首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extracellular Ca2+-sensing receptor (CaR) is a key-player in plasma Ca2+ homeostasis. It is essentially expressed in the parathyroid glands and along the kidney nephron. The distal convoluted tubules (DCT) and connecting tubules (CNT) in the kidney are involved in active Ca2+ reabsorption, but the function of the CaR has remained unclear in these segments. Here, the Ca2+-selective Transient Receptor Potential Vanilloid-subtype 5 channel (TRPV5) determines active Ca2+ reabsorption by forming the apical entry gate. In this study we show that the CaR and TRPV5 co-localize at the luminal membrane of DCT/CNT. Furthermore, by patch-clamp and Fura-2-ratiometric measurements we demonstrate that activation of the CaR leads to elevated TRPV5-mediated currents and increases intracellular Ca2+ concentrations in cells co-expressing TRPV5 and CaR. Activation of CaR initiated a signaling cascade that activated phorbol-12-myristate-13-acetate (PMA)-insensitive protein kinase C (PKC) isoforms. Importantly, mutation of two putative PKC phosphorylation sites, S299 and S654, in TRPV5 prevented the stimulatory effect of CaR activation on channel activity, as did a dominant negative CaR construct, CaRR185Q. Interestingly, the activity of TRPV6, TRPV5′ closest homologue, was not affected by the activated CaR. We conclude that activation of the CaR stimulates TRPV5-mediated Ca2+ influx via a PMA-insensitive PKC isoform pathway.  相似文献   

2.
Epinephrine and norepinephrine are present in the pro-urine. β-Adrenergic receptor (β-AR) blockers administered to counteract sympathetic overstimulation in patients with congestive heart failure have a negative inotropic effect, resulting in reduced cardiac contractility. Positive inotropes, β1-AR agonists, are used to improve cardiac functions. Active Ca2+ reabsorption in the late distal convoluted and connecting tubules (DCT2/CNT) is initiated by Ca2+ influx through the transient receptor potential vanilloid type 5 (TRPV5) Ca2+ channel. Although it was reported that β-ARs are present in the DCT2/CNT region, their role in active Ca2+ reabsorption remains elusive. Here we revealed that β1-AR, but not β2-AR, is localized with TRPV5 in DCT2/CNT. Subsequently, treatment of TRPV5-expressing mouse DCT2/CNT primary cell cultures with the β1-AR agonist dobutamine showed enhanced apical-to-basolateral transepithelial Ca2+ transport. In human embryonic kidney (HEK293) cells, dobutamine was shown to stimulate cAMP production, signifying functional β1-AR expression. Fura-2 experiments demonstrated increased activity of TRPV5 in response to dobutamine, which could be prevented by the PKA inhibitor H89. Moreover, nonphosphorylable T709A-TRPV5 and phosphorylation-mimicking T709D-TRPV5 mutants were unresponsive to dobutamine. Surface biotinylation showed that dobutamine did not affect plasma membrane abundance of TRPV5. In conclusion, activation of β1-AR stimulates active Ca2+ reabsorption in DCT2/CNT; an increase in TRPV5 activity via PKA phosphorylation of residue Thr-709 possibly plays an important role. These data explicate a calciotropic role in addition to the inotropic property of β1-AR.  相似文献   

3.
The Ca2+-activated K+ channel KCa3.1 is required for Ca2+ influx and the subsequent activation of T-cells. We previously showed that nucleoside diphosphate kinase beta (NDPK-B), a mammalian histidine kinase, directly phosphorylates and activates KCa3.1 and is required for the activation of human CD4 T lymphocytes. We now show that the class II phosphatidylinositol 3 kinase C2β (PI3K-C2β) is activated by the T-cell receptor (TCR) and functions upstream of NDPK-B to activate KCa3.1 channel activity. Decreased expression of PI3K-C2β by siRNA in human CD4 T-cells resulted in inhibition of KCa3.1 channel activity. The inhibition was due to decreased phosphatidylinositol 3-phosphate [PI(3)P] because dialyzing PI3K-C2β siRNA-treated T-cells with PI(3)P rescued KCa3.1 channel activity. Moreover, overexpression of PI3K-C2β in KCa3.1-transfected Jurkat T-cells led to increased TCR-stimulated activation of KCa3.1 and Ca2+ influx, whereas silencing of PI3K-C2β inhibited both responses. Using total internal reflection fluorescence microscopy and planar lipid bilayers, we found that PI3K-C2β colocalized with Zap70 and the TCR in peripheral microclusters in the immunological synapse. This is the first demonstration that a class II PI3K plays a critical role in T-cell activation.  相似文献   

