首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The biases towards eusociality, female workers and maternal care in haplodiploid versus diploid insects may result from the relatively low probabilities that rare mutant, partially dominant alleles promoting these behaviours will be lost by genetic drift in haplodiploid populations (Reeve, 1993). A generalization of this 'protected invasion' theory also predicts that parental and alloparental care will tend to be associated with the homogametic sex in diploid populations if the Y chromosome of the heterogametic sex is absent or largely inert. Sex differences in (allo)parental care (i.e. either parental or alloparental care) should increase with increased asymmetry between the sexes in the fraction of behaviour-influencing loci occurring on their characteristic sex chromosomes. The theory explains the strong predisposition towards female (allo)parental care in mammals, a contrasting tendency towards male (allo)parental care in birds, the propensity for joint male and female (allo)parental care in termites, and biases towards female cooperation in social spiders. The theory also explains the apparent rarity or absence of alloparental care in marsupials, an intriguing consequence of preferential paternal X-chromosome inactivation in this taxon. Thus protected invasion theory possibly provides new insights into the relationship between social structure and the genetic system. The theory does not compete with ecological or kin-selective hypotheses for the advantages of (allo)parental care; indeed, such advantages must exist for protected-invasion biases to operate.  相似文献   

2.
  总被引:3,自引:0,他引:3  
Intergroup transfer by males is nearly universal among social primates. Furthermore, among the most frequently studied monkeys-savanna baboons and Japanese and rhesus macaques—females typically remain in their natal groups, so troops are composed of related matrilines. These facts strongly support two major theories: (l) that kin selection is a powerful force in patterning sociality (if one is to live in a group, one should prefer a group of one’s relatives); and (2) that the ultimate explanation for intergroup transfer is the avoidance of inbreeding depression (though both sexes would prefer to live with kin, one sex has to disperse to avoid inbreeding and for a variety of reasons the losing sex is generally male). Substantial rates of transfer by females in social species with routine male transfer would cast doubt on both ideas. In fact, evidence reviewed here indicates that female transfer is not unusual and among folivorous primates (e.g., Alouatta,the Colobinae) it seems to be routine. In addition to casting doubt on the demographic significance of inbreeding avoidance and favoring mutualistic and/or game theory interpretations of behavior over nepotistic ones, this finding supports the hypothesis that predator detection is the primary selective pressure favoring sociality for many primates. Finally, while female bonding [sensuWrangham, R. W. (1980), Behaviour75:262–299] among primates appears to be less common than generally believed, the observed correlation between female transfer and morphological adaptations to folivory provides empirical support for Wrangham’s model for the evolution of female-bonded groups.  相似文献   

3.
4.
    
The growth and virulence of the bacteria Bacillus thuringiensis depend on the production of Cry toxins, which are used to perforate the gut of its host. Successful invasion of the host relies on producing a threshold amount of toxin, after which there is no benefit from producing more toxin. Consequently, the production of Cry toxin appears to be a different type of social problem compared with the public goods scenarios that bacteria usually encounter. We show that selection for toxin production is a volunteer's dilemma. We make specific predictions that (a) selection for toxin production depends upon an interplay between the number of bacterial cells that each host ingests and the genetic relatedness between those cells; (b) cheats that do not produce toxin gain an advantage when at low frequencies, and at high bacterial density, allowing them to be maintained in a population alongside toxin‐producing cells. More generally, our results emphasize the diversity of the social games that bacteria play.  相似文献   

5.
6.
    
Much research on the evolution of altruism via kin selection, group selection, and reciprocity focuses on the role of a single locus or quantitative trait. Very few studies have explored how linked selection, or selection at loci neighboring an altruism locus, impacts the evolution of altruism. While linked selection can decrease the efficacy of selection at neighboring loci, it might have other effects including promoting selection for altruism by increasing relatedness in regions of low recombination. Here, we used population genetic simulations to study how negative selection at linked loci, or background selection, affects the evolution of altruism. When altruism occurs between full siblings, we found that background selection interfered with selection on the altruistic allele, increasing its fixation probability when the altruistic allele was disfavored and reducing its fixation when the allele was favored. In other words, background selection has the same effect on altruistic genes in family-structured populations as it does on other, nonsocial, genes. This contrasts with prior research showing that linked selective sweeps can favor the evolution of cooperation, and we discuss possibilities for resolving these contrasting results.  相似文献   

