首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caveolin induces membrane curvature and drives the formation of caveolae that participate in many crucial cell functions such as endocytosis. The central portion of caveolin-1 contains two helices (H1 and H2) connected by a three-residue break with both N- and C-termini exposed to the cytoplasm. Although a U-shaped configuration is assumed based on its inaccessibility by extracellular matrix probes, caveolin structure in a bilayer remains elusive. This work aims to characterize the structure and dynamics of caveolin-1 (D82–S136; Cav182–136) in a DMPC bilayer using NMR, fluorescence emission measurements, and molecular dynamics simulations. The secondary structure of Cav182–136 from NMR chemical shift indexing analysis serves as a guideline for generating initial structural models. Fifty independent molecular dynamics simulations (100 ns each) are performed to identify its favorable conformation and orientation in the bilayer. A representative configuration was chosen from these multiple simulations and simulated for 1 μs to further explore its stability and dynamics. The results of these simulations mirror those from the tryptophan fluorescence measurements (i.e., Cav182–136 insertion depth in the bilayer), corroborate that Cav182–136 inserts in the membrane with U-shaped conformations, and show that the angle between H1 and H2 ranges from 35 to 69°, and the tilt angle of Cav182–136 is 27 ± 6°. The simulations also reveal that specific faces of H1 and H2 prefer to interact with each other and with lipid molecules, and these interactions stabilize the U-shaped conformation.  相似文献   

2.
For vision-threatening retinitis pigmentosa and dry age-related macular degeneration, there are no United States Food and Drug Administration (FDA)-approved treatments. We identified, biosynthesized, purified, and characterized lens epithelium-derived growth factor fragment (LEDGF1–326) as a novel protein therapeutic. LEDGF1–326 was produced at about 20 mg/liter of culture when expressed in the Escherichia coli system, with about 95% purity and aggregate-free homogeneous population with a mean hydrodynamic diameter of 9 ± 1 nm. The free energy of unfolding of LEDGF1–326 was 3.3 ± 0.5 kcal mol−1, and melting temperature was 44.8 ± 0.2 °C. LEDGF1–326 increased human retinal pigment epithelial cell viability from 48.3 ± 5.6 to 119.3 ± 21.1% in the presence of P23H mutant rhodopsin-mediated aggregation stress. LEDGF1–326 also increased retinal pigment epithelial cell FluoSphere uptake to 140 ± 10%. Eight weeks after single intravitreal injection in Royal College of Surgeons (RCS) rats, LEDGF1–326 increased the b-wave amplitude significantly from 9.4 ± 4.6 to 57.6 ± 8.8 μV for scotopic electroretinogram and from 10.9 ± 5.6 to 45.8 ± 15.2 μV for photopic electroretinogram. LEDGF1–326 significantly increased the retinal outer nuclear layer thickness from 6.34 ± 1.6 to 11.7 ± 0.7 μm. LEDGF1–326 is a potential new therapeutic agent for treating retinal degenerative diseases.  相似文献   