4.
TRPV5, transient receptor potential cation channel vanilloid subfamily member 5, is an epithelial Ca2+ channel that plays a key role in the active Ca2+ reabsorption process in the kidney. A single nucleotide polymorphism (SNP) rs4252499 in the TRPV5 gene results in an A563T variation in the sixth transmembrane (TM) domain of TRPV5. Our previous study indicated that this variation increases the Ca2+ transport function of TRPV5. To understand the molecular mechanism, a model of TRPV5 was established based on the newly deposited structure of TRPV6 that has 83.1% amino acid identity with TRPV5 in the modeled region. Computational simulations were performed to study the structural and dynamical differences between the TRPV5 variants with A563 and T563. Consistent with the TRPV1-based simulation, the results indicate that the A563T variation increases the contacts between residues 563 and V540, which is one residue away from the key residue D542 in the Ca2+-selective filter. The variation enhanced the stability of the secondary structure of the pore region, decreased the fluctuation of residues around residue 563, and reduced correlated and anti-correlated motion between monomers. Furthermore, the variation increases the pore radius at the selective filter. These findings were confirmed using simulations based on the recently determined structure of rabbit TRPV5. The simulation results provide an explanation for the observation of enhanced Ca2+ influx in TRPV5 caused by the A563T variation. The A563T variation is an interesting example of how a residue distant from the Ca2+-selective filter influences the Ca2+ transport function of the TRPV5 channel.

Communicated by Ramaswamy H. Sarma  相似文献   


5.
WNK4 (with-no-lysine (K) kinase-4) is present in the distal nephron of the kidney and plays an important role in the regulation of renal ion transport. The epithelial Ca2+ channel TRPV5 (transient receptor potential vanilloid 5) is the gatekeeper of transcellular Ca2+ reabsorption in the distal nephron. Previously, we reported that activation of protein kinase C (PKC) increases cell-surface abundance of TRPV5 by inhibiting caveola-mediated endocytosis of the channel. Here, we report that WNK4 decreases cell-surface abundance of TRPV5 by enhancing its endocytosis. Deletion analysis revealed that stimulation of endocytosis of TRPV5 involves amino acids outside the kinase domain of WNK4. We also investigated interplay between WNK4 and PKC regulation of TRPV5. The maximal level of TRPV5 current density stimulated by the PKC activator 1-oleoyl-acetyl-sn-glycerol (OAG) is the same with or without WNK4. The relative increase of TRPV5 current stimulated by OAG, however, is greater in the presence of WNK4 compared with that without WNK4 (∼215% increase versus 60% increase above the level without OAG). Moreover, the rate of increase of TRPV5 by OAG is faster with WNK4 than without WNK4. The enhanced increase of TRPV5 in the presence of WNK4 is also observed when PKC is activated by parathyroid hormones. Thus, WNK4 exerts tonic inhibition of TRPV5 by stimulating caveola-mediated endocytosis. The lower basal TRPV5 level in the presence of WNK4 allows amplification of the stimulation of channel by PKC. This interaction between WNK4 and PKC regulation of TRPV5 may be important for physiological regulation of renal Ca2+ reabsorption by parathyroid hormones or the tissue kallikrein in vivo.  相似文献   

