首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many studies show that the extended human family can be helpful in raising offspring, with maternal grandmothers, in particular, improving offspring survival. However, less attention has been given to competition between female kin and co-residents. It has been argued that reproductive conflict between generations explains the evolution of menopause in cooperatively breeding species where females disperse, and that older females are related to the offspring of younger females through their sons, whereas younger, incoming females are unrelated to older females. This means the pattern of help will be asymmetric, so older females lose in reproductive conflict and become 'sterile helpers'. Here, we seek evidence for female reproductive competition using longitudinal demographic data from a rural Gambian population, and examine when women are helping or harming each other's reproductive success. We find that older women benefit and younger women suffer costs of reproductive competition with women in their compound. But the opposite is found for mothers and daughters; if mother and daughter's reproductive spans overlap, the older woman reduces her reproduction if the younger woman (daughter) reproduces, whereas daughters' fertility is unaffected by their mothers' reproduction. Married daughters are not generally co-resident with their mothers, so we find not only competition effects with co-resident females, but also with daughters who have dispersed. Dispersal varies across human societies, but our results suggest reproductive conflict could be influencing reproductive scheduling whatever the dispersal pattern. A cultural norm of late male marriage reduces paternal grandmother/daughter-in-law reproductive overlap almost to zero in this population. We argue that cultural norms surrounding residence and marriage are themselves cultural adaptations to reduce reproductive conflict between generations in human families.  相似文献   

2.
Conflicts over reproduction are common in social groups, where they often result in more or less pronounced reproductive skew. Conflicts are greatest in groups of reproductively totipotent individuals where a single breeder of each sex monopolizes reproduction. Skew models investigate how reproduction is divided among group members, i.e. how the conflict is settled. Here, we investigate the conflict over the timing of breeder replacement.Using a genetic model we show that some non-breeding individuals should challenge the breeder under a wide set of conditions, rather than queue for a breeding vacancy. Consequently, societies of totipotent individuals may be the stage of an almost perpetual conflict between the breeder and helpful reproductives. However, the outcome of this conflict may be determined by non-breeding individuals that are not helpful reproductives (policing behaviours), or constrained by ecological conditions such as high costs of independent breeding or incest avoidance. We discuss our model in the light of skew models and model of matricide, and review the literature of highly skewed vertebrate and invertebrate societies of totipotent individuals (naked and Damaraland mole-rats, African wild dogs, dwarf mongooses, queenless ants, Polistine wasps). This cross-taxonomic review reveals that some non-breeders attempt to replace the breeder or position themselves so as to be able to do so when the opportunity arises, which supports the predictions of the model. Received 12 May 2006; revised 14 July 2006; accepted 21 July 2006.  相似文献   

3.
The life history trade‐off between current and future reproduction is a theoretically well‐established concept. However, empirical evidence for the occurrence of a fitness cost of reproduction is mixed. Evidence indicates that parents only pay a cost of reproduction when local competition is high. In line with this, recent experimental work on a small passerine bird, the Great tit (Parus major) showed that reproductive effort negatively affected the competitive ability of parents, estimated through competition for high quality breeding sites in spring. In the current study, we further investigate the negative causal relationship between reproductive effort and future parental competitive ability, with the aim to quantify the consequences for parental fitness, when breeding sites are scarce. To this end, we (a) manipulated the family size of Great tit parents and (b) induced severe competition for nest boxes among the parents just before the following breeding season by means of a large‐scale nest box removal experiment. Parents increased their feeding effort in response to our family size manipulation and we successfully induced competition among the parents the following spring. Against our expectation, we found no effect of last season's family size on the ability of parents to secure a scarce nest box for breeding. In previous years, if detected, the survival cost of reproduction was always paid after midwinter. In this year, parents did pay a survival cost of reproduction before midwinter and thus before the onset of the experiment in early spring. Winter food availability during our study year was exceptionally low, and thus, competition in early winter may have been extraordinarily high. We hypothesize that differences in parental competitive ability due to their previous reproductive effort might have played a role, but before the onset of our experiment and resulted in the payment of the survival cost of reproduction.  相似文献   