3.
In previous papers of this series the temperature-dependent Raman spectra of poly(dA)·poly(dT) and poly(dA–dT)·poly(dA–dT) were used to characterize structurally the melting and premelting transitions in DNAs containing consecutive A·T and alternating A·T/T·A base pairs. Here, we describe procedures for obtaining thermodynamic parameters from the Raman data. The method exploits base-specific and backbone-specific Raman markers to determine separate thermodynamic contributions of A, T and deoxyribosyl-phosphate moieties to premelting and melting transitions. Key findings include the following: (i) Both poly(dA)·poly(dT) and poly(dA–dT)· poly(dA–dT) exhibit robust premelting transitions, due predominantly to backbone conformational changes. (ii) The significant van’t Hoff premelting enthalpies of poly(dA)·poly(dT) [ΔHvHpm = 18.0 ± 1.6 kcal·mol–1 (kilocalories per mole cooperative unit)] and poly(dA–dT)·poly(dA–dT) (ΔHvHpm = 13.4 ± 2.5 kcal·mol–1) differ by an amount (~4.6 kcal·mol–1) estimated as the contribution from three-centered inter-base hydrogen bonding in (dA)n·(dT)n tracts. (iii) The overall stacking free energy of poly(dA)· poly(dT) [–6.88 kcal·molbp–1 (kilocalories per mole base pair)] is greater than that of poly(dA–dT)· poly(dA–dT) (–6.31 kcal·molbp–1). (iv) The difference between stacking free energies of A and T is significant in poly(dA)·poly(dT) (ΔΔGst = 0.8 ± 0.3 kcal· molbp–1), but marginal in poly(dA–dT)·poly(dA–dT) (ΔΔGst = 0.3 ± 0.3 kcal·molbp–1). (v) In poly(dA)· poly(dT), the van’t Hoff parameters for melting of A (ΔHvHA = 407 ± 23 kcal·mol–1, ΔSvHA = 1166 ± 67 cal·°K–1·mol–1, ΔGvH(25°C)A = 60.0 ± 3.2 kcal·mol–1) are clearly distinguished from those of T (ΔHvHT = 185 ± 38 kcal·mol–1, ΔSvHT = 516 ± 109 cal·°K–1·mol–1, ΔGvH(25°C)T = 27.1 ± 5.5 kcal·mol–1). (vi) Similar relative differences are observed in poly(dA–dT)· poly(dA–dT) (ΔHvHA = 333 ± 54 kcal·mol–1, ΔSvHA = 961 ± 157 cal·°K–1·mol–1, ΔGvH(25°C)A = 45.0 ± 7.6 kcal· mol–1; ΔHvHT = 213 ± 30 kcal·mol–1, ΔSvHT = 617 ± 86 cal·°K–1·mol–1, ΔGvH(25°C)T = 29.3 ± 4.9 kcal·mol–1). The methodology employed here distinguishes thermodynamic contributions of base stacking, base pairing and backbone conformational ordering in the molecular mechanism of double-helical B DNA formation.  相似文献   

4.
Membrane lipids play a pivotal role in the pathogenesis of Alzheimer''s disease, which is associated with conformational changes, oligomerization and/or aggregation of Alzheimer''s β-amyloid (Aβ) peptides. Yet conflicting data have been reported on the respective effect of cholesterol and glycosphingolipids (GSLs) on the supramolecular assembly of Aβ peptides. The aim of the present study was to unravel the molecular mechanisms by which cholesterol modulates the interaction between Aβ1–40 and chemically defined GSLs (GalCer, LacCer, GM1, GM3). Using the Langmuir monolayer technique, we show that Aβ1–40 selectively binds to GSLs containing a 2-OH group in the acyl chain of the ceramide backbone (HFA-GSLs). In contrast, Aβ1–40 did not interact with GSLs containing a nonhydroxylated fatty acid (NFA-GSLs). Cholesterol inhibited the interaction of Aβ1–40 with HFA-GSLs, through dilution of the GSL in the monolayer, but rendered the initially inactive NFA-GSLs competent for Aβ1–40 binding. Both crystallographic data and molecular dynamics simulations suggested that the active conformation of HFA-GSL involves a H-bond network that restricts the orientation of the sugar group of GSLs in a parallel orientation with respect to the membrane. This particular conformation is stabilized by the 2-OH group of the GSL. Correspondingly, the interaction of Aβ1–40 with HFA-GSLs is strongly inhibited by NaF, an efficient competitor of H-bond formation. For NFA-GSLs, this is the OH group of cholesterol that constrains the glycolipid to adopt the active L-shape conformation compatible with sugar-aromatic CH-π stacking interactions involving residue Y10 of Aβ1–40. We conclude that cholesterol can either inhibit or facilitate membrane-Aβ interactions through fine tuning of glycosphingolipid conformation. These data shed some light on the complex molecular interplay between cell surface GSLs, cholesterol and Aβ peptides, and on the influence of this molecular ballet on Aβ-membrane interactions.  相似文献   