6.
Calcium (Ca2+) is vital for multiple processes in the body, and maintenance of the electrolyte concentration is required for everyday physiological function. In the kidney, and more specifically, in the late distal convoluted tubule and connecting tubule, the fine-tuning of Ca2+ reabsorption from the pro-urine takes place. Here, Ca2+ enters the epithelial cell via the transient receptor potential vanilloid receptor type 5 (TRPV5) channel, diffuses to the basolateral side bound to calbindin-D28k and is extruded to the blood compartment via the Na+/Ca2+ exchanger 1 (NCX1) and the plasma membrane Ca2+ ATPase (PMCA). Traditionally, PMCA1 was considered to be the primary Ca2+ pump in this process. However, in recent studies TRPV5-expressing tubules were shown to highly express PMCA4. Therefore, PMCA4 may have a predominant role in renal Ca2+ handling. This study aimed to elucidate the role of PMCA4 in Ca2+ homeostasis by characterizing the Ca2+ balance, and renal and duodenal Ca2+-related gene expression in PMCA4 knockout mice. The daily water intake of PMCA4 knockout mice was significantly lower compared to wild type littermates. There was no significant difference in serum Ca2+ level or urinary Ca2+ excretion between groups. In addition, renal and duodenal mRNA expression levels of Ca2+-related genes, including TRPV5, TRPV6, calbindin-D28k, calbindin-D9k, NCX1 and PMCA1 were similar in wild type and knockout mice. Serum FGF23 levels were significantly increased in PMCA4 knockout mice. In conclusion, PMCA4 has no discernible role in normal renal Ca2+ handling as no urinary Ca2+ wasting was observed. Further investigation of the exact role of PMCA4 in the distal convoluted tubule and connecting tubule is required.  相似文献   

7.
With-no-lysine (K) kinase 4 (WNK4) is a protein serine/threonine kinase associated with a Mendelian form of hypertension. WNK4 is an integrative regulator of renal transport of Na+, K+, and Cl as shown in Xenopus oocyte system. In addition, WNK4 enhances the surface expression of epithelial Ca2+ channel TRPV5, which plays a key role in the fine tuning of renal Ca2+ reabsorption. Variations in the magnitude of WNK4-mediated regulation on TRPV5 in Xenopus oocytes suggest additional cellular components with limited expression are required for the regulation. In this study, we identified the Na+/H+ exchanger regulating factor 2 (NHERF2) as a critical component for the positive regulation of TRPV5 by WNK4. NHERF2 augmented the positive effect of WNK4 on TRPV5, whereas its homolog NHERF1 had no effect when tested in the Xenopus oocyte system. The C-terminal PDZ binding motif of TRPV5 was required for the regulation by NHERF2. While NHERF2 interacted with TRPV5, no association between NHERF2 and WNK4 was detected using a GST pull-down assay. WNK4 increased the forward trafficking of TRPV5; however, it also caused an accelerated decline of the functional TRPV5 channels at later stage of co-expression. NHERF2 stabilized TRPV5 at the plasma membrane without interrupting the forward trafficking of TRPV5, thus prevented the decline of functional TRPV5 channel caused by WNK4 at later stage. The complementary and orderly regulations of WNK4 and NHERF2 allow TRPV5 functions at higher level for a longer period to maximize Ca2+ influx.  相似文献   

8.
The epithelial Ca2+ channel TRPV5 constitutes the apical entry gate for Ca2+ transport in renal epithelial cells. Ablation of the trpv5 gene in mice leads to a reduced Ca2+ reabsorption. TRPV5 is tightly regulated by various calciotropic hormones, associated proteins, and other factors, which mainly affect channel activity via the C terminus. To further identify the role of the C terminus in TRPV5 regulation, we expressed channels harboring C-terminal deletions and studied channel activity by measuring intracellular Ca2+ concentration ([Ca2+]i) using fura-2 analysis. Removal of amino acid His712 elevated the [Ca2+]i, indicating enlarged TRPV5 activity. In addition, substitution of the positively charged His712 for a negative (H712D) or neutral (H712N) amino acid also stimulated TRPV5 activity. This critical role of His712 was confirmed by patch clamp analysis, which demonstrates increased Na+ and Ca2+ currents for TRPV5-H712D. Cell surface biotinylation studies revealed enhanced plasma membrane expression of TRPV5-H712D as compared with wild-type (WT) TRPV5. This elevated plasma membrane presence also was observed with the Ca2+-impermeable TRPV5-H712D and TRPV5-WT pore mutants, demonstrating that the elevation is not due to the increased [Ca2+]i. Finally, using an internalization assay, we demonstrated a delayed cell surface retrieval for TRPV5-H712D, likely causing the increase in plasma membrane expression. Together, these results demonstrate that His712 plays an essential role in plasma membrane regulation of TRPV5 via a constitutive endocytotic mechanism.  相似文献   