7.
Individual success in group‐structured populations has two components. First, an individual gains by outcompeting its neighbours for local resources. Second, an individual's share of group success must be weighted by the total productivity of the group. The essence of sociality arises from the tension between selfish gains against neighbours and the associated loss that selfishness imposes by degrading the efficiency of the group. Without some force to modulate selfishness, the natural tendencies of self interest typically degrade group performance to the detriment of all. This is the tragedy of the commons. Kin selection provides the most widely discussed way in which the tragedy is overcome in biology. Kin selection arises from behavioural associations within groups caused either by genetical kinship or by other processes that correlate the behaviours of group members. Here, I emphasize demography as a second factor that may also modulate the tragedy of the commons and favour cooperative integration of groups. Each act of selfishness or cooperation in a group often influences group survival and fecundity over many subsequent generations. For example, a cooperative act early in the growth cycle of a colony may enhance the future size and survival of the colony. This time‐dependent benefit can greatly increase the degree of cooperation favoured by natural selection, providing another way in which to overcome the tragedy of the commons and enhance the integration of group behaviour. I conclude that analyses of sociality must account for both the behavioural associations of kin selection theory and the demographic consequences of life history theory.  相似文献   

8.
    
《Current biology : CB》2021,31(18):4120-4126.e4
  1. Download : Download high-res image (159KB)
  2. Download : Download full-size image
  相似文献   

9.
An individually costly act that benefits all group members is a public good. Natural selection favours individual contribution to public goods only when some benefit to the individual offsets the cost of contribution. Problems of sex ratio, parasite virulence, microbial metabolism, punishment of noncooperators, and nearly all aspects of sociality have been analysed as public goods shaped by kin and group selection. Here, I develop two general aspects of the public goods problem that have received relatively little attention. First, variation in individual resources favours selfish individuals to vary their allocation to public goods. Those individuals better endowed contribute their excess resources to public benefit, whereas those individuals with fewer resources contribute less to the public good. Thus, purely selfish behaviour causes individuals to stratify into upper classes that contribute greatly to public benefit and social cohesion and to lower classes that contribute little to the public good. Second, if group success absolutely requires production of the public good, then the pressure favouring production is relatively high. By contrast, if group success depends weakly on the public good, then the pressure favouring production is relatively weak. Stated in this way, it is obvious that the role of baseline success is important. However, discussions of public goods problems sometimes fail to emphasize this point sufficiently. The models here suggest simple tests for the roles of resource variation and baseline success. Given the widespread importance of public goods, better models and tests would greatly deepen our understanding of many processes in biology and sociality.  相似文献   

10.
11.
  总被引:10,自引:0,他引:10  
Abstract Repression of competition within groups joins kin selection as the second major force in the history of life shaping the evolution of cooperation. When opportunities for competition against neighbors are limited within groups, individuals can increase their own success only by enhancing the efficiency and productivity of their group. Thus, characters that repress competition within groups promote cooperation and enhance group success. Leigh first expressed this idea in the context of fair meiosis, in which each chromosome has an equal chance of transmission via gametes. Randomized success means that each part of the genome can increase its own success only by enhancing the total number of progeny and thus increasing the success of the group. Alexander used this insight about repression of competition in fair meiosis to develop his theories for the evolution of human sociality. Alexander argued that human social structures spread when they repress competition within groups and promote successful group-against-group competition. Buss introduced a new example with his suggestion that metazoan success depended on repression of competition between cellular lineages. Maynard Smith synthesized different lines of thought on repression of competition. In this paper, I develop simple mathematical models to illustrate the main processes by which repression of competition evolves. With the concepts made clear, I then explain the history of the idea. I finish by summarizing many new developments in this subject and the most promising lines for future study.  相似文献   

12.
    
