首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vertical and temporal changes in microbial communities were investigated throughout the water column and sediment of the saline meromictic Lake Kaiike by PCR-denaturing gradient gel electrophoresis (DGGE) of 16S rDNA. Marked depth-related changes in microbial communities were observed at the chemocline and the sediment-water interface. However, no major temporal changes in the microbial community below the chemocline were observed during the sampling period, suggesting that the ecosystem in the anoxic zone of Lake Kaiike was nearly stable. Although the sequence of the most conspicuous DGGE band throughout the anoxic water and in the top of the microbial mat was most similar to that of an anoxic, photosynthetic, green sulphur bacterium, Pelodyction luteolum DSM273 (97% similarity), it represented a new phylotype. A comparison of DGGE banding patterns of the water column and sediment samples demonstrated that specific bacteria accumulated on the bottom from the anoxic water layers, and that indigenous microbial populations were present in the sediment. The measurements of bicarbonate assimilation rates showed significant phototrophic assimilation in the chemocline and lithoautotrophic assimilation throughout the anoxic water, but were not clearly linked with net sulphide turnover rates, indicating that sulphur and carbon metabolisms were not directly correlated.  相似文献   

2.
The pyrosequencing technique was used to evaluate bacterial community structures in sediment and surface water samples taken from Nanxi River receiving effluents from a paper mill and a farmhouse hotel, respectively. For each sample, 4,610 effective bacterial sequences were selected and used to do the analysis of diversity and abundance, respectively. Bacterial phylotype richness in the sediment sample without effluent input was higher than the other samples, and the surface water sample with addition of effluent from the paper mill contained the least richness. Effluents from both the paper mill and farmhouse hotel have a potential to reduce the bacterial diversity and abundance in the sediment and surface water, especially it is more significant in the sediment. The effect of the paper mill effluent on the sediment and surface water bacterial communities was more serious than that of the farmhouse hotel effluent. Characterization of microbial community structures in the sediment and surface water from two tributaries of the downstream river indicated that various effluents from the paper mill and farmhouse hotel have the similar potential to decrease the natural variability in riverine microbial ecosystems.  相似文献   

3.
In this study, we collected water from different locations in 32 drinking water distribution networks in the Netherlands and analysed the spatial and temporal variation in microbial community composition by high‐throughput sequencing of 16S rRNA gene amplicons. We observed that microbial community compositions of raw source and processed water were very different for each distribution network sampled. In each network, major differences in community compositions were observed between raw and processed water, although community structures of processed water did not differ substantially from end‐point tap water. End‐point water samples within the same distribution network revealed very similar community structures. Network‐specific communities were shown to be surprisingly stable in time. Biofilm communities sampled from domestic water metres varied distinctly between households and showed no resemblance to planktonic communities within the same distribution networks. Our findings demonstrate that high‐throughput sequencing provides a powerful and sensitive tool to probe microbial community composition in drinking water distribution systems. Furthermore, this approach can be used to quantitatively compare the microbial communities to match end‐point water samples to specific distribution networks. Insight in the ecology of drinking water distribution systems will facilitate the development of effective control strategies that will ensure safe and high‐quality drinking water.  相似文献   

4.
《Genomics》2021,113(4):2547-2560
Water quality parameter dynamics, gut, sediment and water bacteria communities were studied to understand the environmental influence on the gut microbial community of a new strain of Huanghe common carp. A total of 3,384,078 raw tags and 5105 OTUs were obtained for the gut, water and sediment bacteria. The water quality had a stronger influence on the water bacteria community than gut and sediment bacteria communities. The ambient water quality parameters also significantly influenced the water and sediment bacteria communities. Comparing the gut, sediment, and water microbial communities, a relationship was found among them. However, gut bacteria were more closely related to sediment bacterial communities than to water bacteria communities. The results showed that the top three bacterial taxa were identical in gut and sediment samples in the early days of rearing. Interestingly, bacterial communities in the carp gut, water, and sediment had different adaptabilities to variations in environmental factors.  相似文献   

