首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes.Drought and salinity cause osmotic stress in plants and severely affect crop productivity throughout the world. Plants respond to osmotic stress by changing a number of cellular processes (Xiong et al., 1999; Xiong and Zhu, 2002; Bartels and Sunkar, 2005; Boudsocq and Lauriére, 2005). Some of these changes include activation of stress-responsive genes, regulation of membrane transport at both plasma membrane (PM) and vacuolar membrane (tonoplast) to maintain water and ionic homeostasis, and metabolic changes to produce compatible osmolytes such as Pro (Stewart and Lee, 1974; Krasensky and Jonak, 2012). It has been well established that a specific calcium (Ca2+) signature is generated in response to a particular environmental stimulus (Trewavas and Malhó, 1998; Scrase-Field and Knight, 2003; Luan, 2009; Kudla et al., 2010). The Ca2+ changes are primarily perceived by several Ca2+ sensors such as calmodulin (Reddy, 2001; Luan et al., 2002), Ca2+-dependent protein kinases (Harper and Harmon, 2005), calcineurin B-like proteins (CBLs; Luan et al., 2002; Batistič and Kudla, 2004; Pandey, 2008; Luan, 2009; Sanyal et al., 2015), and other Ca2+-binding proteins (Reddy, 2001; Shao et al., 2008) to initiate various cellular responses.Plant CBL-type Ca2+ sensors interact with and activate CBL-interacting protein kinases (CIPKs) that phosphorylate downstream components to transduce Ca2+ signals (Liu et al., 2000; Luan et al., 2002; Batistič and Kudla, 2004; Luan, 2009). In several plant species, multiple members have been identified in the CBL and CIPK family (Luan et al., 2002; Kolukisaoglu et al., 2004; Pandey, 2008; Batistič and Kudla, 2009; Weinl and Kudla, 2009; Pandey et al., 2014). Involvement of specific CBL-CIPK pair to decode a particular type of signal entails the alternative and selective complex formation leading to stimulus-response coupling (D’Angelo et al., 2006; Batistič et al., 2010).Several CBL and CIPK family members have been implicated in plant responses to drought, salinity, and osmotic stress based on genetic analysis of Arabidopsis (Arabidopsis thaliana) mutants (Zhu, 2002; Cheong et al., 2003, 2007; Kim et al., 2003; Pandey et al., 2004, 2008; D’Angelo et al., 2006; Qin et al., 2008; Tripathi et al., 2009; Held et al., 2011; Tang et al., 2012; Drerup et al., 2013; Eckert et al., 2014). A few CIPKs have also been functionally characterized by gain-of-function approach in crop plants such as rice (Oryza sativa), pea (Pisum sativum), and maize (Zea mays) and were found to be involved in osmotic stress responses (Mahajan et al., 2006; Xiang et al., 2007; Yang et al., 2008; Tripathi et al., 2009; Zhao et al., 2009; Cuéllar et al., 2010).In this report, we examined the role of the Arabidopsis CIPK21 gene in osmotic stress response by reverse genetic analysis. The loss-of-function mutant plants became hypersensitive to salt and mannitol stress conditions, suggesting that CIPK21 is involved in the regulation of osmotic stress response in Arabidopsis. These findings are further supported by an enhanced tonoplast targeting of the cytoplasmic CIPK21 through interaction with the vacuolar Ca2+ sensors CBL2 and CBL3 under salt stress condition.  相似文献   

3.
4.
5.
Metabolomics enables quantitative evaluation of metabolic changes caused by genetic or environmental perturbations. However, little is known about how perturbing a single gene changes the metabolic system as a whole and which network and functional properties are involved in this response. To answer this question, we investigated the metabolite profiles from 136 mutants with single gene perturbations of functionally diverse Arabidopsis (Arabidopsis thaliana) genes. Fewer than 10 metabolites were changed significantly relative to the wild type in most of the mutants, indicating that the metabolic network was robust to perturbations of single metabolic genes. These changed metabolites were closer to each other in a genome-scale metabolic network than expected by chance, supporting the notion that the genetic perturbations changed the network more locally than globally. Surprisingly, the changed metabolites were close to the perturbed reactions in only 30% of the mutants of the well-characterized genes. To determine the factors that contributed to the distance between the observed metabolic changes and the perturbation site in the network, we examined nine network and functional properties of the perturbed genes. Only the isozyme number affected the distance between the perturbed reactions and changed metabolites. This study revealed patterns of metabolic changes from large-scale gene perturbations and relationships between characteristics of the perturbed genes and metabolic changes.Rational and quantitative assessment of metabolic changes in response to genetic modification (GM) is an open question and in need of innovative solutions. Nontargeted metabolite profiling can detect thousands of compounds, but it is not easy to understand the significance of the changed metabolites in the biochemical and biological context of the organism. To better assess the changes in metabolites from nontargeted metabolomics studies, it is important to examine the changed metabolites in the context of the genome-scale metabolic network of the organism.Metabolomics is a technique that aims to quantify all the metabolites in a biological system (Nikolau and Wurtele, 2007; Nicholson and Lindon, 2008; Roessner and Bowne, 2009). It has been used widely in studies ranging from disease diagnosis (Holmes et al., 2008; DeBerardinis and Thompson, 2012) and drug discovery (Cascante et al., 2002; Kell, 2006) to metabolic reconstruction (Feist et al., 2009; Kim et al., 2012) and metabolic engineering (Keasling, 2010; Lee et al., 2011). Metabolomic studies have demonstrated the possibility of identifying gene functions from changes in the relative concentrations of metabolites (metabotypes or metabolic signatures; Ebbels et al., 2004) in various species including yeast (Saccharomyces cerevisiae; Raamsdonk et al., 2001; Allen et al., 2003), Arabidopsis (Arabidopsis thaliana; Brotman et al., 2011), tomato (Solanum lycopersicum; Schauer et al., 2006), and maize (Zea mays; Riedelsheimer et al., 2012). Metabolomics has also been used to better understand how plants interact with their environments (Field and Lake, 2011), including their responses to biotic and abiotic stresses (Dixon et al., 2006; Arbona et al., 2013), and to predict important agronomic traits (Riedelsheimer et al., 2012). Metabolite profiling has been performed on many plant species, including angiosperms such as Arabidopsis, poplar (Populus trichocarpa), and Catharanthus roseus (Sumner et al., 2003; Rischer et al., 2006), basal land plants such as Selaginella moellendorffii and Physcomitrella patens (Erxleben et al., 2012; Yobi et al., 2012), and Chlamydomonas reinhardtii (Fernie et al., 2012; Davis et al., 2013). With the availability of whole genome sequences of various species, metabolomics has the potential to become a useful tool for elucidating the functions of genes using large-scale systematic analyses (Fiehn et al., 2000; Saito and Matsuda, 2010; Hur et al., 2013).Although metabolomics data have the potential for identifying the roles of genes that are associated with metabolic phenotypes, the biochemical mechanisms that link functions of genes with metabolic phenotypes are still poorly characterized. For example, we do not yet know the principles behind how perturbing the expression of a single gene changes the metabolic system as a whole. Large-scale metabolomics data have provided useful resources for linking phenotypes to genotypes (Fiehn et al., 2000; Roessner et al., 2001; Tikunov et al., 2005; Schauer et al., 2006; Lu et al., 2011; Fukushima et al., 2014). For example, Lu et al. (2011) compared morphological and metabolic phenotypes from more than 5,000 Arabidopsis chloroplast mutants using gas chromatography (GC)- and liquid chromatography (LC)-mass spectrometry (MS). Fukushima et al. (2014) generated metabolite profiles from various characterized and uncharacterized mutant plants and clustered the mutants with similar metabolic phenotypes by conducting multidimensional scaling with quantified metabolic phenotypes. Nonetheless, representation and analysis of such a large amount of data remains a challenge for scientific discovery (Lu et al., 2011). In addition, these studies do not examine the topological and functional characteristics of metabolic changes in the context of a genome-scale metabolic network. To understand the relationship between genotype and metabolic phenotype, we need to investigate the metabolic changes caused by perturbing the expression of a gene in a genome-scale metabolic network perspective, because metabolic pathways are not independent biochemical factories but are components of a complex network (Berg et al., 2002; Merico et al., 2009).Much progress has been made in the last 2 decades to represent metabolism at a genome scale (Terzer et al., 2009). The advances in genome sequencing and emerging fields such as biocuration and bioinformatics enabled the representation of genome-scale metabolic network reconstructions for model organisms (Bassel et al., 2012). Genome-scale metabolic models have been built and applied broadly from microbes to plants. The first step toward modeling a genome-scale metabolism in a plant species started with developing a genome-scale metabolic pathway database for Arabidopsis (AraCyc; Mueller et al., 2003) from reference pathway databases (Kanehisa and Goto, 2000; Karp et al., 2002; Zhang et al., 2010). Genome-scale metabolic pathway databases have been built for several plant species (Mueller et al., 2005; Zhang et al., 2005, 2010; Urbanczyk-Wochniak and Sumner, 2007; May et al., 2009; Dharmawardhana et al., 2013; Monaco et al., 2013, 2014; Van Moerkercke et al., 2013; Chae et al., 2014; Jung et al., 2014). Efforts have been made to develop predictive genome-scale metabolic models using enzyme kinetics and stoichiometric flux-balance approaches (Sweetlove et al., 2008). de Oliveira Dal’Molin et al. (2010) developed a genome-scale metabolic model for Arabidopsis and successfully validated the model by predicting the classical photorespiratory cycle as well as known key differences between redox metabolism in photosynthetic and nonphotosynthetic plant cells. Other genome-scale models have been developed for Arabidopsis (Poolman et al., 2009; Radrich et al., 2010; Mintz-Oron et al., 2012), C. reinhardtii (Chang et al., 2011; Dal’Molin et al., 2011), maize (Dal’Molin et al., 2010; Saha et al., 2011), sorghum (Sorghum bicolor; Dal’Molin et al., 2010), and sugarcane (Saccharum officinarum; Dal’Molin et al., 2010). These predictive models have the potential to be applied broadly in fields such as metabolic engineering, drug target discovery, identification of gene function, study of evolutionary processes, risk assessment of genetically modified crops, and interpretations of mutant phenotypes (Feist and Palsson, 2008; Ricroch et al., 2011).Here, we interrogate the metabotypes caused by 136 single gene perturbations of Arabidopsis by analyzing the relative concentration changes of 1,348 chemically identified metabolites using a reconstructed genome-scale metabolic network. We examine the characteristics of the changed metabolites (the metabolites whose relative concentrations were significantly different in mutants relative to the wild type) in the metabolic network to uncover biological and topological consequences of the perturbed genes.  相似文献   

6.