5.
In this study, we applied a comprehensive G protein-coupled receptor-Gαi protein chemical cross-linking strategy to map the cannabinoid receptor subtype 2 (CB2)- Gαi interface and then used molecular dynamics simulations to explore the dynamics of complex formation. Three cross-link sites were identified using LC-MS/MS and electrospray ionization-MS/MS as follows: 1) a sulfhydryl cross-link between C3.53(134) in TMH3 and the Gαi C-terminal i-3 residue Cys-351; 2) a lysine cross-link between K6.35(245) in TMH6 and the Gαi C-terminal i-5 residue, Lys-349; and 3) a lysine cross-link between K5.64(215) in TMH5 and the Gαi α4β6 loop residue, Lys-317. To investigate the dynamics and nature of the conformational changes involved in CB2·Gi complex formation, we carried out microsecond-time scale molecular dynamics simulations of the CB2 R*·Gαi1β1γ2 complex embedded in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer, using cross-linking information as validation. Our results show that although molecular dynamics simulations started with the G protein orientation in the β2-AR*·Gαsβ1γ2 complex crystal structure, the Gαi1β1γ2 protein reoriented itself within 300 ns. Two major changes occurred as follows. 1) The Gαi1 α5 helix tilt changed due to the outward movement of TMH5 in CB2 R*. 2) A 25° clockwise rotation of Gαi1β1γ2 underneath CB2 R* occurred, with rotation ceasing when Pro-139 (IC-2 loop) anchors in a hydrophobic pocket on Gαi1 (Val-34, Leu-194, Phe-196, Phe-336, Thr-340, Ile-343, and Ile-344). In this complex, all three experimentally identified cross-links can occur. These findings should be relevant for other class A G protein-coupled receptors that couple to Gi proteins.  相似文献   

6.
Rapid and selective ion transport is essential for the generation and regulation of electrical signaling pathways in living organisms. Here, we use molecular dynamics (MD) simulations with an applied membrane potential to investigate the ion flux of bacterial sodium channel NaVMs. 5.9 µs simulations with 500 mM NaCl suggest different mechanisms for inward and outward flux. The predicted inward conductance rate of ∼27±3 pS, agrees with experiment. The estimated outward conductance rate is 15±3 pS, which is considerably lower. Comparing inward and outward flux, the mean ion dwell time in the selectivity filter (SF) is prolonged from 13.5±0.6 ns to 20.1±1.1 ns. Analysis of the Na+ distribution revealed distinct patterns for influx and efflux events. In 32.0±5.9% of the simulation time, the E53 side chains adopted a flipped conformation during outward conduction, whereas this conformational change was rarely observed (2.7±0.5%) during influx. Further, simulations with dihedral restraints revealed that influx is less affected by the E53 conformational flexibility. In contrast, during outward conduction, our simulations indicate that the flipped E53 conformation provides direct coordination for Na+. The free energy profile (potential of mean force calculations) indicates that this conformational change lowers the putative barriers between sites SCEN and SHFS during outward conduction. We hypothesize that during an action potential, the increased Na+ outward transition propensities at depolarizing potentials might increase the probability of E53 conformational changes in the SF. Subsequently, this might be a first step towards initiating slow inactivation.  相似文献   

7.
In this work we present and compare the results of extensive molecular dynamics simulations of model systems comprising an Aβ1–40 peptide in water in interaction with short peptides (β-sheet breakers) mimicking the 17–21 region of the Aβ1–40 sequence. Various systems differing in the customized β-sheet breaker structure have been studied. Specifically we have considered three kinds of β-sheet breakers, namely Ac-LPFFD-NH2 and two variants thereof, one obtained by substituting the acetyl group with the sulfonic amino acid taurine (Tau-LPFFD-NH2) and a second novel one in which the aspartic acid is substituted by an asparagine (Ac-LPFFN-NH2). Thioflavin T fluorescence, circular dichroism, and mass spectrometry experiments have been performed indicating that β-sheet breakers are able to inhibit in vitro fibril formation and prevent the β sheet folding of portions of the Aβ1–40 peptide. We show that molecular dynamics simulations and far UV circular dichroism provide consistent evidence that the new Ac-LPFFN-NH2 β-sheet breaker is more effective than the other two in stabilizing the native α-helix structure of Aβ1–40. In agreement with these results thioflavin T fluorescence experiments confirm the higher efficiency in inhibiting Aβ1–40 aggregation. Furthermore, mass spectrometry data and molecular dynamics simulations consistently identified the 17–21 Aβ1–40 portion as the location of the interaction region between peptide and the Ac-LPFFN-NH2 β-sheet breaker.  相似文献   