5.
为了阐明在使用环境DNA宏条形码技术时不同环境样本类型如何影响蚌类物种的可检测性,于2021年冬季和春季在鄱阳湖分别采集表层水、底层水和沉积物进行环境DNA宏条形码分析,并结合传统方法采集验证。基于环境DNA宏条形码技术共检测到鄱阳湖蚌类33种,传统方法共采集蚌类18种,环境DNA宏条形码技术能检测出传统方法采集到的所有蚌类物种。表层水和底层水注释到的蚌类物种数均分别高于沉积物的,且表层水和底层水注释到的蚌类物种分别完全覆盖沉积物的。基于环境DNA宏条形码技术的蚌类α多样性水平季节差异不显著,但蚌类β多样性水平季节差异显著。表层水和底层水的蚌类多样性均显著高于沉积物样本的, Beta多样性分析也显示水体样本(表层水和底层水分别)和沉积物样本存在显著性差异。但表层水和底层水的蚌类多样性和群落结构均无显著差异。鄱阳湖蚌类群落结构与环境因子的关联分析表明水深(WD)、透明度(SD)、水温(WT)和总氮(TN)显著影响蚌类群落结构。环境DNA宏条形码技术在蚌类的多样性监测中可行,且采水样比采沉积物效果好,表层水和底层水无显著差异。  相似文献   

6.
研究宜春富硒温泉水体与泉底沉积物的细菌群落多样性。利用高通量测序技术分析泉水与沉积物中细菌群落结构与多样性。温泉水中主要的细菌类群为变形菌门和拟杆菌门,而在沉积物样品中的主要优势菌群为OP1、蓝细菌、浮霉菌门和绿弯菌门。细菌在属分类水平上,温泉水中优势菌群为不动杆菌属、假单胞菌属、水栖菌属、Thermosynechococcus、鞘脂杆菌属和金黄杆菌属等。沉积物样品细菌中优势菌群属于未知物种,在数据库中并没有相关的注释信息;其中已知的优势菌属为Candidatus acetothermum、Thermosynechococcus、亚热栖菌属、不动杆菌属。宜春温汤富硒温泉水体与沉积物中存在着丰富的微生物群落且组成差异性很大,该研究为了解与发掘温泉微生物菌种资源具有重要价值。  相似文献   

7.
Terrestrial and aquatic environments are linked through hydrological networks that transport abiotic components from upslope environments into aquatic ecosystems. However, our understanding of how bacteria are transported through these same networks is limited. Here, we applied 16S rRNA gene sequencing to over 500 soil, stream water and stream sediment samples collected within a native forest catchment to determine the extent to which bacterial communities in these habitats are connected. We provide evidence that while the bacterial communities in each habitat were significantly distinct from one another (PERMANOVA pairwise P < 0.001), the bacterial communities in soil and stream samples were weakly connected to each other when stream sediment sample locations were downhill of surface runoff flow paths. This pattern decreased with increasing distance between the soil and sediment samples. The connectivity between soil and stream water samples was less apparent and extremely transient; the greatest similarity between bacterial communities in soil and stream water overall was when comparing stream samples collected 1 week post soil sampling. This study shows how bacterial communities in soil, stream water and stream sediments are connected at small spatial scales and provides rare insights into the temporal dynamics of terrestrial and aquatic bacterial community connectivity.  相似文献   

8.
Archaea, like the bacterial communities are gradually being realized as key players in the biogeochemical progress of water ecosystems. In this study, tilapia aquaculture ponds were used for an in-depth understanding of archaeal community compositions in water and surface sediment. Some of the main functions, as well as the communities’ response patterns, to time variations, pond differences and some physio-chemical parameters were investigated. The results revealed the dominant phylum in both the water and surface sediment, as Euryarchaeota, while, the most abundant classes were: Halobacteria and Methanomicrobia respectively. Significant differences in the archaeal community compositions in the water and surface sediment, were observed in the early stages of cultivation, which became minimal at the later stage of the GIFT tilapia cultivation. Additionally to the differences in the most abundant classes, more OTUs were observed in water samples than in surface sediment samples. The methane generation could be attributed to the large proportion of methanogens found in both pond water and in the surface sediment. Furthermore, the archaeal community compositions in water and the surface sediment were shaped mainly by temporal variations and pond differences respectively. In the pond water, the archaeal community compositions were highly co-related to the concentration changes of ammonia, sulfate and total nitrogen; while in the surface sediment, the correlation to the content changes was significant in total phosphorus. The archaeal community compositions in surface sediment should be considered as an indicator for future environmental capacity studies in aquaculture.  相似文献   

9.
10.
Although open ocean time-series sites have been areas of microbial research for years, relatively little is known about the population dynamics of bacterioplankton communities in the coastal ocean on kilometer spatial and seasonal temporal scales. To gain a better understanding of microbial community variability, monthly samples of bacterial biomass were collected in 1995-1996 along a 34-km transect near the Long-Term Ecosystem Observatory (LEO-15) off the New Jersey coast. Surface and bottom sampling was performed at seven stations along a transect line with depths ranging from 1 to 35 m (n=178). Microbial populations were fingerprinted using ribosomal 16S rRNA genes and terminal restriction fragment length polymorphism analysis. Results from cluster analysis revealed distinct temporal patterns among the bacterioplankton communities in the Mid-Atlantic Bight rather than grouping by sample location or depth. Principal components analysis models supported the temporal patterns. In addition, partial least squares regression modeling could not discern a significant correlation from traditional oceanographic physical and phytoplankton nutrient parameters on overall bacterial community variability patterns at LEO-15. These results suggest factors not traditionally measured during oceanographic studies are structuring coastal microbial communities.  相似文献   