9.
Transient receptor potential vanilloid 4 (TRPV4) channels are Ca2+-permeable, nonselective cation channels expressed in multiple tissues, including smooth muscle. Although TRPV4 channels play a key role in regulating vascular tone, the mechanisms controlling Ca2+ influx through these channels in arterial myocytes are poorly understood. Here, we tested the hypothesis that in arterial myocytes the anchoring protein AKAP150 and protein kinase C (PKC) play a critical role in the regulation of TRPV4 channels during angiotensin II (AngII) signaling. Super-resolution imaging revealed that TRPV4 channels are gathered into puncta of variable sizes along the sarcolemma of arterial myocytes. Recordings of Ca2+ entry via single TRPV4 channels (“TRPV4 sparklets”) suggested that basal TRPV4 sparklet activity was low. However, Ca2+ entry during elementary TRPV4 sparklets was ∼100-fold greater than that during L-type CaV1.2 channel sparklets. Application of the TRPV4 channel agonist GSK1016790A or the vasoconstrictor AngII increased the activity of TRPV4 sparklets in specific regions of the cells. PKC and AKAP150 were required for AngII-induced increases in TRPV4 sparklet activity. AKAP150 and TRPV4 channel interactions were dynamic; activation of AngII signaling increased the proximity of AKAP150 and TRPV4 puncta in arterial myocytes. Furthermore, local stimulation of diacylglycerol and PKC signaling by laser activation of a light-sensitive Gq-coupled receptor (opto-α1AR) resulted in TRPV4-mediated Ca2+ influx. We propose that AKAP150, PKC, and TRPV4 channels form dynamic subcellular signaling domains that control Ca2+ influx into arterial myocytes.  相似文献   

10.
Angiotensin II (AngII) receptor (ATR) is involved in pathologic local events such as neovascularisation and inflammation including in the brain and retina. The retinal pigment epithelium (RPE) expresses ATR in its AT1R form, angiotensin-receptor-associated protein (Atrap), and transient-receptor-potential channel-V2 (TRPV2). AT1R and Atrap co-localize to the basolateral membrane of the RPE, as shown by immunostaining. Stimulation of porcine RPE (pRPE) cells by AngII results in biphasic increases in intracellular free Ca2+inhibited by losartan. Xestospongin C (xest C) and U-73122, blockers of IP3R and PLC respectively, reduced AngII-evoked Ca2+response. RPE cells from Atrap−/− mice showed smaller AngII-evoked Ca2+peak (by 22%) and loss of sustained Ca2+elevation compared to wild-type. The TRPV channel activator cannabidiol (CBD) at 15 µM stimulates intracellular Ca2+-rise suggesting that porcine RPE cells express TRPV2 channels. Further evidence supporting the functional expression of TRPV2 channels comes from experiments in which 100 µM SKF96365 (a TRPV channel inhibitor) reduced the cannabidiol-induced Ca2+-rise. Application of SKF96365 or reduction of TRPV2 expression by siRNA reduced the sustained phase of AngII-mediated Ca2+transients by 53%. Thus systemic AngII, an effector of the local renin-angiotensin system stimulates biphasic Ca2+transients in the RPE by releasing Ca2+from cytosolic IP3-dependent stores and activating ATR/Atrap and TRPV2 channels to generate a sustained Ca2+elevation.  相似文献   