To investigate sepal/petal/lip formation in Oncidium Gower Ramsey, three paleoAPETALA3 genes, O. Gower Ramsey MADS box gene5 (OMADS5; clade 1), OMADS3 (clade 2), and OMADS9 (clade 3), and one PISTILLATA gene, OMADS8, were characterized. The OMADS8 and OMADS3 mRNAs were expressed in all four floral organs as well as in vegetative leaves. The OMADS9 mRNA was only strongly detected in petals and lips. The mRNA for OMADS5 was only strongly detected in sepals and petals and was significantly down-regulated in lip-like petals and lip-like sepals of peloric mutant flowers. This result revealed a possible negative role for OMADS5 in regulating lip formation. Yeast two-hybrid analysis indicated that OMADS5 formed homodimers and heterodimers with OMADS3 and OMADS9. OMADS8 only formed heterodimers with OMADS3, whereas OMADS3 and OMADS9 formed homodimers and heterodimers with each other. We proposed that sepal/petal/lip formation needs the presence of OMADS3/8 and/or OMADS9. The determination of the final organ identity for the sepal/petal/lip likely depended on the presence or absence of OMADS5. The presence of OMADS5 caused short sepal/petal formation. When OMADS5 was absent, cells could proliferate, resulting in the possible formation of large lips and the conversion of the sepal/petal into lips in peloric mutants. Further analysis indicated that only ectopic expression of OMADS8 but not OMADS5/9 caused the conversion of the sepal into an expanded petal-like structure in transgenic Arabidopsis (Arabidopsis thaliana) plants.The ABCDE model predicts the formation of any flower organ by the interaction of five classes of homeotic genes in plants (Yanofsky et al., 1990; Jack et al., 1992; Mandel et al., 1992; Goto and Meyerowitz, 1994; Jofuku et al., 1994; Pelaz et al., 2000, 2001; Theißen and Saedler, 2001; Pinyopich et al., 2003; Ditta et al., 2004; Jack, 2004). The A class genes control sepal formation. The A, B, and E class genes work together to regulate petal formation. The B, C, and E class genes control stamen formation. The C and E class genes work to regulate carpel formation, whereas the D class gene is involved in ovule development. MADS box genes seem to have a central role in flower development, because most ABCDE genes encode MADS box proteins (Coen and Meyerowitz, 1991; Weigel and Meyerowitz, 1994; Purugganan et al., 1995; Rounsley et al., 1995; Theißen and Saedler, 1995; Theißen et al., 2000; Theißen, 2001).The function of B group genes, such as APETALA3 (AP3) and PISTILLATA (PI), has been thought to have a major role in specifying petal and stamen development (Jack et al., 1992; Goto and Meyerowitz, 1994; Krizek and Meyerowitz, 1996; Kramer et al., 1998; Hernandez-Hernandez et al., 2007; Kanno et al., 2007; Whipple et al., 2007; Irish, 2009). In Arabidopsis (Arabidopsis thaliana), mutation in AP3 or PI caused identical phenotypes of second whorl petal conversion into a sepal structure and third flower whorl stamen into a carpel structure (Bowman et al., 1989; Jack et al., 1992; Goto and Meyerowitz, 1994). Similar homeotic conversions for petal and stamen were observed in the mutants of the AP3 and PI orthologs from a number of core eudicots such as Antirrhinum majus, Petunia hybrida, Gerbera hybrida, Solanum lycopersicum, and Nicotiana benthamiana (Sommer et al., 1990; Tröbner et al., 1992; Angenent et al., 1993; van der Krol et al., 1993; Yu et al., 1999; Liu et al., 2004; Vandenbussche et al., 2004; de Martino et al., 2006), from basal eudicot species such as Papaver somniferum and Aquilegia vulgaris (Drea et al., 2007; Kramer et al., 2007), as well as from monocot species such as Zea mays and Oryza sativa (Ambrose et al., 2000; Nagasawa et al., 2003; Prasad and Vijayraghavan, 2003; Yadav et al., 2007; Yao et al., 2008). This indicated that the function of the B class genes AP3 and PI is highly conserved during evolution.It has been thought that B group genes may have arisen from an ancestral gene through multiple gene duplication events (Doyle, 1994; Theißen et al., 1996, 2000; Purugganan, 1997; Kramer et al., 1998; Kramer and Irish, 1999; Lamb and Irish, 2003; Kim et al., 2004; Stellari et al., 2004; Zahn et al., 2005; Hernandez-Hernandez et al., 2007). In the gymnosperms, there was a single putative B class lineage that duplicated to generate the paleoAP3 and PI lineages in angiosperms (Kramer et al., 1998; Theißen et al., 2000; Irish, 2009). The paleoAP3 lineage is composed of AP3 orthologs identified in lower eudicots, magnolid dicots, and monocots (Kramer et al., 1998). Genes in this lineage contain the conserved paleoAP3- and PI-derived motifs in the C-terminal end of the proteins, which have been thought to be characteristics of the B class ancestral gene (Kramer et al., 1998; Tzeng and Yang, 2001; Hsu and Yang, 2002). The PI lineage is composed of PI orthologs that contain a highly conserved PI motif identified in most plant species (Kramer et al., 1998). Subsequently, there was a second duplication at the base of the core eudicots that produced the euAP3 and TM6 lineages, which have been subject to substantial sequence changes in eudicots during evolution (Kramer et al., 1998; Kramer and Irish, 1999). The paleoAP3 motif in the C-terminal end of the proteins was retained in the TM6 lineage and replaced by a conserved euAP3 motif in the euAP3 lineage of most eudicot species (Kramer et al., 1998). In addition, many lineage-specific duplications for paleoAP3 lineage have occurred in plants such as orchids (Hsu and Yang, 2002; Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009; Mondragón-Palomino et al., 2009), Ranunculaceae, and Ranunculales (Kramer et al., 2003; Di Stilio et al., 2005; Shan et al., 2006; Kramer, 2009).Unlike the A or C class MADS box proteins, which form homodimers that regulate flower development, the ability of B class proteins to form homodimers has only been reported in gymnosperms and in the paleoAP3 and PI lineages of some monocots. For example, LMADS1 of the lily Lilium longiflorum (Tzeng and Yang, 2001), OMADS3 of the orchid Oncidium Gower Ramsey (Hsu and Yang, 2002), and PeMADS4 of the orchid Phalaenopsis equestris (Tsai et al., 2004) in the paleoAP3 lineage, LRGLOA and LRGLOB of the lily Lilium regale (Winter et al., 2002), TGGLO of the tulip Tulipa gesneriana (Kanno et al., 2003), and PeMADS6 of the orchid P. equestris (Tsai et al., 2005) in the PI lineage, and GGM2 of the gymnosperm Gnetum gnemon (Winter et al., 1999) were able to form homodimers that regulate flower development. Proteins in the euAP3 lineage and in most paleoAP3 lineages were not able to form homodimers and had to interact with PI to form heterodimers in order to regulate petal and stamen development in various plant species (Schwarz-Sommer et al., 1992; Tröbner et al., 1992; Riechmann et al., 1996; Moon et al., 1999; Winter et al., 2002; Kanno et al., 2003; Vandenbussche et al., 2004; Yao et al., 2008). In addition to forming dimers, AP3 and PI were able to interact with other MADS box proteins, such as SEPALLATA1 (SEP1), SEP2, and SEP3, to regulate petal and stamen development (Pelaz et al., 2000; Honma and Goto, 2001; Theißen and Saedler, 2001; Castillejo et al., 2005).Orchids are among the most important plants in the flower market around the world, and research on MADS box genes has been reported for several species of orchids during the past few years (Lu et al., 1993, 2007; Yu and Goh, 2000; Hsu and Yang, 2002; Yu et al., 2002; Hsu et al., 2003; Tsai et al., 2004, 2008; Xu et al., 2006; Guo et al., 2007; Kim et al., 2007; Chang et al., 2009). Unlike the flowers in eudicots, the nearly identical shape of the sepals and petals as well as the production of a unique lip in orchid flowers make them a very special plant species for the study of flower development. Four clades (1–4) of genes in the paleoAP3 lineage have been identified in several orchids (Hsu and Yang, 2002; Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009; Mondragón-Palomino et al., 2009). Several works have described the possible interactions among these four clades of paleoAP3 genes and one PI gene that are involved in regulating the differentiation and formation of the sepal/petal/lip of orchids (Tsai et al., 2004; Kim et al., 2007; Mondragón-Palomino and Theißen, 2008, 2009). However, the exact mechanism that involves the orchid B class genes remains unclear and needs to be clarified by more experimental investigations.O. Gower Ramsey is a popular orchid with important economic value in cut flower markets. Only a few studies have been reported on the role of MADS box genes in regulating flower formation in this plant species (Hsu and Yang, 2002; Hsu et al., 2003; Chang et al., 2009). An AP3-like MADS gene that regulates both floral formation and initiation in transgenic Arabidopsis has been reported (Hsu and Yang, 2002). In addition, four AP1/AGAMOUS-LIKE9 (AGL9)-like MADS box genes have been characterized that show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis (Hsu et al., 2003; Chang et al., 2009). Compared with other orchids, the production of a large and well-expanded lip and five small identical sepals/petals makes O. Gower Ramsey a special case for the study of the diverse functions of B class MADS box genes during evolution. Therefore, the isolation of more B class MADS box genes and further study of their roles in the regulation of perianth (sepal/petal/lip) formation during O. Gower Ramsey flower development are necessary. In addition to the clade 2 paleoAP3 gene OMADS3, which was previously characterized in our laboratory (Hsu and Yang, 2002), three more B class MADS box genes, OMADS5, OMADS8, and OMADS9, were characterized from O. Gower Ramsey in this study. Based on the different expression patterns and the protein interactions among these four orchid B class genes, we propose that the presence of OMADS3/8 and/or OMADS9 is required for sepal/petal/lip formation. Further sepal and petal formation at least requires the additional presence of OMADS5, whereas large lip formation was seen when OMADS5 expression was absent. Our results provide a new finding and information pertaining to the roles for orchid B class MADS box genes in the regulation of sepal/petal/lip formation.  相似文献   

7.