4.
This study investigates the evolution of the sex ratio (parental investment in sons) when breeding adults are supported by help provided by nonbreeding individuals of one sex. The study also assumes that the helping sex remains on its natal site to compete for the opportunity to breed, whereas the nonhelping sex disperses. Two kin-selection models are presented, both of which incorporate the age structure found in many natural populations where such helping occurs. The first model assumes that helpers increase the survival of their parents. The second model assumes that helpers are indiscriminant: a helper chooses to increase the survival of a random pair of adults breeding on its natal patch. In both models, sex ratios are not always biased toward the sex that provides the most help. When helpers do not discriminate (second model), the direction of sex-ratio bias is determined solely by the size of the benefit of helping behavior. When this benefit is small, sex-ratio evolution is primarily influenced by local resource competition and sex ratios are biased toward the nonhelping (dispersive) sex. If the benefit of help is large enough, the effect of local resource competition is reduced and sex-ratio bias favors the helpful sex. When helpers help only their parents, the same qualitative relationship exists between the direction of sex-ratio bias and the benefit of helping. In this case, however, the direction of sex-ratio bias is also influenced by the size of the social group, mortality, and which individual (mother or father) controls the sex ratio. This study also investigates a sex-ratio conflict that exists between mates. Helping behavior of nonbreeders can act to alleviate the disparities between the optimal sex ratio from the perspective of a mother and that from the perspective of a father. This consequence of helping has not been previously recognized.  相似文献   

5.
In mammals with female philopatry, co-resident females inevitably compete with each other for resources or reproductive opportunities, thereby reducing the kin-selected benefits of altruism towards relatives. These counteracting forces of cooperation and competition among kin should be particularly pronounced in plurally breeding species with limited alternative breeding opportunities outside the natal group. However, little is still known about the costs of reproductive competition on females' fitness and the victims' potential counter-strategies. Here we summarize long-term behavioural, demographic and genetic data collected on a plurally breeding primate from Madagascar to illuminate mechanisms and effects of female reproductive competition, focusing on forcible eviction and potential reproductive restraint. The main results of our study indicate that females in groups of redfronted lemurs (Eulemur rufifrons) above a critical size suffer from competition from their close relatives: females in larger groups face an increased probability of not giving birth as well as a higher probability of being evicted, especially during the annual mating and birth seasons. Eviction is not predicted by the number of adult females, the number of close female relatives, female age or inter-annual variation in rainfall but only by total group size. Thus, eviction in this species is clearly linked with reproductive competition, it cannot be forestalled by reproductive restraint or having many relatives in the group, and it occurs in the absence of a clear dominance hierarchy. Our study therefore also underscores the notion that potential inclusive fitness benefits from living with relatives may have been generally over-rated and should not be taken for granted.  相似文献   

6.
The development of connections between neurons and their target cells involves competition between axons for target-derived neurotrophic factors. Although the notion of competition is commonly used in neurobiology, the process is not well understood, and only a few formal models exist. In population biology, in contrast, the concept of competition is well developed and has been studied by means of many formal models of consumer-resource systems. Here we show that a recently formulated model of axonal competition can be rewritten as a general consumer-resource system. This allows neurobiological phenomena to be interpreted in population biological terms and, conversely, results from population biology to be applied to neurobiology. Using findings from population biology, we have studied two extensions of our axonal competition model. In the first extension, the spatial dimension of the target is explicitly taken into account. We show that distance between axons on their target mitigates competition and permits the coexistence of axons. The model can account for the fact that in many types of neurons a positive correlation exists between the size of the dendritic tree and the number of innervating axons surviving into adulthood. In the second extension, axons are allowed to respond to more than one neurotrophic factor. We show that this permits competitive exclusion among axons of one type, while at the same time there is coexistence with axons of another type innervating the same target. The model offers an explanation for the innervation pattern found on cerebellar Purkinje cells, where climbing fibres compete with each other until only a single one remains, which coexists with parallel fibre input to the same Purkinje cell.  相似文献   

