首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Plant peroxisomes play a key role in numerous physiological processes and are able to adapt to environmental changes by altering their content, morphology, and abundance. Peroxisomes can multiply through elongation, constriction, and fission; this process requires the action of conserved, as well as species-specific proteins. Genetic and morphological analyses have been used with the model plant Arabidopsis thaliana to determine at the mechanistic level how plant peroxisomes increase their abundance. The five-member PEXll family promotes early steps of peroxisome multiplication with an unknown mechanism and some subfamily specificities. The dynamin-related protein (DRP)3 subfamily of dynaminrelated large guanosine triphosphatases mediates late steps of both peroxisomal and mitochondrial multiplication. New genetic and biochemical tools will be needed to identify additional, especially plant-specific, constituents of the peroxisome multiplication pathways.  相似文献   

4.
5.
6.
水孔蛋白介导的水分运输具有选择性强、效率高和调节快等特点,在植物生长、发育和胁迫适应中起作用,文章介绍了水孔蛋白介导的水分运输及其分析测定技术.  相似文献   

7.
We present a novel measurement setup for monitoring changes in leaf water status using nondestructive terahertz time-domain spectroscopy (THz-TDS). Previous studies on a variety of plants showed the principal applicability of THz-TDS. In such setups, decreasing leaf water content directly correlates with increasing THz transmission. Our new system allows for continuous, nondestructive monitoring of the water status of multiple individual plants each at the same constant leaf position. It overcomes previous drawbacks, which were mainly due to the necessity of relocating the plants. Using needles of silver fir (Abies alba) seedlings as test subjects, we show that the transmission varies along the main axis of a single needle due to a variation in thickness. Therefore, the relocation of plants during the measuring period, which was necessary in the previous THz-TDS setups, should be avoided. Furthermore, we show a highly significant correlation between gravimetric water content and respective THz transmission. By monitoring the relative change in transmission, we were able to narrow down the permanent wilting point of the seedlings. Thus, we established groups of plants with well-defined levels of water stress that could not be detected visually. This opens up the possibility for a broad range of genetic and physiological experiments.Climate change simulations predict an increase in the occurrence of drought events in the Mediterranean area and in central Europe due to smaller amounts of precipitation, especially during summer periods (IPCC, 2007). With the exception of the boreal zone, this leads to an increase in drought risks for every region on the European continent (Iglesias et al., 2007). Water availability is very important for a variety of plant species. Trees and crops play major roles regarding ecosystem stability and food supply. Forest trees are keystone elements in shaping long-term, regional ecosystem composition and stability and are, like most forest species, highly vulnerable to increases in drought severity (Breshears et al., 2005; Choat et al., 2012). Drought-induced forest die-offs thereby directly reduce ecosystem services such as carbon sequestration and timber supply (Allen et al., 2010). Further research is clearly necessary to elucidate the physiological traits and responses of plants regarding their water status.European silver fir (Abies alba) is an important forest tree species of ecological and economic relevance. This study is embedded in the European project LinkTree, “linking genetic variability with ecological responses to environmental changes: forest trees as model systems.” Our group is concerned with the identification of genes involved in the water stress response of silver fir. This species is of special interest because of its lower water-use efficiency compared with other conifer species (Guehl and Aussenac, 1987; Guehl et al., 1991).For this purpose, monitoring plant water status without inducing other forms of stress is instrumental in order to apply well-defined levels of water stress. Obtaining information regarding the water status of a plant is highly problematic without using invasive and destructive methods that usually only allow a retrospective assessment. These include commonly established methods, such as the gravimetric water content and pressure chamber techniques, most notably Scholander’s pressure bomb (Scholander et al., 1965).Chlorophyll fluorescence, stomatal conductance, and visual assessment are examples of nondestructive and noninvasive measurement techniques. The former two only provide indirect information about the plant stress status and, therefore, the water content via photosynthetic activity (Lichtenthaler and Rinderle, 1988; Tardieu and Davies, 1993). The latter is difficult to standardize and highly dependent on the morphology of the studied plant species. Conifers especially are challenging subjects for visually assessing drought stress. Due to their needle morphology, it is nearly impossible to detect early signs of dehydration.Measurement techniques using electromagnetic radiation in the terahertz (THz) regime have shown promising results, due to the nondestructive nature and high sensitivity of THz waves to water. With THz waves, we refer to frequencies in the electromagnetic spectrum between 0.1 and 1 THz, corresponding to wavelengths between 3 and 0.3 mm, which are located between infrared light (thermal radiation) and microwave radiation (used in common wireless data communication systems). In the last decade, terahertz time-domain spectroscopy (THz-TDS) has proven to be a very strong and accurate tool for characterizing and imaging various materials (for review, see Jepsen et al., 2011). Crucial for our study is the remarkably high absorption coefficient of water in this part of the electromagnetic spectrum. Thus, it is a robust technique hardly affected by physiological concentrations of soluble substances. Using transmission geometry, the resulting absorption by plant tissues directly reflects the quantity of water molecules.Furthermore, THz-TDS does not suffer from the disadvantages of other radiation-based techniques. These are mainly focused on the infrared or microwave spectrum but either lack the sensitivity for small changes in leaf water status or are affected by the plant’s inorganic salt content, leading to significant disturbances (Ulaby and Jedlicka, 1984). Moreover, the applicability of emitting microwave radiation is limited to minimal wavelengths of approximately 2.5 mm. The Abbe diffraction limit, therefore, restricts the minimum diameter of a measurable object to approximately 1.25 mm. In order to measure small leaves, such as coniferous needles, electromagnetic radiation with shorter wavelengths is necessary.Although presenting a useful alternative, THz-TDS was not feasible until recently, due to the difficulty of generating and detecting electromagnetic radiation with wavelengths in the THz spectrum. Despite its promising applicability in plant sciences, until now this relatively novel method relied exclusively on measurement setups that allowed only a single measurement per alternating plant (Hadjiloucas et al., 1999; Jördens et al., 2009; Breitenstein et al., 2012; Castro-Camus et al., 2013; Gente et al., 2013). For the purpose of continuously monitoring multiple plants, these setups are only of limited use, since the plants must be relocated for every measurement. This results in two problems: (1) an increase in possible disturbances (e.g. mechanical), influencing the plant’s stress response, and (2) the necessity to precisely target the same measurement spot on every analyzed plant at every consecutive measurement. The latter is of crucial importance for the exact monitoring of any individual plant’s water status because, as we will show in this study, the transmission varies substantially across the area of plant leaf tissue.We present a novel measurement procedure that overcomes the drawbacks of previously proposed methods. Our approach enables us to precisely monitor changes in the water content of multiple plants simultaneously.In the course of this study, three different experiments were performed. The profile measurement and the rehydration experiment were preliminary investigations to examine the influences of needle and tissue thickness and to define a nonlethal stress level. The main experiment established groups of plants with comparable levels of water stress.  相似文献   