Aggregative groups entail costs that must be overcome for the evolution of complex social interactions. Understanding the mechanisms that allow aggregations to form and restrict costs of cheating can provide a resolution to the instability of social evolution. Aggregation in Tetrahymena thermophila is associated with costs of reduced growth and benefits of improved survival through “growth factor” exchange. We investigated what mechanisms contribute to stable cooperative aggregation in the face of potential exploitation by less‐cooperative lines using experimental microcosms. We found that kin recognition modulates aggregative behavior to exclude cheaters from social interactions. Long‐distance kin recognition across patches modulates social structure by allowing recruitment of kin in aggregative lines and repulsion in asocial lines. Although previous studies have shown a clear benefit to social aggregation at low population densities, we found that social aggregation has very different effects at higher densities. Lower growth rates are a cost of aggregation, but also present potential benefits when restricted to kin aggregations: slow growth and crowd tolerance allow aggregations to form and permit longer persistence on ephemeral resources. Thus in highly dynamic metapopulations, kin recognition plays an important role in the formation and stability of social groups that increase persistence through cooperative consumptive restraint.  相似文献   

13.
The direct-fitness approach to modelling the evolution of social traits is an alternative to the classical inclusive-fitness-based approach. Despite both its utility and popularity, the direct-fitness approach has not yet been extended to include the analysis of dynamic traits, i.e. traits whose level of expression may vary over time. In this article, I apply the direct-fitness approach to cope with the evolution of a dynamic resource-allocation behaviour when this behaviour influences the fitness of relatives. I am able to implement the direct-fitness approach using components (reproductive value, fitness changes and measures of relatedness) found in standard, social-evolutionary models. I illustrate the modified direct-fitness model with an example studied by previous authors, and I show how the direct-fitness perspective can aid the validation of analytical results by means of a genetic algorithm.  相似文献   

14.
Social discounting in economics involves applying a diminishing weight to community-wide benefits or costs into the future. It impacts on public policy decisions involving future positive or negative effects, but there is no consensus on the correct basis for determining the social discount rate. This study presents an evolutionary biological framework for social discounting. How an organism should value future benefits to its local community is governed by the extent to which members of the community in the future are likely to be its kin. Trade-offs between immediate and delayed benefits to an individual or to its community are analysed for a modelled patch-structured iteroparous population with limited dispersal. It is shown that the social discount rate is generally lower than the individual (private) discount rate. The difference in the two rates is most pronounced, in ratio terms, when the dispersal level is low and the hazard rate for patch destruction is much smaller than the individual mortality rate. When decisions involve enforced collective action rather than individuals acting independently, social investment increases but the social discount rate remains the same.  相似文献   

15.
    
Sex allocation theory predicts parents should adjust their investment in male and female offspring in a way that increases parental fitness. This has been shown in several species and selective contexts. Yet, seasonal sex ratio variation within species and its underlying causes are poorly understood. Here, we study sex allocation variation in the wood ant Formica pratensis. This species displays conflict over colony sex ratio as workers and queens prefer different investment in male and female offspring, owing to haplodiploidy and relatedness asymmetries. It is unique among Formica ants because it produces two separate sexual offspring cohorts per season. We predict sex ratios to be closer to queen optimum in the early cohort but more female‐biased and closer to worker optimum in the later one. This is because the power of workers to manipulate colony sex ratio varies seasonally with the availability of diploid eggs. Consistently, more female‐biased sex ratios in the later offspring cohort over a three‐year sampling period from 93 colonies clearly support our prediction. The resulting seasonal alternation of sex ratios between queen and worker optima is a novel demonstration how understanding constraints of sex ratio adjustment increases our ability to predict sex ratio variation.  相似文献   

16.
         下载免费PDF全文
《植物生态学报》2015,39(11):1110
Plants have the ability to discriminate kin members from strangers in competitive interactions and show altruistic behavior towards related individuals. Studies have showed that plants recognize their neighbors and adjust their ecological strategy mainly through leaf volatiles, root secretions and photographic carrier. The target plants can modify their morphological traits (root size, root:shoot ratio, seed numbers etc.) or metabolism characteristics (secondary metabolites, defense-related proteins etc.) when groups of plants shared common resources, so as to minimize competition with close relatives. The density of kin recognition is influenced by environmental conditions. The main reasons for controversial experimental results of kin recognition are associated with plant materials, standard of kin selection, ecological factors and measured indices. Further studies are required to understand the mechanisms of kin interactions in plants from physiological, biochemical, molecular and metabolic levels.  相似文献   