8.
Organelle movement and positioning play important roles in fundamental cellular activities and adaptive responses to environmental stress in plants. To optimize photosynthetic light utilization, chloroplasts move toward weak blue light (the accumulation response) and escape from strong blue light (the avoidance response). Nuclei also move in response to strong blue light by utilizing the light-induced movement of attached plastids in leaf cells. Blue light receptor phototropins and several factors for chloroplast photorelocation movement have been identified through molecular genetic analysis of Arabidopsis (Arabidopsis thaliana). PLASTID MOVEMENT IMPAIRED1 (PMI1) is a plant-specific C2-domain protein that is required for efficient chloroplast photorelocation movement. There are two PLASTID MOVEMENT IMPAIRED1-RELATED (PMIR) genes, PMIR1 and PMIR2, in the Arabidopsis genome. However, the mechanism in which PMI1 regulates chloroplast and nuclear photorelocation movements and the involvement of PMIR1 and PMIR2 in these organelle movements remained unknown. Here, we analyzed chloroplast and nuclear photorelocation movements in mutant lines of PMI1, PMIR1, and PMIR2. In mesophyll cells, the pmi1 single mutant showed severe defects in both chloroplast and nuclear photorelocation movements resulting from the impaired regulation of chloroplast-actin filaments. In pavement cells, pmi1 mutant plants were partially defective in both plastid and nuclear photorelocation movements, but pmi1pmir1 and pmi1pmir1pmir2 mutant lines lacked the blue light-induced movement responses of plastids and nuclei completely. These results indicated that PMI1 is essential for chloroplast and nuclear photorelocation movements in mesophyll cells and that both PMI1 and PMIR1 are indispensable for photorelocation movements of plastids and thus, nuclei in pavement cells.In plants, organelles move within the cell and become appropriately positioned to accomplish their functions and adapt to the environment (for review, see Wada and Suetsugu, 2004). Light-induced chloroplast movement (chloroplast photorelocation movement) is one of the best characterized organelle movements in plants (Suetsugu and Wada, 2012). Under weak light conditions, chloroplasts move toward light to capture light efficiently (the accumulation response; Zurzycki, 1955). Under strong light conditions, chloroplasts escape from light to avoid photodamage (the avoidance response; Kasahara et al., 2002; Sztatelman et al., 2010; Davis and Hangarter, 2012; Cazzaniga et al., 2013). In most green plant species, these responses are induced primarily by the blue light receptor phototropin (phot) in response to a range of wavelengths from UVA to blue light (approximately 320–500 nm; for review, see Suetsugu and Wada, 2012; Wada and Suetsugu, 2013; Kong and Wada, 2014). Phot-mediated chloroplast movement has been shown in land plants, such as Arabidopsis (Arabidopsis thaliana; Jarillo et al., 2001; Kagawa et al., 2001; Sakai et al., 2001), the fern Adiantum capillus-veneris (Kagawa et al., 2004), the moss Physcomitrella patens (Kasahara et al., 2004), and the liverwort Marchantia polymorpha (Komatsu et al., 2014). Two phots in Arabidopsis, phot1 and phot2, redundantly mediate the accumulation response (Sakai et al., 2001), whereas phot2 primarily regulates the avoidance response (Jarillo et al., 2001; Kagawa et al., 2001; Luesse et al., 2010). M. polymorpha has only one phot that mediates both the accumulation and avoidance responses (Komatsu et al., 2014), although two or more phots mediate chloroplast photorelocation movement in A. capillus-veneris (Kagawa et al., 2004) and P. patens (Kasahara et al., 2004). Thus, duplication and functional diversification of PHOT genes have occurred during land plant evolution, and plants have gained a sophisticated light sensing system for chloroplast photorelocation movement.In general, movements of plant organelles, including chloroplasts, are dependent on actin filaments (for review, see Wada and Suetsugu, 2004). Most organelles common in eukaryotes, such as mitochondria, peroxisomes, and Golgi bodies, use the myosin motor for their movements, but there is no clear evidence that chloroplast movement is myosin dependent (for review, see Suetsugu et al., 2010a). Land plants have innovated a novel actin-based motility system that is specialized for chloroplast movement as well as a photoreceptor system (for review, see Suetsugu et al., 2010a; Wada and Suetsugu, 2013; Kong and Wada, 2014). Chloroplast-actin (cp-actin) filaments, which were first found in Arabidopsis, are short actin filaments specifically localized around the chloroplast periphery at the interface between the chloroplast and the plasma membrane (Kadota et al., 2009). Strong blue light induces the rapid disappearance of cp-actin filaments and then, their subsequent reappearance preferentially at the front region of the moving chloroplasts. This asymmetric distribution of cp-actin filaments is essential for directional chloroplast movement (Kadota et al., 2009; Kong et al., 2013a). The greater the difference in the amount of cp-actin filaments between the front and rear regions of chloroplasts becomes, the faster the chloroplasts move, in which the magnitude of the difference is determined by fluence rate (Kagawa and Wada, 2004; Kadota et al., 2009; Kong et al., 2013a). Strong blue light-induced disappearance of cp-actin filaments is regulated in a phot2-dependent manner before the intensive polymerization of cp-actin filaments at the front region occurs (Kadota et al., 2009; Ichikawa et al., 2011; Kong et al., 2013a). This phot2-dependent response contributes to the greater difference in the amount of cp-actin filaments between the front and rear regions of chloroplasts. Similar behavior of cp-actin filaments has also been observed in A. capillus-veneris (Tsuboi and Wada, 2012) and P. patens (Yamashita et al., 2011).Like chloroplasts, nuclei also show light-mediated movement and positioning (nuclear photorelocation movement) in land plants (for review, see Higa et al., 2014b). In gametophytic cells of A. capillus-veneris, weak light induced the accumulation responses of both chloroplasts and nuclei, whereas strong light induced avoidance responses (Kagawa and Wada, 1993, 1995; Tsuboi et al., 2007). However, in mesophyll cells of Arabidopsis, strong blue light induced both chloroplast and nuclear avoidance responses, but weak blue light induced only the chloroplast accumulation response (Iwabuchi et al., 2007, 2010; Higa et al., 2014a). In Arabidopsis pavement cells, small numbers of tiny plastids were found and showed autofluorescence under the confocal laser-scanning microscopy (Iwabuchi et al., 2010; Higa et al., 2014a). Hereafter, the plastid in the pavement cells is called the pavement cell plastid. Strong blue light-induced avoidance responses of pavement cell plastids and nuclei were induced in a phot2-dependent manner, but the accumulation response was not detected for either organelle (Iwabuchi et al., 2007, 2010; Higa et al., 2014a). In both Arabidopsis and A. capillus-veneris, phots mediate nuclear photorelocation movement, and phot2 mediates the nuclear avoidance response (Iwabuchi et al., 2007, 2010; Tsuboi et al., 2007). The nuclear avoidance response is dependent on actin filaments in both mesophyll and pavement cells of Arabidopsis (Iwabuchi et al., 2010). Recently, it was shown that the nuclear avoidance response relies on cp-actin-dependent movement of pavement cell plastids, where nuclei are associated with pavement cell plastids of Arabidopsis (Higa et al., 2014a). In mesophyll cells, nuclear avoidance response is likely dependent on cp-actin filament-mediated chloroplast movement, because the mutants deficient in chloroplast movement were also defective in nuclear avoidance response (Higa et al., 2014a). Thus, phots mediate both chloroplast (and pavement cell plastid) and nuclear photorelocation movement by regulating cp-actin filaments.Molecular genetic analyses of Arabidopsis mutants deficient in chloroplast photorelocation movement have identified many molecular factors involved in signal transduction and/or motility systems as well as those involved in the photoreceptor system for chloroplast photorelocation movement (and thus, nuclear photorelocation movement; for review, see Suetsugu and Wada, 2012; Wada and Suetsugu, 2013; Kong and Wada, 2014). CHLOROPLAST UNUSUAL POSITIONING1 (CHUP1; Oikawa et al., 2003) and KINESIN-LIKE PROTEIN FOR ACTIN-BASED CHLOROPLAST MOVEMENT (KAC; Suetsugu et al., 2010b) are key factors for generating and/or maintaining cp-actin filaments. Both proteins are highly conserved in land plants and essential for the movement and attachment of chloroplasts to the plasma membrane in Arabidopsis (Oikawa et al., 2003, 2008; Suetsugu et al., 2010b), A. capillus-veneris (Suetsugu et al., 2012), and P. patens (Suetsugu et al., 2012; Usami et al., 2012). CHUP1 is localized on the chloroplast outer membrane and binds to globular and filamentous actins and profilin in vitro (Oikawa et al., 2003, 2008; Schmidt von Braun and Schleiff, 2008). Although KAC is a kinesin-like protein, it lacks microtubule-dependent motor activity but has filamentous actin binding activity (Suetsugu et al., 2010b). An actin-bundling protein THRUMIN1 (THRUM1) is required for efficient chloroplast photorelocation movement (Whippo et al., 2011) and interacts with cp-actin filaments (Kong et al., 2013a). chup1 and kac mutant plants were shown to lack detectable