11.
The renal distal tubules and collecting ducts play a key role in the control of electrolyte and fluid homeostasis. The discovery of highly calcium selective channels, Transient Receptor Potential Vanilloid 5 (TRPV5) of the TRP superfamily, has clarified the nature of the calcium entry channels. It has been proposed that this channel mediates the critical Ca2+ entry step in transcellular Ca2+ re-absorption in the kidney. The regulation of transmembrane Ca2+ flux through TRPV5 is of particular importance for whole body calcium homeostasis.In this study, we provide evidence that the TRPV5 channel is present in rat cortical collecting duct (RCCD2) cells at mRNA and protein levels. We demonstrate that 17β-estradiol (E2) is involved in the regulation of Ca2+ influx in these cells via the epithelial Ca2+ channels TRPV5. By combining whole-cell patch-clamp and Ca2+-imaging techniques, we have characterized the electrophysiological properties of the TRPV5 channel and showed that treatment with 20-50 nM E2 rapidly (<5 min) induced a transient increase in inward whole-cell currents and intracellular Ca2+ via TRPV5 channels. This rise was significantly prevented when cells were pre-treated with ruthenium red and completely abolished in cells treated with siRNA specifically targeting TRPV5.These data demonstrate for the first time, a novel rapid modulation of endogenously expressed TRPV5 channels by E2 in kidney cells. Furthermore, the results suggest calcitropic effects of E2. The results are discussed in relation to present concepts of non-genomic actions of E2 in Ca2+ homeostasis.  相似文献   

12.
We have studied the modulation of gating properties of the Ca2+-permeable, cation channel TRPV4 transiently expressed in HEK293 cells. The phorbol ester 4αPDD transiently activated a current through TRPV4 in the presence of extracellular Ca2+. Increasing the concentration of extracellular Ca2+ ([Ca2+]e) reduced the current amplitude and accelerated its decay. This decay was dramatically delayed in the absence of [Ca2+]e. It was also much slower in the presence of [Ca2+]e in a mutant channel, obtained by a point mutation in the 6th transmembrane domain, F707A. Mutant channels, containing a single mutation in the C-terminus of TRPV4 (E797), were constitutively open. In conclusion, gating of the 4αPDD-activated TRPV4 channel depends on both extra- and intracellular Ca2+, and is modulated by mutations of single amino acid residues in the 6th transmembrane domain and the C-terminus of the TRPV4 protein.  相似文献   

13.
Our recent studies indicate that the transient receptor potential vanilloid type 1 (TRPV1) channel may act as a potential regulator of monocyte/macrophage recruitment to reduce renal injury in salt-sensitive hypertension. This study tests the hypothesis that deletion of TRPV1 exaggerates salt-sensitive hypertension-induced renal injury due to enhanced inflammatory responses via monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2)-dependent pathways. Wild type (WT) and TRPV1-null mutant (TRPV1−/−) mice were subjected to uninephrectomy and deoxycorticosterone acetate (DOCA)-salt treatment for four weeks with or without the selective CCR2 antagonist, RS504393. DOCA-salt treatment increased systolic blood pressure (SBP) to the same degree in both strains, but increased urinary excretion of albumin and 8-isoprostane and decreased creatinine clearance with greater magnitude in TRPV1−/− mice compared to WT mice. DOCA-salt treatment also caused renal glomerulosclerosis, tubulointerstitial injury, collagen deposition, monocyte/macrophage infiltration, proinflammatory cytokine and chemokine production, and NF-κB activation in greater degree in TRPV1−/− mice compared to WT mice. Blockade of the CCR2 with RS504393 (4 mg/kg/day) had no effect on SBP in DOCA-salt-treated WT or TRPV1−/− mice compared to their respective controls. However, treatment with RS504393 ameliorated renal dysfunction and morphological damage, and prevented the increase in monocyte/macrophage infiltration, cytokine/chemokine production, and NF-κB activity in both DOCA-salt hypertensive strains with a greater effect in DOCA-salt-treated TRPV1−/− mice compared to DOCA-salt-treated WT mice. No differences in CCR2 protein expression in kidney were found between DOCA-salt-treated WT and TRPV1−/− mice with or without RS504393 treatment. Our studies for the first time indicate that deletion of TRPV1 aggravated renal injury in salt-sensitive hypertension via enhancing MCP-1/CCR2 signaling-dependent inflammatory responses.  相似文献   