11.
Microbes exhibit remarkably high genetic diversity compared with plant and animal species. Many phylogenetically diverse but apparently functionally redundant microbial taxa are detectable within a cubic centimetre of mud or a millilitre of water, and the significance of this diversity, in terms of ecosystem function, has been difficult to understand. Thus it is not known whether temporal and spatial differences in microbial community composition are linked to particular environmental factors or might modulate ecosystem response to environmental change. Fifty-three water and sediment samples from upper and lower Chesapeake Bay were analysed in triplicate arrays to determine temporal and spatial patterns and relationships between ammonia-oxidizing bacterial (AOB) communities and environmental variables. Thirty-three water samples (three depths) collected during April, August and October, 2001-2004, from the oligohaline upper region of the Bay were analysed to investigate temporal patterns in archetype distribution. Using a combination of a non-weighted discrimination analysis and principal components analysis of community composition data obtained from functional gene microarrays, it was found that co-varying AOB assemblages reoccurred seasonally in concert with specific environmental conditions, potentially revealing patterns of niche differentiation. Among the most notable patterns were correlations of AOB archetypes with temperature, DON and ammonium concentrations. Different AOB archetypes were more prevalent at certain times of the year, e.g. some were more abundant every autumn and others every spring. This data set documents the successional return to an indigenous community following massive perturbation (hurricane induced flooding) as well as the seasonal reoccurrence of specific lineages, identified by key functional genes, associated with the biogeochemically important process nitrification.  相似文献   

12.
The functional basis for species sorting theory remains elusive, especially for microbial community assembly in deep‐sea environments. Using artificial surface‐based biofilm models, our recent work revealed taxonomic succession during biofilm development in a newly defined cold seep system, the Thuwal cold seeps II, which comprises a brine pool and the adjacent normal bottom water (NBW) to form a metacommunity via the potential immigration of organisms from one patch to another. Here, we designed an experiment to investigate the effects of environmental switching between the brine pool and the NBW on biofilm assembly, which could reflect environmental filtering effects during bacterial immigration to new environments. Analyses of 16S rRNA genes of 71 biofilm samples suggested that the microbial composition of biofilms established in new environments was determined by both the source community and the incubation conditions. Moreover, a comparison of 18 metagenomes provided evidence for biofilm community assembly that was based primarily on functional features rather than taxonomic identities; metal ion resistance and amino acid metabolism were the major species sorting determinants for the succession of biofilm communities. Genome binning and pathway reconstruction of two bacterial species (Marinobacter sp. and Oleispira sp.) further demonstrated metal ion resistance and amino acid metabolism as functional traits conferring the survival of habitat generalists in both the brine pool and NBW. The results of this study shed new light on microbial community assembly in special habitats and bridge a gap in species sorting theory.  相似文献   

13.
Elucidating the mechanisms underlying microbial succession is a major goal of microbial ecology research. Given the increasing human pressure on the environment and natural resources, responses to the repeated introduction of organic and inorganic pollutants are of particular interest. To investigate the temporal dynamics of microbial communities in response to pollutants, we analysed the microbial community structure in batch microcosms that were inoculated with soil bacteria following exposure to individual or combined pollutants (phenanthrene, n‐octadecane, phenanthrene + n‐octadecane and phenanthrene + n‐octadecane + CdCl2). Subculturing was performed at 10‐day intervals, followed by high‐throughput sequencing of 16S rRNA genes. The dynamics of microbial communities in response to different pollutants alone and in combination displayed similar patterns during enrichment. Specifically, the repression and induction of microbial taxa were dominant, and the fluctuation was not significant. The rate of appearance for new taxa and the temporal turnover within microbial communities were higher than the rates reported in other studies of microbial communities in air, water and soil samples. In addition, conditionally rare taxa that were specific to the treatments exhibited higher betweenness centrality values in the co‐occurrence network, indicating a strong influence on other interactions in the community. These results suggest that the repeated introduction of pollutants could accelerate microbial succession in microcosms, resulting in the rapid re‐equilibration of microbial communities.  相似文献   