cp-actin filaments (Kadota et al., 2009; Suetsugu et al., 2010b; Ichikawa et al., 2011; Kong et al., 2013a). Similarly, cp-actin filaments were rarely detected in thrum1 mutant plants (Kong et al., 2013a), indicating that THRUM1 also plays an important role in maintaining cp-actin filaments.Other proteins J-DOMAIN PROTEIN REQUIRED FOR CHLOROPLAST ACCUMULATION RESPONSE1 (JAC1; Suetsugu et al., 2005), WEAK CHLOROPLAST MOVEMENT UNDER BLUE LIGHT1 (WEB1; Kodama et al., 2010), and PLASTID MOVEMENT IMPAIRED2 (PMI2; Luesse et al., 2006; Kodama et al., 2010) are involved in the light regulation of cp-actin filaments and chloroplast photorelocation movement. JAC1 is an auxilin-like J-domain protein that mediates the chloroplast accumulation response through its J-domain function (Suetsugu et al., 2005; Takano et al., 2010). WEB1 and PMI2 are coiled-coil proteins that interact with each other (Kodama et al., 2010). Although web1 and pmi2 were partially defective in the avoidance response, the jac1 mutation completely suppressed the phenotype of web1 and pmi2, suggesting that the WEB1/PMI2 complex suppresses JAC1 function (i.e. the accumulation response) under strong light conditions (Kodama et al., 2010). Both web1 and pmi2 showed impaired disappearance of cp-actin filaments in response to strong blue light (Kodama et al., 2010). However, the exact molecular functions of these proteins are unknown.In this study, we characterized mutant plants deficient in the PMI1 gene and two homologous genes PLASTID MOVEMENT IMPAIRED1-RELATED1 (PMIR1) and PMIR2. PMI1 was identified through molecular genetic analyses of pmi1 mutants that showed severe defects in chloroplast accumulation and avoidance responses (DeBlasio et al., 2005). PMI1 is a plant-specific C2-domain protein (DeBlasio et al., 2005; Zhang and Aravind, 2010), but its roles and those of PMIRs in cp-actin-mediated chloroplast and nuclear photorelocation movements remained unclear. Thus, we analyzed chloroplast and nuclear photorelocation movements in the single, double, and triple mutants of pmi1, pmir1, and pmir2.  相似文献   

9.
Mutations that eliminate chloroplast translation in Arabidopsis (Arabidopsis thaliana) result in embryo lethality. The stage of embryo arrest, however, can be influenced by genetic background. To identify genes responsible for improved growth in the absence of chloroplast translation, we examined seedling responses of different Arabidopsis accessions on spectinomycin, an inhibitor of chloroplast translation, and crossed the most tolerant accessions with embryo-defective mutants disrupted in chloroplast ribosomal proteins generated in a sensitive background. The results indicate that tolerance is mediated by ACC2, a duplicated nuclear gene that targets homomeric acetyl-coenzyme A carboxylase to plastids, where the multidomain protein can participate in fatty acid biosynthesis. In the presence of functional ACC2, tolerance is enhanced by a second locus that maps to chromosome 5 and heightened by additional genetic modifiers present in the most tolerant accessions. Notably, some of the most sensitive accessions contain nonsense mutations in ACC2, including the “Nossen” line used to generate several of the mutants studied here. Functional ACC2 protein is therefore not required for survival in natural environments, where heteromeric acetyl-coenzyme A carboxylase encoded in part by the chloroplast genome can function instead. This work highlights an interesting example of a tandem gene duplication in Arabidopsis, helps to explain the range of embryo phenotypes found in Arabidopsis mutants disrupted in essential chloroplast functions, addresses the nature of essential proteins encoded by the chloroplast genome, and underscores the value of using natural variation to study the relationship between chloroplast translation, plant metabolism, protein import, and plant development.Embryo development in Arabidopsis (Arabidopsis thaliana) requires the coordinated expression of a large number of essential genes (Muralla et al., 2011). Recessive mutations that disrupt these nuclear genes result in an embryo-defective (emb) mutant phenotype (Meinke, 2013). Many EMB genes of Arabidopsis encode chloroplast-localized proteins involved in basic metabolism, protein import, and chloroplast gene expression (Hsu et al., 2010; Bryant et al., 2011; Savage et al., 2013). Functional plastids are therefore required for embryo development in Arabidopsis. Mutations that disrupt photosynthesis alone interfere with embryo and seedling pigmentation, not embryo development. Multiple examples of EMB genes that encode chloroplast-localized aminoacyl-tRNA synthetases, RNA-binding proteins, translation factors, and ribosomal proteins have been described in the literature (Berg et al., 2005; Bryant et al., 2011; Muralla et al., 2011; Romani et al., 2012; Tiller and Bock, 2014). Translation of some chloroplast-encoded mRNAs is therefore essential for seed development. This raises a basic question: which chloroplast genes are required? In this report, we used natural variation and genetic analysis to evaluate the model (Bryant et al., 2011) that a single chloroplast gene, acetyl-coenzyme A carboxylase D (accD), needed for the initial stages of fatty acid biosynthesis, underlies the requirement for chloroplast translation during heterotrophic growth and embryo development in Arabidopsis.Targeted gene disruptions in tobacco (Nicotiana tabacum) have identified four chloroplast genes with essential functions that extend beyond photosynthesis: accD, caseinolytic protease P1 (clpP1), hypothetical chloroplast open reading frame1 (ycf1), and ycf2 (Drescher et al., 2000; Kuroda and Maliga, 2003; Kode et al., 2005). Comparative genomics have shown that all four genes are retained in the plastid genomes of most angiosperms, including chlorophyll-deficient, parasitic species (dePamphilis and Palmer, 1990; Funk et al., 2007; Jansen et al., 2007). Several examples of essential chloroplast genes that relocated to the nucleus have also been described (Magee et al., 2010; Rousseau-Gueutin et al., 2013). The absence of ycf1 and ycf2 in grasses (Jansen et al., 2007) and the replacement of accD with a nuclear gene that targets functional protein back to the chloroplast (Konishi and Sasaki, 1994; Chalupska et al., 2008) remain to be explained.The accD gene in Arabidopsis (AtCg00500) encodes one subunit of the chloroplast-localized heteromeric acetyl-coenzyme A carboxylase (ACCase), an essential enzyme in fatty acid biosynthesis that converts acetyl-CoA to malonyl-CoA. Three other subunits are encoded by nuclear genes, one of which is also known to be required for embryo development (Li et al., 2011). Disruptions of three additional genes (At3g25860, At1g34430, and At2g30200) associated with the reactions that precede and follow the step catalyzed by heteromeric ACCase also result in embryo lethality (Lin et al., 2003; Bryant et al., 2011; Muralla et al., 2011). Embryo lethality is also encountered in auxotrophic mutants unable to produce biotin, an essential vitamin required for ACCase function (Schneider et al., 1989; Patton et al., 1998; Muralla et al., 2008). The conversion of acetyl-CoA to malonyl-CoA during fatty acid biosynthesis within the plastid is therefore required for embryo development in Arabidopsis.In addition to the chloroplast-localized, heteromeric ACCase found in most angiosperms, there is also a cytosolic, homomeric ACCase involved in later stages of fatty acid biosynthesis. In both Arabidopsis and Brassica napus, the gene that encodes this homomeric enzyme is duplicated (Yanai et al., 1995; Schulte et al., 1997). One copy (ACC1; At1g36160) encodes an essential protein localized to the cytosol. Disruption of this gene in Arabidopsis (EMB22, GURKE, and PASTICCINO3 [PAS3]) results in an embryo-defective phenotype distinct from that seen following a loss of chloroplast translation (Meinke, 1985; Baud et al., 2004). Weak alleles exhibit cold sensitivity and glossy inflorescence stems resulting from changes in cuticular wax composition (Lü et al., 2011; Amid et al., 2012). The adjacent copy (ACC2; At1g36180) is expressed at low levels and is predicted to encode a chloroplast-localized protein (Yanai et al., 1995; Baud et al., 2003; Babiychuk et al., 2011). Knockouts of this gene exhibit no obvious phenotype under normal growth conditions (Babiychuk et al., 2011).In Brassica spp., plants with albino leaves devoid of chloroplast ribosomes have been produced by germinating seeds on spectinomycin, an inhibitor of chloroplast translation, and then transplanting the young seedlings to basal medium (Zubko and Day, 1998). This experimental approach was initially described as a promising system for generating stable albinism without mutagenesis. However, different results were obtained with tobacco and Arabidopsis seedlings, which were much more sensitive to spectinomycin. In light of this reported variation in seedling responses to spectinomycin and the known duplication of ACC1 in the Brassicaceae, we decided to explore whether natural accessions of Arabidopsis differed in their ability to tolerate a loss of chloroplast translation and whether genetic analysis in Arabidopsis could uncover some of the genes involved. The results described here confirm the value of this approach, provide insights into the phenotypes of mutants defective in essential chloroplast functions, and help to explain the requirement of chloroplast translation for plant growth and development.  相似文献   

10.