17.
植物的亲缘识别(kin recognition)指植物通过识别周边个体与自己的亲缘关系, 调整自身的生长生态策略、促进亲缘个体的生存与繁衍。研究表明, 植物主要通过特定的叶片挥发物、根系分泌物、感光载体等途径, 识别周边个体与自己的亲缘关系, 改变自身形态学策略(如根系大小、根冠比、种子数量等)或者生理代谢策略(次生代谢物质、防御蛋白等), 调整与周边个体的竞争强度, 缓和与近亲缘个体之间的竞争, 加强与远亲缘或非亲缘个体的竞争。同时亲缘识别的强度也受环境因子(养分等)的影响。结合目前的研究进展, 该文分析了导致亲缘识别的研究结果存在差异或争议的主要原因, 认为主要与实验材料的选择、亲缘关系的界定标准、环境条件及测定的指标不统一有关。将来的研究应重点从生理生化、分子、代谢水平上深入研究植物亲缘识别的机理。  相似文献   

18.
    
Numerous theoretical studies have investigated how limited dispersal may provide an explanation for the evolution of cooperation, by leading to interactions between relatives. However, despite considerable theoretical attention, there has been a lack of empirical tests. In this article, we test how patterns of dispersal influence the evolution of cooperation, using iron-scavenging in the bacterium Pseudomonas aeruginosa as our cooperative trait. We found that relatively limited dispersal does not favor cooperation. The reason for this is that although limited dispersal increases the relatedness between interacting individuals, it also leads to increased local competition for resources between relatives. This result supports Taylor's prediction that in the simplest possible scenario, the effects of increased relatedness and local competition exactly cancel out. In contrast, we show that one way for cooperation to be favored is if individuals disperse in groups (budding dispersal), because this maintains high relatedness while reducing local competition between relatives (relatively global competition).  相似文献   

19.
    
Allorecognition, the ability to distinguish “self” from “nonself” based on allelic differences at allorecognition loci, is common in all domains of life. Allorecognition restricts the opportunities for social parasitism, and is therefore crucial for the evolution of cooperation. However, the maintenance of allorecognition diversity provides a paradox. If allorecognition is costly relative to cooperation, common alleles will be favored. Thus, the cost of allorecognition may reduce the genetic variation upon which allorecognition crucially relies, a prediction now known as “Crozier's paradox.” We establish the relative costs of allorecognition, and their consequences for the short‐term evolution of recognition labels theoretically predicted by Crozier. We use fusion among colonies of the fungus Neurospora crassa, regulated by highly variable allorecognition genes, as an experimental model system. We demonstrate that fusion among colonies is mutually beneficial, relative to absence of fusion upon allorecognition. This benefit is due not only to absence of mutual antagonism, which occurs upon allorecognition, but also to an increase in colony size per se. We then experimentally demonstrate that the benefit of fusion selects against allorecognition diversity, as predicted by Crozier. We discuss what maintains allorecognition diversity.  相似文献   

20.
  总被引:2,自引:0,他引:2  
Lasioglossum malachurum, a bee species common across much of Europe, is obligately eusocial across its range but exhibits clear geographic variation in demography and social behaviour. This variation suggests that social interactions between queens and workers, opportunities for worker oviposition, and patterns of relatedness among nest mates may vary considerably, both within and among regions. In this study, we used three microsatellite loci with 12-18 alleles each to examine the sociogenetic structure of colonies from a population at Agios Nikolaos Monemvasias in southern Greece. These analyses reveal that the majority of colonies exhibit classical eusocial colony structure in which a single queen mated to a single male monopolizes oviposition. Nevertheless, we also detect low rates of multiqueen nest founding, occasional caste switching by worker-destined females, and worker oviposition of both gyne and male-producing eggs in the final brood. Previous evidence that the majority of workers show some ovarian development and a minority (17%) have at least one large oocyte contrasts with the observation that only 2-3% of gynes and males (the so-called reproductive brood) are produced by workers. An evaluation of the parameters of Hamilton's Rule suggests that queens benefit greatly from the help provided by workers but that workers achieve greater fitness by provisioning and laying their own eggs rather than by tending to the queen's eggs. This conflict of interest between the queen and her workers suggests that the discrepancy between potential and achieved worker oviposition is due to queen interference. Comparison of relatedness and maternity patterns in the Agios Nikolaos Monemvasias population with those from a northern population near Tübingen, Germany, points to a north-south cline of increasingly effective queen control of worker behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号