7.
The challenge hypothesis predicts that plasma testosterone (T) concentration is high when male-male competitions are high and decreases when males are engaged in paternal care. In monogamous species, T concentration increases at the beginning of the breeding period and decreases after egg laying. According to the challenge hypothesis, increasing competition should also lead to T increase. The aim of our study was to test this hypothesis. In a first experiment, we measured the T profile of domesticated canaries housed with their mate in separated cages without competition. In a second one, we created a competition by housing male and female domestic canaries together (in an aviary) and emphasized this competition by limiting food access. We also studied social status effect. Our results showed no effect of social status in both sexes and no differences in female's T concentration. Concerning males, we obtained a clear monogamous T profile from the ones housed in a low competition situation and a polygamous profile from the others housed in high competition situation. Thus, our results support the hypothesis of the plasticity of the mechanisms controlling T concentration according to environmental conditions.  相似文献   

8.
Despite its widespread occurrence in animals, sperm competition has been studied in a limited range of taxa. Among the most neglected groups in this respect are internally fertilizing fish in which virtually nothing is known about the dynamics of sperm competition. In this study, we examined the outcome of sperm competition when virgin female guppies mated with two males. Behavioural cues were used to ensure that each male mated once (with female cooperation) and that sperm were successfully inseminated at copulation. Two polymorphic microsatellite loci were used to estimate the proportion of offspring sired by the second male (P2) and the results revealed a bimodal distribution with either first or (more often) second male priority The observed P2 distribution differed from that expected under the 'fair raffle' model of sperm competition. Random sperm mixing is therefore unlikely to account for the observed variance in P2 in this study. A further aim of our study was to identify predictors of male reproductive success. Using logistic linear modelling, we found that the best predictors of paternity were time to remating and the difference in courtship display rate between first and second males. Males that mated quickly and performed relatively high numbers of sigmoid displays obtained greater parentage than their slower and less vigorous counterparts. Since females are attracted to high-displaying males, our results suggest that female choice may facilitate sperm competition and/or sperm choice in guppies.  相似文献   

9.
10.
Sperm competition, when sperm from different males compete to fertilize a female's ova, is a widespread and fundamental force in the evolution of animal reproduction. The earliest prediction of sperm competition theory was that sperm competition selected for the evolution of numerous, tiny sperm, and that this force maintained anisogamy. Here, we empirically test this prediction directly by using selective breeding to generate controlled and independent variance in sperm size and number traits in the cricket Gryllus bimaculatus. We find that sperm size and number are male specific and vary independently and significantly. We can therefore noninvasively screen individuals and then run sperm competition experiments between males that differ specifically in sperm size and number traits. Paternity success across 77 two-male sperm competitions (each running over 30-day oviposition periods) shows that males producing both relatively small sperm and relatively numerous sperm win competitions for fertilization. Decreased sperm size and increased sperm number both independently predicted sperm precedence. Our findings provide direct experimental support for the theory that sperm competition selects for maximal numbers of miniaturized sperm. However, our study does not explain why G. bimaculatus sperm length persists naturally at approximately 1 mm; we discuss possibilities for this sperm size maintenance.  相似文献   