11.
12.
13.
14.
Fumarylacetoacetate hydrolase (FAH) hydrolyzes fumarylacetoacetate to fumarate and acetoacetate, the final step in the tyrosine (Tyr) degradation pathway that is essential to animals. Deficiency of FAH in animals results in an inborn lethal disorder. However, the role for the Tyr degradation pathway in plants remains to be elucidated. In this study, we isolated an Arabidopsis (Arabidopsis thaliana) short-day sensitive cell death1 (sscd1) mutant that displays a spontaneous cell death phenotype under short-day conditions. The SSCD1 gene was cloned via a map-based cloning approach and found to encode an Arabidopsis putative FAH. The spontaneous cell death phenotype of the sscd1 mutant was completely eliminated by further knockout of the gene encoding the putative homogentisate dioxygenase, which catalyzes homogentisate into maleylacetoacetate (the antepenultimate step) in the Tyr degradation pathway. Furthermore, treatment of Arabidopsis wild-type seedlings with succinylacetone, an abnormal metabolite caused by loss of FAH in the Tyr degradation pathway, mimicked the sscd1 cell death phenotype. These results demonstrate that disruption of FAH leads to cell death in Arabidopsis and suggest that the Tyr degradation pathway is essential for plant survival under short-day conditions.Programmed cell death (PCD) has been defined as a sequence of genetically regulated events that lead to the elimination of specific cells, tissues, or whole organs (Lockshin and Zakeri, 2004). In plants, PCD is essential for developmental processes and defense responses (Dangl et al., 1996; Greenberg, 1996; Durrant et al., 2007). One well-characterized example of plant PCD is the hypersensitive response occurring during incompatible plant-pathogen interactions (Lam, 2004), which results in cell death to form visible lesions at the site of infection by an avirulent pathogen and consequently limits the pathogen spread (Morel and Dangl, 1997).To date, a large number of mutants that display spontaneous cell death lesions have been identified in barley (Hordeum vulgare), maize (Zea mays), rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana; Marchetti et al., 1983; Wolter et al., 1993; Dietrich et al., 1994; Gray et al., 1997). Because lesions form in the absence of pathogen infection, these mutants have been collectively termed as lesion-mimic mutants. Many genes with regulatory roles in PCD and defense responses, including LESION SIMULATING DISEASE1, ACCELERATED CELL DEATH11, and VASCULAR ASSOCIATED DEATH1, have been cloned and characterized (Dietrich et al., 1997; Brodersen et al., 2002; Lorrain et al., 2004).The appearance of spontaneous cell death lesions in some lesion-mimic mutants is dependent on photoperiod. For example, the Arabidopsis mutant lesion simulating disease1 and myoinositol-1-phosphate synthase1 show lesions under long days (LD; Dietrich et al., 1994; Meng et al., 2009), whereas the lesion simulating disease2, lesion initiation1, enhancing RPW8-mediated HR-like cell death1, and lag one homolog1 display lesions under short days (SD; Dietrich et al., 1994; Ishikawa et al., 2003; Wang et al., 2008; Ternes et al., 2011).Blockage of some metabolic pathways in plants may cause cell death and result in lesion formation. For example, the lesion-mimic phenotypes in the Arabidopsis mutants lesion initiation2 and accelerated cell death2 and the maize mutant lesion mimic22 result from an impairment of porphyrin metabolism (Hu et al., 1998; Ishikawa et al., 2001; Mach et al., 2001). Deficiency in fatty acid, sphingolipid, and myoinositol metabolism also causes cell death in Arabidopsis (Mou et al., 2000; Liang et al., 2003; Wang et al., 2008; Meng et al., 2009; Donahue et al., 2010; Berkey et al., 2012).Tyr degradation is an essential five-step pathway in animals (Lindblad et al., 1977). First, Tyr aminotransferase catalyzes the conversion of Tyr into 4-hydroxyphenylpyruvate, which is further transformed into homogentisate by 4-hydroxyphenylpyruvate dioxygenase. Through the sequential action of homogentisate dioxygenase (HGO), maleylacetoacetate isomerase (MAAI), and fumarylacetoacetate hydrolase (FAH), homogentisate is catalyzed to generate fumarate and acetoacetate (Lindblad et al., 1977). Blockage of this pathway in animals results in metabolic disorder diseases (Lindblad et al., 1977; Ruppert et al., 1992; Grompe et al., 1993). For example, human FAH deficiency causes hereditary tyrosinemia type I (HT1), an inborn lethal disease (St-Louis and Tanguay, 1997). Although the homologous genes putatively encoding these enzymes exist in plants (Dixon et al., 2000; Lopukhina et al., 2001; Dixon and Edwards, 2006), it is unclear whether this pathway is essential for plant growth and development.In this study, we report the isolation and characterization of a recessive short-day sensitive cell death1 (sscd1) mutant in Arabidopsis. Map-based cloning of the corresponding gene revealed that SSCD1 encodes the Arabidopsis putative FAH. Further knockout of the gene encoding the Arabidopsis putative HGO completely eliminated the spontaneous cell death phenotype in the sscd1 mutant. Furthermore, we found that treatment of Arabidopsis wild-type seedlings with succinylacetone, an abnormal metabolite caused by loss of FAH in the Tyr degradation pathway (Lindblad et al., 1977), is able to mimic the sscd1 cell death phenotype. These results demonstrate that disruption of FAH leads to cell death in Arabidopsis and suggest that the Tyr degradation pathway is essential for plant survival under SD.  相似文献   

15.
16.
The RIBOSOMAL PROTEIN L10 (RPL10) is an integral component of the eukaryotic ribosome large subunit. Besides being a constituent of ribosomes and participating in protein translation, additional extraribosomal functions in the nucleus have been described for RPL10 in different organisms. Previously, we demonstrated that Arabidopsis (Arabidopsis thaliana) RPL10 genes are involved in development and translation under ultraviolet B (UV-B) stress. In this work, transgenic plants expressing ProRPL10:β-glucuronidase fusions show that, while AtRPL10A and AtRPL10B are expressed both in the female and male reproductive organs, AtRPL10C expression is restricted to pollen grains. Moreover, the characterization of double rpl10 mutants indicates that the three AtRPL10s differentially contribute to the total RPL10 activity in the male gametophyte. All three AtRPL10 proteins mainly accumulate in the cytosol but also in the nucleus, suggesting extraribosomal functions. After UV-B treatment, only AtRPL10B localization increases in the nuclei. We also here demonstrate that the three AtRPL10 genes can complement a yeast RPL10 mutant. Finally, the involvement of RPL10B and RPL10C in UV-B responses was analyzed by two-dimensional gels followed by mass spectrometry. Overall, our data provide new evidence about the nonredundant roles of RPL10 proteins in Arabidopsis.In eukaryotes, the cytosolic ribosomes consist of large 60S and small 40S subunits. In Arabidopsis (Arabidopsis thaliana), ribosomal protein genes exist as families composed of two to seven members that could be differentially incorporated into the cytosolic ribosome under specific situations (Schmid et al., 2005; Byrne, 2009). In this way, ribosomal heterogeneity would allow selective translation of specific mRNAs under particular cell conditions (Barakat et al., 2001; Szick-Miranda and Bailey-Serres, 2001; Giavalisco et al., 2005; Carroll et al., 2008; Carroll, 2013). Arabidopsis mutants in ribosomal proteins exhibit a large range of developmental phenotypes with extreme abnormalities, including embryonic lethality, suggesting that ribosomes also have specific functions regulating the expression of developmental genes (Van Lijsebettens et al., 1994; Degenhardt and Bonham-Smith, 2008; Byrne, 2009; Horiguchi et al., 2011, 2012; Szakonyi and Byrne, 2011). Furthermore, it has been recently demonstrated that ribosomal proteins control auxin-mediated developmental programs by translational regulation of auxin response factors (Rosado et al., 2012). In addition, the characterization of single, double, and, in certain cases, triple mutants as well as complementation by paralog genes have demonstrated full, partial, and no redundancy between members of ribosomal protein families (Briggs et al., 2006; Guo and Chen, 2008; Guo et al., 2011; Horiguchi et al., 2011; Stirnberg et al., 2012).RIBOSOMAL PROTEIN L10 (RPL10) was initially identified in humans as a putative suppressor of Wilms’ tumor (Dowdy et al., 1991). Since then, RPL10 has been studied in different organisms from archaea and bacteria to eukaryotes such as mammals, insects, yeast, and plants (Marty et al., 1993; Mills et al., 1999; Hwang et al., 2000; Zhang et al., 2004; Wen et al., 2005; Singh et al., 2009). A remarkable property of this protein is its high degree of amino acid conservation, suggesting fundamental and critical conserved functions of RPL10 in different organisms (Farmer et al., 1994; Eisinger et al., 1997; Hofer et al., 2007; Nishimura et al., 2008). Likewise, the crystallographic structural similarity observed among RPL10 orthologs in eukaryotes, bacteria, and archaea (called L16) established the conservation of this universal ribosomal protein family and provided evidence of the inalterability of the ribosome during evolution (Spahn et al., 2001; Nishimura et