8.
The structure of the so-called liquid-ordered (lo) phase of binary mixtures of DPPC-d62 with cholesterol was studied between 20-50 mol% cholesterol using 2H-NMR, FT-IR, DSC, and neutron specular reflection. Different model systems such as multilamellar vesicles, spherical supported vesicles, and oriented multilayers were used. We observed significant changes of the lo phase structure in the physiological relevant temperature region between 30-45°C. 2H-NMR in combination with lineshape simulations provides evidence for a drastic effect of cholesterol on the shape of multilamellar vesicles due to magnetic field orientation. Moreover, the data indicates a significant change of the extent of this partial orientation for DPPC-d62 multilamellar vesicles containing 25 mol% cholesterol between 36-42°C. The semiaxes ratio of the (due to magnetic field orientation) ellipsoidal multilamellar vesicles changes over this temperature range by ≈25%. 2H-NMR and FT-IR measurements indicate changes of the average orientational order at the bilayer center in the same temperature range and a significant increase of the number of end-gauche conformers while the majority of the methylene groups remain in an all-trans conformation. Additionally, specular reflection of neutrons shows a concomitant reduction of the bilayer thickness by 4 Å. Based on a model of the arrangement of DPPC and cholesterol in the lo phase, a molecular mechanism is proposed in which increasing the temperature between 30 and 45°C has the effect of driving cholesterol from the bilayer center towards the head group region.  相似文献   

9.

Background

Airway inflammation and airway remodeling are the key contributors to airway hyperresponsiveness (AHR), a characteristic feature of asthma. Both processes are regulated by Transforming Growth Factor (TGF)-β. Caveolin 1 (Cav1) is a membrane bound protein that binds to a variety of receptor and signaling proteins, including the TGF-β receptors. We hypothesized that caveolin-1 deficiency promotes structural alterations of the airways that develop with age will predispose to an increased response to allergen challenge.

Methods

AHR was measured in Cav1-deficient and wild-type (WT) mice 1 to 12 months of age to examine the role of Cav1 in AHR and the relative contribution of inflammation and airway remodeling. AHR was then measured in Cav1-/- and WT mice after an ovalbumin-allergen challenge performed at either 2 months of age, when remodeling in Cav1-/- and WT mice was equivalent, and at 6 months of age, when the Cav1-/- mice had established airway remodeling.

Results

Cav1-/- mice developed increased thickness of the subepithelial layer and a correspondingly increased AHR as they aged. In addition, allergen-challenged Cav1-/- mice had an increase in AHR greater than WT mice that was largely independent of inflammation. Cav1-/- mice challenged at 6 months of age have decreased AHR compared to those challenged at 2 months with correspondingly decreased BAL IL-4 and IL-5 levels, inflammatory cell counts and percentage of eosinophils. In addition, in response to OVA challenge, the number of goblet cells and α-SMA positive cells in the airways were reduced with age in response to OVA challenge in contrast to an increased collagen deposition further enhanced in absence of Cav1.

Conclusion

A lack of Cav1 contributed to the thickness of the subepithelial layer in mice as they aged resulting in an increase in AHR independent of inflammation, demonstrating the important contribution of airway structural changes to AHR. In addition, age in the Cav1-/- mice is a contributing factor to airway remodeling in the response to allergen challenge.  相似文献   

10.
1. The sulfonium salt H·2TDG is formed when H is mixed with even dilute solutions of TDG. Crystalline H·2TDG was isolated from such a reaction mixture. A simple method of preparation of this salt is outlined. 2. A material which differs from H·2TDG in that it hydrolyzes faster, is formed when H hydrolyzes in water. This material is probably H·1TDG but it was not isolated. Approximately 5 to 8 per cent of the original H is converted to this sulfonium salt. 3. The hydrolysis constant of M/100 H·2TDG has been determined at 20°, 25.5°, 37°, 75°, and 100°C., a temperature coefficient, Q 10, of 3–4 was obtained. The effect of temperature is in agreement with that predicted by the Arrhenius equation. An activation energy of 26,000 calories was calculated.  相似文献   