11.
In a mixed-sex, captive group of hamadryas baboons (Papio hamadryas hamadryas) we investigated whether female grooming relationships are affected by their dominance ranks. Seyfarth's [1977] grooming for support model and Barrett et al.'s [1999] biological market model both predict that in primate groups where competition for monopolizable resources is high, grooming among females is based, at least partly, on the interchange of grooming for rank-related benefits, and that rank thus influences the distribution of grooming in females. Contrary to this prediction, our results show that despite the existence of a linear dominance hierarchy, rather strict dominance relationships, and high food-related aggression rates, grooming among female hamadryas baboons is not affected by rank and is only exchanged for itself. This is understandable since rank differences in our study group only result in differential access to limited, preferred food items that are not actively shared. Although some females are more likely to tolerate one another at the food pile, this tolerance is not determined by their grooming efforts and interchange of grooming for rank-related benefits does not occur. We conclude that female hamadryas baboons groom others in order to be groomed by them, which is supported by our observation that grooming reciprocity within a dyad increases when more grooming occurs in this dyad. Our results indicate that grooming is indeed a valuable commodity in itself, probably because of its stress- and tension-reducing effect. Based on our findings, the existing groom trade model is extended to include circumstances in which monopolizable resources are available but are not traded for grooming.  相似文献   

12.
Given their large movement capacities, migratory birds have in principle a wide range of possible geographical locations for their breeding and non‐breeding destinations, yet each species migrates between consistent breeding and non‐breeding ranges. In this study, we use a macroecological approach to search for the general factors explaining the location of the seasonal ranges of migratory bird species across the globe. We develop a null model to test the hypotheses that access to resources, geographical distance, tracking of temperature, and habitat conditions (separately as well as considered together) have a major influence in the location of species’ migratory destinations, once each species’ geographical constraints are taken into account. Our results provide evidence for a trade‐off between costs associated with distance travelled and gains in terms of better access to resources. We also provide strong support to the hypotheses that all factors tested, with the exception of habitat, have a strong and additive effect on the global geography of bird migration. Indeed, our results indicate that species’ contemporary migratory destinations (i.e. the combination of their breeding and non‐breeding ranges) are such that they allow species to track a temperature regime throughout the year, to escape local competition and reach areas with better access to resources, and to minimise the spatial distance travelled, within the limitations imposed by the geographical location of each species. Our study thus sheds light on the mechanisms underpinning bird migration and provides a strong basis for predicting how migratory species will respond to future change.  相似文献   

13.
Reproductive skew is a measure of the proportion of individuals of each sex that breed in a group and is a valuable measure for understanding the evolution and maintenance of sociality. Here, we provide the first quantification of reproductive skew within social groups of European badgers Meles meles , throughout an 18-year study in a high-density population. We used 22 microsatellite loci to analyse within-group relatedness and demonstrated that badger groups contained relatives. The average within-group relatedness was high ( R =  0.20) and approximately one-third of within-group dyads were more likely to represent first-order kin than unrelated pairs. Adult females within groups had higher pairwise relatedness than adult males, due to the high frequency of extra-group paternities, rather than permanent physical dispersal. Spatial clustering of relatives occurred among neighbouring groups, which we suggest was due to the majority of extra-group paternities being attributable to neighbouring males. Reproductive skew was found among within-group candidate fathers ( B  = 0.26) and candidate mothers ( B  = 0.07), but not among breeding individuals; our power to detect skew in the latter was low. We use these results to evaluate reproductive skew models. Although badger society best fits the assumptions of the incomplete-control models, our results were not consistent with their predictions. We suggest that this may be due to female control of paternity, female–female reproductive suppression occurring only in years with high food availability resulting in competition over access to breeding sites, extra-group paternity masking the benefits of natal philopatry, and/or the inconsistent occurrence of hierarchies that are linear when established.  相似文献   

14.
Sperm competition is a major force of sexual selection, but its implications for mating system and life-history evolution are just beginning to be understood. Of particular importance is understanding the mechanisms of sperm competition. Models have been developed to determine if sperm competition operates in a fair raffle process, whereby each sperm from competing males has an equal chance of fertilizing a female's ova, or if it operates in a loaded raffle process, whereby one male's sperm has a fertilization advantage. These models require data on relative sperm and offspring (paternity) numbers of competing males. Here we develop a model based on maximum-likelihood methods for differentiating between the fair and loaded raffle processes. The model calculates the relative competitiveness of two males' sperm (loadings) as well as the economy of scale (nonlinear returns to sperm number). Previous models implicitly assumed that there is no economy of scale, which may not be the case when there is cooperation or interference among sperm from a given male. We demonstrate that our model has superior power-in some instances more than double-than previous models. We apply our model to an example of sperm competition in the guppy (Poecilia reticulata) and show that the system may be characterized by a loaded raffle attributable to effects of second male precedence.  相似文献   