14.
A variety of freshwater marsh and swamp habitats are found interspersed in a mosaic pattern throughout the Okefenokee Swamp, Georgia, USA. We examined spatial and temporal patterns in standing stocks and activity in the microbial community of five habitats within this heterogeneous ecosystem. Standing stock dynamics were studied by measuring microbial biomass (ATP) and bacterial numbers (AODC) in both water and sediments over a 14 month period. Abundance varied temporally, being generally lower in winter months than in spring and summer months. However, a large proportion of the measured variability was not correlated with temporal patterns in temperature or with bulk nutrient levels. Spatial variability was characteristic of the Okefenokee at a variety of large and small scales. Habitat-level heterogeneity was evident when microbial standing stocks and activity (measured as [14C]lignocellulose mineralization) were compared across the five communities, although abundance differences among sites were restricted to nonwinter months when microbial biomass was high. Spatial variation within habitats was also found; patches of surface sediment with differing microbial activity or abundance were measured at scales from 30 cm to 150 m.  相似文献   

15.
北京市妫水河底泥微生物群落结构特征   总被引:4,自引:0,他引:4  
林海  蔡怡清  李冰  董颖博  李阳 《生态学报》2019,39(20):7592-7601
微生物对外界环境变化较为敏感,常被作为指示生物用于监测和反映水质情况。为满足延庆世园会和冬奥会举办对妫水河水质的调控要求,探讨妫水河底泥微生物群落结构特征及环境因子对其分布的影响。基于妫水河12个不同断面的水样和底泥样品,进行了水质、底泥理化性质分析,并对底泥的微生物群落结构特征进行了研究。结果表明,妫水河中、下游水体水质COD、NH~+_4-N、TN超标,其中上覆水TN含量与底泥TN含量呈极显著正相关(P=0.914);MiSeq高通量测序发现,妫水河底泥微生物共检出70门228纲1168属,变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、酸杆菌门(Acidobacteria)、放线菌门(Actinobacteria)、绿弯菌门(Chloroflexi)、厚壁菌门(Firmicutes)、蓝细菌门(Cyanobacteria)、绿菌门(Chlorobi)、疣微菌门(Verrucomicrobia)和硝化螺旋菌门(Nitrospirae)是妫水河底泥微生物群落结构中的主要菌门,在各个样品中相对丰度之和均占84%以上,其中变形菌门为第一优势门,占比达到45.3%—69.1%,而不同断面样品的优势菌属有所不同。妫水河底泥微生物群落丰度总体较高,多样性也相对较高,其中世园段D7点Ace丰富度指数和Shannon多样性指数均较其他点位低,分别为2673和6.56。RDA(redundancy analysis)分析表明,底泥氨氮和温度是影响其微生物群落结构的主要因子(F=2.92,P=0.038;F=2.81,P=0.014),妫水河底泥的优势反硝化菌属为脱氮单孢菌属和硫杆状菌属,其丰度与NH~+_4-N、水温呈正相关,同时与DO呈负相关。研究结果对妫水河水生态环境保护和水质管理提供数据支撑及理论指导意义。  相似文献   

16.
While water and sediment microbial communities exhibit pronounced spatio-temporal patterns in freshwater lakes, the underlying drivers are yet poorly understood. Here, we evaluated the importance of spatial and temporal variation in abiotic environmental factors for bacterial and microeukaryotic community assembly and distance–decay relationships in water and sediment niches in Hongze Lake. By sampling across the whole lake during both Autumn and Spring sampling time points, we show that only bacterial sediment communities were governed by deterministic community assembly processes due to abiotic environmental drivers. Nevertheless, consistent distance–decay relationships were found with both bacterial and microeukaryotic communities, which were relatively stable with both sampling time points. Our results suggest that spatio-temporal variation in environmental factors was important in explaining mainly bacterial community assembly in the sediment, possibly due lesser disturbance. However, clear distance–decay patterns emerged also when the community assembly was stochastic. Together, these results suggest that abiotic environmental factors do not clearly drive the spatial structuring of lake microbial communities, highlighting the need to understand the role of other potential drivers, such as spatial heterogeneity and biotic species interactions.  相似文献   