al., 2008). Nevertheless, besides being a constituent of ribosomes and participating in protein translation, additional extraribosomal functions have been described for RPL10 (Mills et al., 1999; Hwang et al., 2000; Chávez-Rios et al., 2003; Zhang et al., 2004; Singh et al., 2009). In yeast, RPL10 is essential for viability, organizes the union site of the aminoacyl-tRNA, and its incorporation into the 60S subunit is a prerequisite for subunit joining and the initiation of translation (West et al., 2005; Hofer et al., 2007). Extensive analysis of the in vivo assembly of ribosomes revealed that RPL10 is loaded to the ribosome in the cytosol with the assistance of its chaperone suppressor of QSR1 truncations (Hedges et al., 2005; West et al., 2005).Arabidopsis has three genes encoding RPL10 proteins, AtRPL10A, AtRPL10B, and, AtRPL10C. Recently, we demonstrated that Arabidopsis RPL10 genes are differentially regulated by UV-B radiation: RPL10B is down-regulated, RPL10C is up-regulated, while RPL10A is not UV-B regulated. Arabidopsis single mutants showed that RPL10 genes are not functionally equivalent. Heterozygous rpl10a mutant plants are translation deficient under UV-B conditions, knockout rpl10A mutants are not viable, and knockdown homozygous rpl10B mutants show abnormal growth. Conversely, knockout homozygous rpl10C mutants do not exhibit any visible phenotype. Overall, RPL10 genes are involved in development and translation under UV-B stress (Falcone Ferreyra et al., 2010b). Furthermore, coimmunoprecipitation studies showed an association of RPL10 with nuclear proteins, suggesting that at least one of the RPL10 isoforms could have an extraribosomal function in the nucleus (Falcone Ferreyra et al., 2010a).The aim of this work was to further investigate the contribution of each Arabidopsis RPL10 to plant development and UV-B responses. We examined the spatiotemporal expression of each AtRPL10 using transgenic plants expressing ProRPL10:GUS fusions. By AtRPL10-GFP fusions, we analyzed the subcellular localization of each RPL10, demonstrating that the three isoforms are mainly localized in the cytosol but also in the nucleus. In order to investigate the functional redundancy between AtRPL10 genes in more detail, we generated and characterized double rpl10 mutants. We also here demonstrate that the three AtRPL10 genes can complement a yeast RPL10 mutant. Finally, the involvement of RPL10B and RPL10C in UV-B responses was analyzed by two-dimensional (2D) gels followed by mass spectrometry. Overall, our data provide new insights into the role of each RPL10 in Arabidopsis.  相似文献   

17.
Initial pollen-pistil interactions in the Brassicaceae are regulated by rapid communication between pollen grains and stigmatic papillae and are fundamentally important, as they are the first step toward successful fertilization. The goal of this study was to examine the requirement of exocyst subunits, which function in docking secretory vesicles to sites of polarized secretion, in the context of pollen-pistil interactions. One of the exocyst subunit genes, EXO70A1, was previously identified as an essential factor in the stigma for the acceptance of compatible pollen in Arabidopsis (Arabidopsis thaliana) and Brassica napus. We hypothesized that EXO70A1, along with other exocyst subunits, functions in the Brassicaceae dry stigma to deliver cargo-bearing secretory vesicles to the stigmatic papillar plasma membrane, under the pollen attachment site, for pollen hydration and pollen tube entry. Here, we investigated the functions of exocyst complex genes encoding the remaining seven subunits, SECRETORY3 (SEC3), SEC5, SEC6, SEC8, SEC10, SEC15, and EXO84, in Arabidopsis stigmas following compatible pollinations. Stigma-specific RNA-silencing constructs were used to suppress the expression of each exocyst subunit individually. The early postpollination stages of pollen grain adhesion, pollen hydration, pollen tube penetration, seed set, and overall fertility were analyzed in the transgenic lines to evaluate the requirement of each exocyst subunit. Our findings provide comprehensive evidence that all eight exocyst subunits are necessary in the stigma for the acceptance of compatible pollen. Thus, this work implicates a fully functional exocyst complex as a component of the compatible pollen response pathway to promote pollen acceptance.In flowering plants, sexual reproduction occurs as a result of constant communication between the male gametophyte and the female reproductive organ, from the initial acceptance of compatible pollen to final step of successful fertilization (for review, see Beale and Johnson, 2013; Dresselhaus and Franklin-Tong, 2013; Higashiyama and Takeuchi, 2015). In the Brassicaceae, the stigmas that present a receptive surface for pollen are categorized as dry and covered with unicellular papillae (Heslop-Harrison and Shivanna, 1977). Communication is initiated rapidly following contact of a pollen grain with a stigmatic papilla, as the role of the papillae is to regulate the early cellular responses leading to compatible pollen germination. The basal compatible pollen recognition response also presents a barrier to foreign pollen or is inhibited with self-incompatible pollen (for review, see Dickinson, 1995; Hiscock and Allen, 2008; Chapman and Goring, 2010; Indriolo et al., 2014b).The initial adhesive interaction between the pollen grain and the papilla cell in the Brassicaceae is mediated by the exine of the pollen grain and the surface of the stigmatic papilla (Preuss et al., 1993; Zinkl et al., 1999). A stronger connection results between the adhered pollen grain and the stigmatic papilla with the formation of a lipid-protein interface (foot) derived from the pollen coat and the stigmatic papillar surface (Mattson et al., 1974; Stead et al., 1980; Gaude and Dumas, 1986; Elleman and Dickinson, 1990; Elleman et al., 1992; Preuss et al., 1993; Mayfield et al., 2001). It is at this point that a Brassicaceae-specific recognition of compatible pollen is proposed to occur (Hülskamp et al., 1995; Pruitt, 1999), though the nature of this recognition system is not clearly defined. Two stigma-specific Brassica oleracea glycoproteins, the S-Locus Glycoprotein and S-Locus Related1 (SLR1) protein, play a role in compatible pollen adhesion (Luu et al., 1997, 1999), potentially through interactions with the pollen coat proteins, PCP-A1 and SLR1-BP, respectively (Doughty et al., 1998; Takayama et al., 2000). The simultaneous recognition of self-incompatible pollen would also take place at this stage (for review, see Dresselhaus and Franklin-Tong, 2013; Indriolo et al., 2014b; Sawada et al., 2014). Thus, this interface not only provides a strengthened bond between the pollen grain and stigmatic papilla, but likely facilitates the interaction of signaling proteins from both partners to promote specific cellular responses in the stigmatic papilla toward the pollen grain.One response regulated by these interactions is the release of water from the stigmatic papilla to the adhered compatible pollen grain to enable the pollen grain to rehydrate, germinate, and produce a pollen tube (Zuberi and Dickinson, 1985; Preuss et al., 1993). Upon hydration, the pollen tube emerges at the site of pollen-papilla contact and penetrates the stigma surface between the plasma membrane and the overlaying cell wall (Elleman et al., 1992; Kandasamy et al., 1994). Pollen tube entry into the stigmatic surface represents a second barrier, selecting compatible pollen tubes. Subsequently, the compatible pollen tubes traverse down to the base of the stigma, enter the transmitting tract, and grow intracellularly toward ovules for fertilization. Pollen-pistil interactions at these later stages are also highly regulated (for review, see Beale and Johnson, 2013; Dresselhaus and Franklin-Tong, 2013; Higashiyama and Takeuchi, 2015).EXO70A1, a subunit of the exocyst, was identified as a factor involved in early pollen-stigma interactions, where it is required in the stigma for the acceptance of compatible pollen and inhibited by the self-incompatibility response (Samuel et al., 2009). Stigmas from the Arabidopsis (Arabidopsis thaliana) exo70A1 mutant display constitutive rejection of wild-type-compatible pollen (Samuel et al., 2009; Safavian et al., 2014). This stigmatic defect was rescued by the stigma-specific expression of an Red Fluorescent Protein (RFP):EXO70A1 transgene (Samuel et al., 2009) or partially rescued by providing a high relative humidity environment (Safavian et al., 2014). In addition, the stigma-specific expression of an EXO70A1 RNA interference construct in Brassica napus ‘Westar’ resulted in impaired compatible pollen acceptance and a corresponding reduction in seed production compared with compatible pollinations with wild-type B. napus ‘Westar’ pistils (Samuel et al., 2009). From these studies, EXO70A1 was found to be a critical component in stigmatic papillae to promote compatible pollen hydration and pollen tube entry through the stigma surface. One of the functions of the exocyst is to mediate polar secretion (for review, see Heider and Munson, 2012; Zárský et al., 2013; Synek et al., 2014). Consistent with this, previous studies have observed vesicle-like structures in proximity to the stigmatic papillar plasma membrane in response to compatible pollen in both Brassica spp. and Arabidopsis