15.
The availability of breeding sites has been predicted to affectthe intensity of sexual selection, including mate competition,mate choice and ultimately, variation in mating success. Wetested the hypothesis that reduced density of shelters wouldcause an increase in the intensity of sexual selection in Europeanlobsters, Homarus gammarus. However, we found little supportfor our predictions. For example, within-sex competition bymales and by females was not more intense when shelters werescarce. Indeed, females attempted to evict one another fromshelters significantly more often when shelters were common.When shelters were abundant, shelter-holding males had greatermating success than males without shelters, yet females didnot show more interest towards these males during courtshipencounters. Mate attraction was more strongly related to largemale body size when shelters were scarce. Overall, the resultssuggest that reduced shelter density does not lead to more overtwithin-sex aggression in this species. Instead, we suggest thatimpacts of breeding resource availability on sexual selectionmay depend on the range over which resources are measured, withextreme scarcity of shelters rendering overt competition uneconomical.Furthermore, females may become more selective of male traitssuch as large size, which enhance male control of breeding sitesand hence protection of females.  相似文献   

16.
We constructed a sex allocation model for local mate competition considering the asymmetry of competitive abilities among sons. This model assumes two females of a parasitoid wasp oviposit on the same host in sequential order. The evolutionarily stable strategy will be in either Stackelberg or Nash equilibrium, depending on whether the females can recognize their opponent's sex ratio or not, respectively. The Nash equilibrium predicts the second female produce more males than the first. If the second female is able to know and respond to the strategy of the first (a Stackelberg equilibrium), the first will decide an optimal sex ratio assuming that the second reply to it. Under such an assumption, our model predicts that not producing sons is adaptive for the second female when the sons she produces have low competitive ability. Males of parasitoid wasps Melittobia spp. are engaged in lethal male-male combat, indicating large asymmetry in mating success among sons. If females have the ability to recognize their opponent's sex ratio, our model suggests that the severe lethal male-male combat may be one factor explaining their extremely female-biased sex ratio that is unexplainable by pre-existent models.  相似文献   

17.
Many territorial species have a mating system characterized by males establishing home ranges in the breeding grounds prior to females, resulting in males competing for territories and females choosing a mate upon their arrival. It remains unknown, however, how the outcomes of decisions surrounding territory establishment and mate choice are influenced by the spatial configuration of the breeding grounds. We use a spatially explicit, individual-based model to investigate the sex-specific effects of these decisions on reproductive success. In our model, males that arrive earlier obtain higher quality territories and improve their chances for extra-pair copulations. Females can choose their mate to maximize the quality of the male or to attempt to minimize the density of other females near their nesting site to avoid competition. Females therefore face a tradeoff between high-density regions around high-quality males and low-quality males in areas of low competition. Our model predicts a negative correlation between male and female reproductive success under a wide range of conditions when the majority of the territories are on the margins of the breeding area. Most notably, this sexual conflict arises as an edge effect suggesting that fragmentation of breeding habitats could impact the consequences of mate choice in many species with territorial breeding habits.  相似文献   