17.
Describing the spatial and temporal dynamics of communities is essential for understanding the impacts of global environmental change on biodiversity and ecosystem functioning. Trait‐based approaches can provide better insight than species‐based (i.e. taxonomic) approaches into community assembly and ecosystem functioning, but comparing species and trait dynamics may reveal important patterns for understanding community responses to environmental change. Here, we used a 33‐year database of fish monitoring to compare the spatio‐temporal dynamics of taxonomic and trait structure in North Sea fish communities. We found that the majority of variation in both taxonomic and trait structure was explained by a pronounced spatial gradient, with distinct communities in the southern and northern North Sea related to depth, sea surface temperature, salinity and bed shear stress. Both taxonomic and trait structure changed significantly over time; however taxonomically, communities in the south and north diverged towards different species, becoming more dissimilar over time, yet they converged towards the same traits regardless of species differences. In particular, communities shifted towards smaller, faster growing species with higher thermal preferences and pelagic water column position. Although taxonomic structure changed over time, its spatial distribution remained relatively stable, whereas in trait structure, the southern zone of the North Sea shifted northward and expanded, leading to homogenization. Our findings suggest that global environmental change, notably climate warming, will lead to convergence towards traits more adapted for novel environments regardless of species composition.  相似文献   

18.
The microbial communities of three different habitat types and from two sediment depths in the River Elbe were investigated by fluorescence in situ hybridization at various levels of complexity. Differences in the microbial community composition of free-flowing river water, water within the hyporheic interstitial and sediment-associated bacteria were quantitatively analyzed using domain- and group-specific oligonucleotide probes. Qualitative data on the presence/absence of specific bacterial taxa were gathered using genus- and species-specific probes. The complete data set was statistically processed by univariate statistical approaches, and two-dimensional ordinations of nonmetric multidimensional scaling. The analysis showed: (1) that the resolution of microbial community structures at microenvironments, habitats and locations can be regulated by targeted application of oligonucleotides on phylogenetic levels ranging from domains to species, and (2) that an extensive qualitative presence/absence analysis of multiparallel hybridization assays enables a fine-scale apportionment of spatial differences in microbial community structures that is robust against apparent limitations of fluorescence in situ hybridization such as false positive hybridization signals or inaccessibility of in situ oligonucleotide probes. A general model for the correlation of the phylogenetic depth of focus and the relative spatial resolution of microbial communities by fluorescence in situ hybridization is presented.  相似文献   

19.
Agricultural activities, including stock-farming, planting industry, and fish aquaculture,can affect the physicochemical and biological characters of freshwater lakes. However, the effects of pollution producing by agricultural activities on microbial ecosystem of lakes remain unclear.Hence, in this work, we selected Honghu Lake as a typical lake that is influenced by agriculture activities. We collected water and sediment samples from 18 sites, which span a wide range of areas from impacted and less-impacted areas. We performed a geospatial analysis on the composition of microbial communities associated with physicochemical properties and antibiotic pollution of samples. The co-occurrence networks of water and sediment were also built and analyzed. Our results showed that the microbial communities of impacted and less-impacted samples of water were largely driven by the concentrations of TN, TP, NO_3^--N, and NO_2^--N, while those of sediment were affected by the concentrations of Sed-OM and Sed-TN. Antibiotics have also played important roles in shaping these microbial communities: the concentrations of oxytetracycline and tetracycline clearly reflected the variance in taxonomic diversity and predicted functional diversity between impacted and less-impacted sites in water and sediment samples, respectively. Furthermore, for samples from both water and sediment, large differences of network topology structures between impacted and less-impacted were also observed. Our results provide compelling evidence that the microbial community can be used as a sentinel of eutrophication and antibiotics pollution risk associated with agricultural activity; and that proper monitoring of this environment is vital to maintain a sustainable environment in Honghu Lake.  相似文献   

20.
The dynamics of in situ bacterial communities in the hyporheic zone of an intermittent stream were described in high spatiotemporal detail. We assessed community dynamics in stream sediments and interstitial pore water over a two-year period using terminal-restriction fragment length polymorphism. Here, we show that sediments remained saturated despite months of drought and limited hydrologic connectivity. The intermittency of stream surface water affected interstitial pore water communities more than hyporheic sediment communities. Seasonal changes in bacterial community composition was significantly associated with water intermittency, phosphate concentrations, temperature, nitrate and dissolved organic carbon (DOC) concentrations. During periods of low- to no-surface water, communities changed from being rich in operational taxonomic units (OTUs) in isolated surface pools, to a few OTUs overall, including an overall decline in both common and rare taxa. Individual OTUs were compared between porewater and sediments. A total of 19% of identified OTUs existed in both porewater and sediment samples, suggesting that bacteria use hyporheic sediments as a type of refuge from dessication, transported through hydrologically connected pore spaces. Stream intermittency impacted bacterial diversity on rapid timescales (that is, within days), below-ground and in the hyporheic zone. Owing to the coupling of intermittent streams to the surrounding watershed, we stress the importance of understanding connectivity at the pore scale, consequences for below-ground and above-ground biodiversity and nutrient processing, and across both short- and long-time periods (that is, days to months to years).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号