11.
A series of 2′-cyclo-nucleosides (2,2′-O-anhydro-uridine, -N3-uridine and cytidine and 8,2′-S-anhydro-guanosine) have been studied by PMR in DMSO and D2O. As expected these compounds are quite rigid, but their solution conformation is considerably different from that observed in single crystal x-ray studies. While the pyrimidine cyclonucleosides in the crystal form show a C4′-endo conformation (pseudorotational phase angle P=212° to 233°), their solution conformation is C1′-exo (P=130° to 138°) and the cyclothioguanosine shows a closely similar one (P=112°). Exocyclic rotamer distribution is different in the various compounds.  相似文献   

12.
The integrin receptor αMβ2 mediates phagocytosis of complement-opsonized objects, adhesion to the extracellular matrix, and transendothelial migration of leukocytes. However, the mechanistic aspects of αMβ2 signaling upon ligand binding are unclear. Here, we present the first atomic structure of the human αMβ2 headpiece fragment in complex with the nanobody (Nb) hCD11bNb1 at a resolution of 3.2 Å. We show that the receptor headpiece adopts the closed conformation expected to exhibit low ligand affinity. The crystal structure indicates that in the R77H αM variant, associated with systemic lupus erythematosus, the modified allosteric relationship between ligand binding and integrin outside–inside signaling is due to subtle conformational effects transmitted over a distance of 40 Å. Furthermore, we found the Nb binds to the αI domain of the αM subunit in an Mg2+-independent manner with low nanomolar affinity. Biochemical and biophysical experiments with purified proteins demonstrated that the Nb acts as a competitive inhibitor through steric hindrance exerted on the thioester domain of complement component iC3b attempting to bind the αM subunit. Surprisingly, we show that the Nb stimulates the interaction of cell-bound αMβ2 with iC3b, suggesting that it may represent a novel high-affinity proteinaceous αMβ2-specific agonist. Taken together, our data suggest that the iC3b–αMβ2 complex may be more dynamic than predicted from the crystal structure of the core complex. We propose a model based on the conformational spectrum of the receptor to reconcile these observations regarding the functional consequences of hCD11bNb1 binding to αMβ2.  相似文献   

13.
The α1 and β1a subunits of the skeletal muscle calcium channel, Cav1.1, as well as the Ca2+ release channel, ryanodine receptor (RyR1), are essential for excitation-contraction coupling. RyR1 channel activity is modulated by the β1a subunit and this effect can be mimicked by a peptide (β1a490–524) corresponding to the 35-residue C-terminal tail of the β1a subunit. Protein-protein interaction assays confirmed a high-affinity interaction between the C-terminal tail of the β1a and RyR1. Based on previous results using overlapping peptides tested on isolated RyR1, we hypothesized that a 19-amino-acid residue peptide (β1a490–508) is sufficient to reproduce activating effects of β1a490–524. Here we examined the effects of β1a490–508 on Ca2+ release and Ca2+ currents in adult skeletal muscle fibers subjected to voltage-clamp and on RyR1 channel activity after incorporating sarcoplasmic reticulum vesicles into lipid bilayers. β1a490–508 (25 nM) increased the peak Ca2+ release flux by 49% in muscle fibers. Considerably fewer activating effects were observed using 6.25, 100, and 400 nM of β1a490–508 in fibers. β1a490–508 also increased RyR1 channel activity in bilayers and Cav1.1 currents in fibers. A scrambled form of β1a490–508 peptide was used as negative control and produced negligible effects on Ca2+ release flux and RyR1 activity. Our results show that the β1a490–508 peptide contains molecular components sufficient to modulate excitation-contraction coupling in adult muscle fibers.  相似文献   

14.
Structure and dynamics of voltage-gated ion channels, in particular the motion of the S4 helix, is a highly interesting and hotly debated topic in current membrane protein research. It has critical implications for insertion and stabilization of membrane proteins as well as for finding how transitions occur in membrane proteins—not to mention numerous applications in drug design. Here, we present a full 1 µs atomic-detail molecular dynamics simulation of an integral Kv1.2 ion channel, comprising 120,000 atoms. By applying 0.052 V/nm of hyperpolarization, we observe structural rearrangements, including up to 120° rotation of the S4 segment, changes in hydrogen-bonding patterns, but only low amounts of translation. A smaller rotation (∼35°) of the extracellular end of all S4 segments is present also in a reference 0.5 µs simulation without applied field, which indicates that the crystal structure might be slightly different from the natural state of the voltage sensor. The conformation change upon hyperpolarization is closely coupled to an increase in 310 helix contents in S4, starting from the intracellular side. This could support a model for transition from the crystal structure where the hyperpolarization destabilizes S4–lipid hydrogen bonds, which leads to the helix rotating to keep the arginine side chains away from the hydrophobic phase, and the driving force for final relaxation by downward translation is partly entropic, which would explain the slow process. The coordinates of the transmembrane part of the simulated channel actually stay closer to the recently determined higher-resolution Kv1.2 chimera channel than the starting structure for the entire second half of the simulation (0.5–1 µs). Together with lipids binding in matching positions and significant thinning of the membrane also observed in experiments, this provides additional support for the predictive power of microsecond-scale membrane protein simulations.  相似文献   

