紫杉醇合成 ,而 6 2号则相反 .根据此文的结果 ,提出了红豆杉细胞培养条件的优化和大规模细胞培养生产紫杉醇应采取的策略  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号