18.
Numerous hypotheses have been developed to explain sex allocation. In male-dispersing, female cooperatively breeding species, the local resource competition model predicts male-biased birth sex ratio, the local resource enhancement model predicts female-biased birth sex ratio, and the population adjustment model predicts that biased birth sex ratio should not be favored if the two sexes are equally costly to rear. The male quality model predicts that, in polygynous species, females in better physical condition will either produce more sons than daughters or invest more heavily in sons than in daughters. White-headed langurs are a female philopatry and female cooperatively breeding species. During a 11-yr study, a total of 133 births were recorded, among which birth sex ratio (M:F = 73:49) was significantly male-biased. This is consistent with the prediction of the local resource competition model. On the other hand, if mothers balanced their investment between the two sexes, according to Fisher's population adjustment model, males should be the less-costly-to-rear sex. However, we found no sex difference for infant mortality (12.3% in males and 12.2% in females), and sons induced slightly longer interbirth interval (son: 26.4 ± 1.1 mo, daughter: 24.1 ± 0.6 mo) and lactational period (son: 20.9 ± 1.0 mo, daughters: 19.6 ± 0.5 mo) for their mothers. Thus, the population adjustment model was not supported by this study. The local resource enhancement model was not supported because birth sex ratio did not bias to females who provided more reproductive assistance. On the individual level, probit regression showed no relation between birth sex ratio and group size. Because the group size was considered to be negatively related to female physical condition, our study did not support the male-quality model. We suggested several possibilities to explain these results.  相似文献   

19.
Eeva T  Ahola M  Laaksonen T  Lehikoinen E 《Oecologia》2008,157(2):231-238
We modelled breeding dispersal of an insectivorous bird, the pied flycatcher (Ficedula hypoleuca) around a point source of heavy metals (a copper smelter). We tested for the effects of sex, age, breeding success and environmental pollution on breeding dispersal distances of F. hypoleuca females and males. Unlike many earlier studies on breeding dispersal, we took into account distance-dependent sampling bias by including in our model the recapture probabilities at different distances from the site of origin. Our results show that F. hypoleuca females disperse much farther (on average 7.9 km) from their breeding sites than what was previously thought. In contrast, males only disperse short distances (on average 190 m). Breeding success affected female breeding dispersal distances depending on female age: young females moved on average 8 km from their previous breeding place irrespective of their breeding success, while old females only seemed to move this far when their fledgling production was good. Females successful in their breeding dispersed as far as less successful females, or, among old birds, even farther. Females which dispersed long distances produced more fledglings after the movement than those staying near their previous breeding site. Degree of environmental pollution had no effect on female or male breeding dispersal distances. A polluted and unproductive environment does not seem to stimulate F. hypoleuca parents to move to more profitable territories.  相似文献   

20.
In populations of colony‐breeding marine animals, foraging around colonies can lead to intraspecific competition. This competition affects individual foraging behavior and can cause density‐dependent population growth. Where behavioral data are available, it may be possible to infer the mechanism of intraspecific competition. If these mechanics are understood, they can be used to predict the population‐level functional response resulting from the competition. Using satellite relocation and dive data, we studied the use of space and foraging behavior of juvenile and adult gray seals (Halichoerus grypus) from a large (over 200,000) and growing population breeding at Sable Island, Nova Scotia (44.0 oN 60.0 oW). These data were first analyzed using a behaviorally switching state‐space model to infer foraging areas followed by randomization analysis of foraging region overlap of competing age classes. Patterns of habitat use and behavioral time budgets indicate that young‐of‐year juveniles (YOY) were likely displaced from foraging areas near (<10 km) the breeding colony by adult females. This displacement was most pronounced in the summer. Additionally, our data suggest that YOY are less capable divers than adults and this limits the habitat available to them. However, other segregating mechanisms cannot be ruled out, and we discuss several alternate hypotheses. Mark–resight data indicate juveniles born between 1998 and 2002 have much reduced survivorship compared with cohorts born in the late 1980s, while adult survivorship has remained steady. Combined with behavioral observations, our data suggest YOY are losing an intraspecific competition between adults and juveniles, resulting in the currently observed decelerating logistic population growth. Competition theory predicts that intraspecific competition resulting in a clear losing competitor should cause compensatory population regulation. This functional response produces a smooth logistic growth curve as carrying capacity is approached, and is consistent with census data collected from this population over the past 50 years. The competitive mechanism causing compensatory regulation likely stems from the capital‐breeding life‐history strategy employed by gray seals. This strategy decouples reproductive success from resources available around breeding colonies and prevents females from competing with each other while young are dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号