species (Elleman and Dickinson, 1990, 1996; Dickinson, 1995; Safavian and Goring, 2013; Indriolo et al., 2014a). The secretory activity is predicted to promote pollen hydration and pollen tube entry. As well, consistent with the proposed inhibition of EXO70A1 by the self-incompatibility pathway (Samuel et al., 2009), a complete absence or a significant reduction of vesicle-like structures at the stigmatic papillar plasma membrane was observed in the exo70A1 mutant and with self-incompatible pollen (Safavian and Goring, 2013; Indriolo et al., 2014a).The exocyst is a well-defined complex in yeast (Saccharomyces cerevisiae) and animal systems, consisting of eight subunits, SEC3, SEC5, SEC6, SEC8, SEC10, SEC15, EXO70, and EXO84 (TerBush et al., 1996; Guo et al., 1999). Exocyst subunit mutants were first identified in yeast as secretory mutants displaying a cytosolic accumulation of secretory vesicles (Novick et al., 1980). Subsequent work defined roles for the exocyst in vesicle docking at target membranes in processes such as regulated secretion, polarized exocytosis, and cytokinesis to facilitate membrane fusion by Soluble NSF Attachment protein Receptor (SNARE) complexes (for review, see Heider and Munson, 2012; Liu and Guo, 2012). In plants, genes encoding all eight exocyst subunits have been identified, and many of these genes exist as multiple copies. For example, the Arabidopsis genome contains single copy genes for SEC6 and SEC8, two copies each for SECRETORY3 (SEC3), SEC5, SEC10, and SEC15, three EXO84 genes, and 23 EXO70 genes (Chong et al., 2010; Cvrčková et al., 2012; Vukašinović et al., 2014). Ultrastructural studies using electron tomography uncovered the existence of a structure resembling the exocyst in Arabidopsis (Otegui and Staehelin, 2004; Seguí-Simarro et al., 2004). Localization studies of specific Arabidopsis exocyst subunits also supported conserved roles in polarized exocytosis and cytokinesis in plants. Localization studies have shown EXO70, SEC6, and SEC8 at the growing tip of pollen tubes (Hála et al., 2008), EXO70A1 at the stigmatic papillar plasma membrane (Samuel et al., 2009), SEC3a, SEC6, SEC8, SEC15b, EXO70A1, and EXO84b at the root epidermal cell plasma membrane and developing cell plate (Fendrych et al., 2010, 2013; Wu et al., 2013; Zhang et al., 2013; Rybak et al., 2014), and SEC3a at the plasma membrane in the embryo and root hair (Zhang et al., 2013). Similar to the yeast exocyst mutants, vesicle accumulation has also been observed in the exo70A1 and exo84b mutants (Fendrych et al., 2010; Safavian and Goring, 2013). Taken together, these findings strongly support that plant exocyst subunits function in vivo in vesicle docking at sites of polarized secretion and cytokinesis (for review, see Zárský et al., 2013). In support of this, a recent study investigating Transport Protein Particle (TRAPP)II and exocyst complexes during cytokinesis in Arabidopsis has identified all eight exocyst components in immunoprecipitated complexes (SEC3a/SEC3b, SEC5a, SEC6, SEC8, SEC10, SEC15b, EXO70A1, EXO70H2, and EXO84b; Rybak et al., 2014).Several plant exocyst subunit genes have been implicated in biological processes that rely on regulated vesicle trafficking, where corresponding mutants have displayed a range of growth defects. At the cellular level, these phenotypes have been associated with decreased cell elongation and polar growth (Cole et al., 2005, 2014; Wen et al., 2005; Synek et al., 2006), defects in cytokinesis and cell plate formation (Fendrych et al., 2010; Wu et al., 2013; Rybak et al., 2014), and disrupted Pin-Formed (PIN) auxin efflux carrier recycling and polar auxin transport (Drdová et al., 2013). Several Arabidopsis subunit mutants display strong growth defects such as the sec3a mutant with an embryo-lethal phenotype (Zhang et al., 2013), sec6, sec8, and exo84b mutants with severely dwarfed phenotypes and defects in root growth (Fendrych et al., 2010; Wu et al., 2013; Cole et al., 2014), and exo70A1 with a milder dwarf phenotype (Synek et al., 2006). The Arabidopsis exo70A1 mutant has also been reported to have defects in root hair elongation, hypocotyl elongation, compatible pollen acceptance, seed coat deposition, and tracheary element differentiation (Synek et al., 2006; Samuel et al., 2009; Kulich et al., 2010; Li et al., 2013). Essential roles for other exocyst subunits include Arabidopsis SEC5a/SEC5b, SEC6, SEC8, and SEC15a/SEC15b in male gametophyte development and pollen tube growth (Cole et al., 2005; Hála et al., 2008; Wu et al., 2013), SEC8 in seed coat deposition (Kulich et al., 2010), SEC5a, SEC8, EXO70A1, and EXO84b in root meristem size and root cell elongation (Cole et al., 2014), and a maize (Zea mays) SEC3 homolog in root hair elongation (Wen et al., 2005). Finally, the Arabidopsis EXO70B1, EXO70B2, and EXO70H1 subunits have been implicated in plant defense responses (Pecenková et al., 2011; Stegmann et al., 2012; Kulich et al., 2013; Stegmann et al., 2013).Even with these detailed studies on the functions of exocyst subunits in plants, a systematic demonstration of the requirement of all eight exocyst subunits in a specific plant biological process is currently lacking. EXO70A1 was previously identified as an essential factor in the stigma for compatible pollen-pistil interactions in Arabidopsis and B. napus (Samuel et al., 2009), and we hypothesized that this protein functions as part of the exocyst complex to tether post-Golgi secretory vesicles to stigmatic papillar plasma membrane (Safavian and Goring, 2013). To provide support for the proposed biological role of the exocyst in the stigma for compatible pollen acceptance, we investigated the roles of the remaining seven subunits, SEC3, SEC5, SEC6, SEC8, SEC10, SEC15, and EXO84, in Arabidopsis stigmatic papillae. Given that some Arabidopsis exocyst subunits were previously determined to be essential at earlier growth stages, stigma-specific RNA-silencing constructs were used for each exocyst subunit, and the early postpollination stages were analyzed for these transgenic lines. Our collective data demonstrates that all eight exocyst subunits are required in the stigma for the early stages of compatible pollen-pistil interactions.  相似文献   

18.
Ca2+-dependent protein kinases (CPKs) form a large family of 34 genes in Arabidopsis (Arabidopsis thaliana). Based on their dependence on Ca2+, CPKs can be sorted into three types: strictly Ca2+-dependent CPKs, Ca2+-stimulated CPKs (with a significant basal activity in the absence of Ca2+), and essentially calcium-insensitive CPKs. Here, we report on the third type of CPK, CPK13, which is expressed in guard cells but whose role is still unknown. We confirm the expression of CPK13 in Arabidopsis guard cells, and we show that its overexpression inhibits light-induced stomatal opening. We combine several approaches to identify a guard cell-expressed target. We provide evidence that CPK13 (1) specifically phosphorylates peptide arrays featuring Arabidopsis K+ Channel KAT2 and KAT1 polypeptides, (2) inhibits KAT2 and/or KAT1 when expressed in Xenopus laevis oocytes, and (3) closely interacts in plant cells with KAT2 channels (Förster resonance energy transfer-fluorescence lifetime imaging microscopy). We propose that CPK13 reduces stomatal aperture through its inhibition of the guard cell-expressed KAT2 and KAT1 channels.Stomata are microscopic organs at the leaf surface, each made of two so-called guard cells forming a pore. Opening or closing these pores is the way through which plants control their gas exchanges with the atmosphere (i.e. carbon dioxide uptake to feed the photosynthetic process and transpirational loss of water vapor). Stomatal movements result from osmotically driven fluxes of water, which follow massive exchanges of solutes, including K+ ions, between the guard cells and the surrounding tissues (Hetherington, 2001; Nilson and Assmann, 2007).Both Ca2+-dependent and Ca2+-independent signaling pathways are known to control stomatal movements (MacRobbie, 1993, 1998; Blatt, 2000; Webb et al., 2001; Mustilli et al., 2002; Israelsson et al., 2006; Marten et al., 2007; Laanemets et al., 2013). In particular, Ca2+ signals have been reported to promote stomatal closure through the inhibition of inward K+ channels and the activation of anion channels (Blatt, 1991, 1992, 2000; Thiel et al., 1992; Grabov and Blatt, 1999; Schroeder et al., 2001; Hetherington and Brownlee, 2004; Mori et al., 2006; Marten et al., 2007; Geiger et al., 2010; Brandt et al., 2012; Scherzer et al., 2012). However, little is known about the molecular identity of the links between Ca2+ events and Shaker K+ channel activity. Several kinases and phosphatases are believed to be involved in both the Ca2+-dependent and Ca2+-independent signaling pathways. Plants express two large kinase families whose activity is related to Ca2+ signaling. Firstly, CBL-interacting protein kinases (CIPKs; 25 genes in Arabidopsis [Arabidopsis thaliana]) are indirectly controlled by their interaction with a set of calcium sensors, the calcineurin B-like proteins (CBLs; 10 genes in Arabidopsis). This complex forms a fascinating network of potential Ca2+ signaling decoders (Luan, 2009; Weinl and Kudla, 2009), which have been addressed in numerous reports (Xu et al., 2006; Hu et al., 2009; Batistic et al., 2010; Held et al., 2011; Chen et al., 2013). In