14.
The transient receptor potential vanilloid type 5 (TRPV5) Ca2+ channel facilitates transcellular Ca2+ transport in the distal convoluted tubule (DCT) of the kidney. The channel is glycosylated with a complex type N-glycan and it has been postulated that hydrolysis of the terminal sialic acid(s) stimulate TRPV5 activity. The present study delineates the role of the N-glycan in TRPV5 activity using biochemical assays in Human Embryonic Kidney 293 cells expressing TRPV5, isoelectric focusing and total internal reflection fluorescent microscopy. The anti-aging hormone klotho and other glycosidases stimulate TRPV5-dependent Ca2+ uptake. Klotho was found to increase the plasma membrane stability of TRPV5, via the TRPV5 N-glycan. Sialidase mimicked this stimulatory action. However, this effect was independent of the N-glycosylation state of TRPV5, since the N-glycosylation mutant (TRPV5N358Q) was activated to the same extent. We showed that the increased TRPV5 activity after sialidase treatment is caused by inhibition of lipid raft-mediated internalization. In addition, sialidase modified the N-glycan of transferrin, a model glycoprotein, differently from klotho. Previous studies showed that after klotho treatment, galectin-1 binds the TRPV5 N-glycan and thereby increases TRPV5 activity. However, galectin-3, but not galectin-1, was expressed in the DCT. Furthermore, an increase in TRPV5-mediated Ca2+ uptake was detected after galectin-3 treatment. In conclusion, two distinct TRPV5 stimulatory mechanisms were demonstrated; a klotho-mediated effect that is dependent on the N-glycan of TRPV5 and a sialidase-mediated stimulation that is lipid raft-dependent and independent of the N-glycan of TRPV5.  相似文献   

15.
The Ca2+ -activated K+ channel KCa3.1 is required for Ca2+ influx and the subsequent activation of B and T cells. Inhibitors of KCa3.1 are in development to treat autoimmune diseases and transplant rejection, underscoring the importance in understanding how these channels are regulated. We show that nucleoside diphosphate kinase B (NDPK-B), a mammalian histidine kinase, functions downstream of PI(3)P to activate KCa3.1. NDPK-B directly binds and activates KCa3.1 by phosphorylating histidine 358 in the carboxyl terminus of KCa3.1. Endogenous NDPK-B is also critical for KCa3.1 channel activity and the subsequent activation of CD4 T cells. These findings provide one of the best examples whereby histidine phosphorylation regulates a biological process in mammals, and provide an example whereby a channel is regulated by histidine phosphorylation. The critical role for NDPK-B in the reactivation of CD4 T cells indicates that understanding NDPK-B regulation should uncover novel pathways required for T cell activation.  相似文献   

16.
Neurite outgrowth is key to the formation of functional circuits during neuronal development. Neurotrophins, including nerve growth factor (NGF), increase neurite outgrowth in part by altering the function and expression of Ca2+-permeable cation channels. Here we report that transient receptor potential vanilloid 2 (TRPV2) is an intracellular Ca2+-permeable TRPV channel upregulated by NGF via the mitogen-activated protein kinase (MAPK) signaling pathway to augment neurite outgrowth. TRPV2 colocalized with Rab7, a late endosome protein, in addition to TrkA and activated extracellular signal-regulated kinase (ERK) in neurites, indicating that the channel is closely associated with signaling endosomes. In line with these results, we showed that TRPV2 acts as an ERK substrate and identified the motifs necessary for phosphorylation of TRPV2 by ERK. Furthermore, neurite length, TRPV2 expression, and TRPV2-mediated Ca2+ signals were reduced by mutagenesis of these key ERK phosphorylation sites. Based on these findings, we identified a previously uncharacterized mechanism by which ERK controls TRPV2-mediated Ca2+ signals in developing neurons and further establish TRPV2 as a critical intracellular ion channel in neuronal function.  相似文献   