15.
Suspensions of the yeast Saccharomyces cerevisiae gave reproducible rates of O2 uptake over a period of 6 months. The relation of rate of consumption of O2 to temperature was tested over a wide range of temperatures, and the constant in the formulation of the relationship is found to be reproducible. The values of this constant (µ) have been obtained for five separate series of experiments by three methods of estimation. The variability of µ has the following magnitudes: the average deviation of a single determination expressed as per cent of the mean is ±2 per cent in the range 30–15°, and ±0.8 per cent in the range 15–3°C. This constancy of metabolic activity measured as a function of temperature can then be utilized for more precise investigations of processes controlling the velocity of oxidations of substrates, and of respiratory systems controlled by intracellular respiratory pigments. The data plotted according to the Arrhemus equation give average values of the constant µ as follows: for the range 35–30°, µ = 8,290; 30–15°, µ = 12,440 ±290; 15–3°, µ = 19,530 ±154. The critical temperatures are at 29.0° and 15.7°C. A close similarity exists between these temperature characteristics (µ) and values in the series usually obtained for respiratory activities in other organisms. This fact supports the view that a common system of processes controls the velocities of physiological activities in yeast and in other organisms.  相似文献   

16.
Growth rates (µ) of abundant microzooplankton species were examined in field experiments conducted at ambient sea temperatures (−1.8–9.0°C) in the Barents Sea and adjacent waters (70–78.5°N). The maximum species-specific µ of ciliates and athecate dinoflagellates (0.33–1.67 d−1 and 0.52–1.14 d−1, respectively) occurred at temperatures below 5°C and exceeded the µmax predicted by previously published, laboratory culture-derived equations. The opposite trend was found for thecate dinoflagellates, which grew faster in the warmer Atlantic Ocean water. Mixotrophic ciliates and dinoflagellates grew faster than their heterotrophic counterparts. At sub-zero temperatures, microzooplankton µmax matched those predicted for phytoplankton by temperature-dependent growth equations. These results indicate that microzooplankton protists may be as adapted to extreme Arctic conditions as their algal prey.  相似文献   

17.
Anesthetic management of patients undergoing pulmonary vein isolation for atrial fibrillation has specific requirements. The feasibility of non-invasive ventilation (NIV) added to deep sedation procedure was evaluated.Seventy-two patients who underwent ablation procedure were retrospectively revised, performed with (57%) or without (43%) application of NIV (Respironic® latex-free total face mask connected to Garbin ventilator-Linde Inc.) during deep sedation (Midazolam 0.01–0.02 mg/kg, fentanyl 2.5–5 μg/kg and propofol: bolus dose 1–1.5 mg/kg, maintenance 2–4 mg/kg/h).In the two groups (NIV vs deep sedation), differences were detected in intraprocedural (pH 7.37 ± 0.05 vs 7.32 ± 0.05, p = 0.001; PaO2 117.10 ± 27.25 vs 148.17 ± 45.29, p = 0.004; PaCO2 43.37 ± 6.91 vs 49.33 ± 7.34, p = 0.002) and in percentage variation with respect to basal values (pH −0.52 ± 0.83 vs −1.44 ± 0.87, p = 0.002; PaCO2 7.21 ± 15.55 vs 34.91 ± 25.76, p = 0.001) of arterial blood gas parameters. Two episodes of respiratory complications, treated with application of NIV, were reported in deep sedation procedure. Endotracheal intubation was not necessary in any case. Adverse events related to electrophysiological procedures and recurrence of atrial fibrillation were recorded, respectively, in 36% and 29% of cases.NIV proved to be feasible in this context and maintained better respiratory homeostasis and better arterial blood gas balance when added to deep sedation.  相似文献   