particular, some CBL-CIPK pairs have been shown to regulate Shaker channels such as Arabidopsis K+ Transporter1 (AKT1; Xu et al., 2006; Lan et al., 2011) or AKT2 (Held et al., 2011). Second, Ca2+-dependent protein kinases (CPKs) form an even larger family (34 genes in Arabidopsis) of proteins combining a kinase domain with the ability to bind Ca2+, thanks to the so-called EF hands (Harmon et al., 2000; Harper et al., 2004). CPKs, which, interestingly, are not found in animal cells, exhibit different calcium dependencies (Boudsocq et al., 2012). With respect to this, three types of CPKs can be considered: strictly Ca2+-dependent CPKs, Ca2+-stimulated CPKs (with a significant basal activity in the absence of Ca2+), and essentially Ca2+-insensitive CPKs (however, structurally close to kinases of groups 1 and 2).Pioneering work by Luan et al. (1993) demonstrated in Vicia faba guard cells that inward K+ channels were regulated by some Ca2+-dependent kinases. Then, such a Ca2+-dependent kinase was purified from guard cell protoplasts of V. faba and shown to actually phosphorylate the in vitro-translated KAT1 protein, a Shaker channel subunit natively expressed in Arabidopsis guard cells (Li et al., 1998). KAT1 regulation by CPK was shown by the inhibition of KAT1 currents after the coexpression of KAT1 and CDPK from soybean (Glycine max) in oocytes (Berkowitz et al., 2000). Since then, several cpk mutant lines of Arabidopsis have been shown to be impaired in stomatal movements, for example cpk10 (Ca2+ insensitive), cpk4/cpk11 (Ca2+ dependent), and cpk3/cpk6/cpk23 (Ca2+ dependent; Mori et al., 2006; Geiger et al., 2010; Munemasa et al., 2011; Hubbard et al., 2012).Of the nine genes encoding voltage-dependent K+ channels (Shaker) in Arabidopsis (Véry and Sentenac, 2002, 2003; Lebaudy et al., 2007; Hedrich, 2012), six are expressed in guard cells and play a role in stomatal movements: the Gated Outwardly-Rectifying K+ (GORK) gene, encoding an outward K+ channel subunit, and the AKT1, AKT2, Arabidopsis K+ Rectifying Channel1 (AtKC1), KAT1, and KAT2 genes, encoding inward K+ channel subunits (Pilot et al., 2001; Szyroki et al., 2001; Hosy et al., 2003; Pandey et al., 2007; Lebaudy et al., 2008a). Shaker channels result from the assembly of four subunits, and it has been shown that inward subunits tend to heterotetramerize, thus potentially widening the functional and regulatory scope of inward K+ conductance in guard cells (Xicluna et al., 2007; Jeanguenin et al., 2008; Lebaudy et al., 2008a, 2010). Inhibition of inward K+ channels has been shown to reduce stomatal opening (Liu et al., 2000; Kwak et al., 2001). This has grounded a strategy for disrupting inward K+ channel conductance in guard cells by expressing a nonfunctional KAT2 subunit (dominant negative mutation) in a kat2 knockout Arabidopsis line. The resulting Arabidopsis lines, named kincless, have no functional inward K+ channels and exhibit delayed stomatal opening (Lebaudy et al., 2008b) with, in the long term, a biomass reduction compared with the Arabidopsis wild-type line.Among the CPKs presumably expressed in Arabidopsis guard cells (Leonhardt et al., 2004), we looked for CPK13, which belongs to the atypical Ca2+-insensitive type of CPKs (Kanchiswamy et al., 2010; Boudsocq et al., 2012; Liese and Romeis, 2013) and whose role remains unknown in stomatal movements. Here, we confirm first that CPK13 kinase activity is independent of Ca2+ and show that CPK13 expression is predominant in Arabidopsis guard cells using CPK13-GUS lines. We then report that overexpression of CPK13 in Arabidopsis induces a dramatic default in stomatal aperture. Based on the previously reported kincless phenotype (Lebaudy et al., 2008b), we propose that CPK13 could reduce the activity of inward K+ channels in guard cells, particularly that of KAT2. We confirm this hypothesis by voltage-clamp experiments and show an inhibition of KAT2 and KAT1 activity by CPK13 (but not that of AKT2). In addition, we present peptide array phosphorylation assays showing that CPK13 targets, with some specificity, several KAT2 and KAT1 polypeptides. Finally, we demonstrate that KAT2 and CPK13 interact in planta using Förster resonance energy transfer (FRET)-fluorescence lifetime imaging microscopy (FLIM).  相似文献   

19.
The endoplasmic reticulum (ER) consists of dynamically changing tubules and cisternae. In animals and yeast, homotypic ER membrane fusion is mediated by fusogens (atlastin and Sey1p, respectively) that are membrane-associated dynamin-like GTPases. In Arabidopsis (Arabidopsis thaliana), another dynamin-like GTPase, ROOT HAIR DEFECTIVE3 (RHD3), has been proposed as an ER membrane fusogen, but direct evidence is lacking. Here, we show that RHD3 has an ER membrane fusion activity that is enhanced by phosphorylation of its C terminus. The ER network was RHD3-dependently reconstituted from the cytosol and microsome fraction of tobacco (Nicotiana tabacum) cultured cells by exogenously adding GTP, ATP, and F-actin. We next established an in vitro assay system of ER tubule formation with Arabidopsis ER vesicles, in which addition of GTP caused ER sac formation from the ER vesicles. Subsequent application of a shearing force to this system triggered the formation of tubules from the ER sacs in an RHD-dependent manner. Unexpectedly, in the absence of a shearing force, Ser/Thr kinase treatment triggered RHD3-dependent tubule formation. Mass spectrometry showed that RHD3 was phosphorylated at multiple Ser and Thr residues in the C terminus. An antibody against the RHD3 C-terminal peptide abolished kinase-triggered tubule formation. When the Ser cluster was deleted or when the Ser residues were replaced with Ala residues, kinase treatment had no effect on tubule formation. Kinase treatment induced the oligomerization of RHD3. Neither phosphorylation-dependent modulation of membrane fusion nor oligomerization has been reported for atlastin or Sey1p. Taken together, we propose that phosphorylation-stimulated oligomerization of RHD3 enhances ER membrane fusion to form the ER network.In eukaryotic cells, the endoplasmic reticulum (ER) is the organelle with the largest membrane area. The ER consists of an elaborate network of interconnected membrane tubules and cisternae that is continually moving and being remodeled (Friedman and Voeltz, 2011). In plant cells, ER movement and remodeling is primarily driven by the actin-myosin XI cytoskeleton (Sparkes et al., 2009; Ueda et al., 2010; Yokota et al., 2011; Griffing et al., 2014) and secondarily by the microtubule cytoskeleton (Hamada et al., 2014). Several factors involved in creating the ER architecture have been also identified (Anwar et al., 2012; Chen et al., 2012; Goyal and Blackstone, 2013; Sackmann, 2014; Stefano et al., 2014a; Westrate et al., 2015). Among them, ER membrane-bound GTPases, animal atlastins and yeast Sey1p (Synthetic Enhancement of Yop1), function as ER fusogens to form the interconnected tubular network (Hu et al., 2009; Orso et al., 2009; Anwar et al., 2012). Atlastin molecules on the two opposed membranes have been proposed to transiently dimerize to attract the two membranes to each other (Bian et al., 2011; Byrnes and Sondermann, 2011; Morin-Leisk et al., 2011; Moss et al., 2011; Lin et al., 2012; Byrnes et al., 2013). Closely attracted lipid bilayers are supposed to be destabilized by an amphipathic helical domain at the atlastin C terminus to facilitate membrane fusion (Bian et al., 2011; Liu et al., 2012; Faust et al., 2015). Knockdown of atlastins leads to fragmentation of the ER and unbranched ER tubules, while overexpression of atlastins enhances ER membrane fusion, which enlarges the ER profiles (Hu et al., 2009; Orso et al., 2009).An Arabidopsis (Arabidopsis thaliana) protein, ROOT HAIR DEFECTIVE3 (RHD3), has been proposed as a fusogen because (1) when it is disrupted, the ER network is modified into large cable-like strands of poorly branched membranes (Zheng et al., 2004; Chen et al., 2011; Stefano et al., 2012), (2) it shares sequence similarity with the above-mentioned fusogen Sey1p (Hu et al., 2009), and (3) it has structural similarity to atlastin and Sey1p, with a functional GTPase domain at the N-terminal cytosolic domain (Stefano et al., 2012) followed by two transmembrane domains and a cytosolic tail. RHD3 has a longer cytosolic C-terminal tail than do atlastin and Sey1p (Stefano and Brandizzi, 2014). It contains not only an amphipathic region but also a Ser/Thr-rich C terminus.Arabidopsis has two RHD3 isoforms called RHD3-Like 1 and RHD3-Like 2. Fluorescently tagged RHD3 and RHD3-Like 2 localize to the ER (Chen et al., 2011; Stefano et al., 2012; Lee et al., 2013). RHD3 and the two RHD3-Like proteins likely have redundant roles in ER membrane fusion (Zhang et al., 2013). Overexpression of either RHD3 or RHD3-Like 2 with a defective GTPase domain phenocopies the aberrant ER morphology in rhd3-deficient mutants (Chen et al., 2011; Lee et al., 2013).In this study, we show that the Ser/Thr-rich C terminus enhances ER membrane fusion following phosphorylation of its C terminus. We propose a model in which phosphorylation and oligomerization of RHD3 is required for efficient ER membrane fusion. Our findings clarify the mechanisms that regulate RHD3 and consequently the homeostasis of membrane fusion in the ER.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号