17.
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease in the central nervous system (CNS). The NLRP3 inflammasome is considered an important regulator of immunity and inflammation, both of which play a critical role in MS. However, the underlying mechanism of NLRP3 inflammasome activation is not fully understood. Here we identified that the TRPV1 (transient receptor potential vanilloid type 1) channel in microglia, as a Ca2+ influx-regulating channel, played an important role in NLRP3 inflammasome activation. Deletion or pharmacological blockade of TRPV1 inhibited NLRP3 inflammasome activation in microglia in vitro. Further research revealed that TRPV1 channel regulated ATP-induced NLRP3 inflammasome activation through mediating Ca2+ influx and phosphorylation of phosphatase PP2A in microglia. In addition, TRPV1 deletion could alleviate mice experimental autoimmune encephalomyelitis (EAE) and reduce neuroinflammation by inhibiting NLRP3 inflammasome activation. These data suggested that the TRPV1 channel in microglia can regulate NLRP3 inflammasome activation and consequently mediate neuroinflammation. Meanwhile, our study indicated that TRPV1–Ca2+–PP2A pathway may be a novel regulator of NLRP3 inflammasome activation, pointing to TRPV1 as a potential target for CNS inflammatory diseases.Subject terms: Neuroimmunology, Neuroimmunology  相似文献   

18.
Claudin (Cld)-4 is one of the dominant Clds expressed in the kidney and urinary tract, including selective segments of renal nephrons and the entire urothelium from the pelvis to the bladder. We generated Cldn4 −/− mice and found that these mice had increased mortality due to hydronephrosis of relatively late onset. While the renal nephrons of Cldn4 −/− mice showed a concomitant diminution of Cld8 expression at tight junction (TJ), accumulation of Cld3 at TJ was markedly enhanced in compensation and the overall TJ structure was unaffected. Nonetheless, Cldn4 −/− mice showed slightly yet significantly increased fractional excretion of Ca2+ and Cl, suggesting a role of Cld4 in the specific reabsorption of these ions via a paracellular route. Although the urine volume tended to be increased concordantly, Cldn4 −/− mice were capable of concentrating urine normally on dehydration, with no evidence of diabetes insipidus. In the urothelium, the formation of TJs and uroplaques as well as the gross barrier function were also unaffected. However, intravenous pyelography analysis indicated retarded urine flow prior to hydronephrosis. Histological examination revealed diffuse hyperplasia and a thickening of pelvic and ureteral urothelial layers with markedly increased BrdU uptake in vivo. These results suggest that progressive hydronephrosis in Cldn4 −/− mice arises from urinary tract obstruction due to urothelial hyperplasia, and that Cld4 plays an important role in maintaining the homeostatic integrity of normal urothelium.  相似文献   

19.
TRPV5 and TRPV6 channels are expressed in distal renal tubules and play important roles in the transcellular Ca2 + reabsorption in kidney. They are regulated by multiple intracellular factors including protein kinases A and C, membrane phospholipid PIP2, protons, and divalent ions Ca2 + and Mg2 +. Here, we report that fluid flow that generates shear force within the physiological range of distal tubular fluid flow activated TRPV5 and TRPV6 channels expressed in HEK cells. Flow-induced activation of channel activity was reversible and did not desensitize over 2 min. Fluid flow stimulated TRPV5 and 6-mediated Ca2 + entry and increased intracellular Ca2 + concentration. N-glycosylation-deficient TRPV5 channel was relatively insensitive to fluid flow. In cells coexpressing TRPV5 (or TRPV6) and Slo1-encoded maxi-K channels, fluid flow induced membrane hyperpolarization, which could be prevented by the maxi-K blocker iberiotoxin or TRPV5 and 6 blocker La3 +. In contrast, fluid flow did not cause membrane hyperpolarization in cells coexpressing ROMK1 and TRPV5 or 6 channel. These results reveal a new mechanism for the regulation of TRPV5 and TRPV6 channels. Activation of TRPV5 and TRPV6 by fluid flow may play a role in the regulation of flow-stimulated K+ secretion via maxi-K channels in distal renal tubules and in the mechanism of pathogenesis of thiazide-induced hypocalciuria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号