18.
RNase H mediated cleavage of RNA by cyclohexene nucleic acid (CeNA)   总被引:1,自引:1,他引:0       下载免费PDF全文
Cyclohexene nucleic acid (CeNA) forms a duplex with RNA that is more stable than a DNA–RNA duplex (ΔTm per modification: +2°C). A cyclohexenyl A nucleotide adopts a 3′-endo conformation when introduced in dsDNA. The neighbouring deoxynucleotide adopts an O4′-endo conformation. The CeNA:RNA duplex is cleaved by RNase H. The Vmax and Km of the cleavage reaction for CeNA:RNA and DNA:RNA is in the same range, although the kcat value is about 600 times lower in the case of CeNA:RNA.  相似文献   

19.
1. Rates of entry and oxidation of a range of metabolites have been measured in tracheostomized sheep (diet, 800g. of lucerne chaff and 100g. of maize/day) by combining isotope-dilution techniques with the continuous measurement of total respiratory gas exchange, and 14CO2 production during the intravenous or intraruminal infusion of 14C-labelled substrates. 2. Mean entry rates in fed and starved (24hr.) sheep respectively, expressed as mg./min./kg. body wt.0·75, were: glucose, 5·0 (range 4·8–5·1, 2 observations) and 3·8 (3·2–4·2, 4); acetate, 10·8 (9·1–13·5, 4) and 5·8 (1); d(−)-β-hydroxybutyrate, 1·4 (1) and 1·5 (0·8–2·4, 4); palmitate, oleate and stearate (starved sheep only) 1·0 (0·6–1·9, 7), 0·9 (0·2–1·6, 10) and 0·9 (0·5–1·1, 11) respectively. 3. Production rates of propionate and butyrate in continuously feeding sheep were 6·4 (4·7–8·3, 4) and 4·3 (3·4–6·1, 4) mg./min./kg.0·75 respectively, and in starved (24hr.) sheep were 2·5 (2·2–2·9, 2) and 1·0 (0·8–1·2, 2) mg./min./kg.0·75 respectively. 4. Calculated terminal values for the specific radioactivity of respiratory 14CO2 during measurements of entry rates and production rates were used to calculate the contributions of individual substrates to overall oxidative metabolism. Mean values for fed and starved sheep respectively were: glucose, 9·1 (8·6–9·6, 2) and 11·2 (5·9–15·1, 4)%; acetate, 31·6 (26·8–38·1, 4) and 22·1 (1)%; d(−)-β-hydroxybutyrate, 10·4 (1) and 4·8 (1·9–7·7, 4)%; propionate, 23·0 (13·8–29·9, 4) and 7·1 (6·8–7·4, 2)%; butyrate, 16·5 (13·7–20·5, 4) and 5·3 (5·2–5·3, 2)%; palmitate, oleate and stearate (starved sheep only), 4·7 (2·0–7·7, 7), 4·0 (1·2–6·6, 10) and 4·4 (3·8–5·8, 9)% respectively. The sum of these values for individual substrates in fed and starved sheep, excluding that of β-hydroxybutyrate and after correction of the glucose value for the known interrelations of this substrate with propionate, accounted for 76% and 58% respectively of total production of carbon dioxide. 5. Calculations based on the proportion of substrate entry directly oxidized indicated that the substrates studied accounted for 63% (fed sheep) and 43% (starved sheep) of total energy expenditure measured by oxygen uptake. The contribution of β-hydroxybutyrate was excluded, and corrections were made for glucose–propionate interrelations, and for the different rates of oxidation of the methyl and carboxyl fragments of acetate. 6. The present results have been combined with those obtained earlier in this Laboratory to examine the relationships between rates of substrate entry and oxidation, and concentrations of substrate in blood. Rates of entry of acetate, glucose, d(−)-β-hydroxybutyrate, palmitate and oleate (but not stearate) were well correlated with concentration in blood, and substrate contribution to production of carbon dioxide showed a similar correlation to blood concentration, except with glucose. 7. It was concluded that the general technique is of potential value in providing valid quantitative parameters of animal metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号