8.
Balling and Zimmermann [Planta 182 (1990), 325–338] used a pressure probe to measure directly negative pressures in the xylem of transpiring plants. They obtained data that challenge the standard framework that plant physiologists use when thinking about plant water relations, and, most notably, found a substantial discrepancy between their measurements of xylem pressure and of leaf water potential measured with a Scholander pressure bomb. Their data are critically examined and it is shown that most of them can be accommodated within the established principles of plant water relations. In particular, there are several reasons, consistent with the established principles, why leaf water potential and xylem pressure may differ.  相似文献   

9.
细胞迁移 (cell migration) 在机体生命活动中的胚胎发育、免疫防御、损伤修复、血管新生以及肿瘤转移等许多重要生理和病理过程中发挥核心作用 . 越来越多的证据表明,细胞迁移中处于极性分布的细胞膜离子通道和离子转运体可以通过调节细胞体积变化协助细胞的移动 . 然而细胞膜水转运机制在这一过程中的作用尚未阐明 . Saadoun 等 2005 年 4 月发表于《自然》杂志上的一项研究发现细胞膜水通道蛋白在细胞迁移中发挥重要作用 . 为细胞迁移的分子机制增加了新的内容,也为水通道基因功能研究开启了一个新的领域 .  相似文献   

10.
11.
12.
植物水通道的生理生态特性及其参与气孔运动的研究进展   总被引:10,自引:0,他引:10  
植物水通道对水分运输具有专一性,能够调节细胞中水分、一些离子和其他小溶质的转运,因而在植物的生长发育中发挥着重要作用.本文综述了植物水通道的研究进展,重点介绍了植物水通道的分子特性和生理生态特性及其在植物气孔运动中的作用,讨论了水通道在气孔振荡中的作用和地位.  相似文献   

13.
14.
植物水通道对水分运输具有专一性, 能够调节细胞中水分、一些离子和其他小溶质的转运, 因而在植物的生长发育中发挥着重要作用。本文综述了植物水通道的研究进展, 重点介绍了植物水通道的分子特性和生理生态特性及其在植物气孔运动中的作用, 讨论了水通道在气孔振荡中的作用和地位。  相似文献   

15.
The possible role in drought resistance played by sclerophyllywas studied in the Mediterranean oaks Quercus ilex, Q. suberand Q. pubescens. Studies were conducted on leaves at 30, 50and 80% of their final surface area, as well as on mature leavesof the current year's growth in June and September and on 1-year-oldleaves. Leaves of different ages of the three species showed quite differentdegrees of sclerophylly (DS). Q. ilex leaves reached the definitiveDS of 1.75 g dm–2 during leaf expansion; Q. pubescensleaves hardened at the end of their expansion, with a finalDS of 0.93 g dm–2; Q. suber showed the lowest DS of 0.76g dm–2. Leaf conductance to water vapour (g1) of 1-year-old leaves ofQ. ilex, measured in the field, showed a duration of the g1peak values about twice that of the other two species. The minimumleaf relative water content (RWC), however, was near the samein the three species, indicating that water loss was recoveredpartly by Q. ilex leaves. This was apparently due to the higherbulk modulus of elasticity (  相似文献   

16.
TURNER  L. B. 《Annals of botany》1990,65(3):285-290
Water potential, osmotic potential, pressure potential and relativewater content were measured in stolons and leaves of white cloverplants grown under a range of conditions of water supply andevaporative demand. The importance of adventitious roots fromthe nodes was examined. Gradients along stolons were alwaysextremely small, of the order of only 01 MPa. Stolon up waterpotential was representative of plant water status regardlessof stolon length, presence/absence of nodal roots, degree ofwater stress and evaporative demand. It is concluded that waterconduction along stolons was very good. Gradients were foundto exist along petioles; they may have a greater resistanceto water flow than stolons. The relationship between water fluxand stem anatomy, and the importance of differential flow ratesthrough stolons and petioles to plant behaviour during waterstress, are discussed. Trifolium repens L., white clover, water relations  相似文献   

17.
Physical Aspects of the Internal Water Relations of Plant Leaves   总被引:10,自引:10,他引:0  
  相似文献   

18.
Morphological features of arid region plant life forms are described and interpreted as adaptations to drought although this cannot be easily quantified. Functional adaptations, however, can be measured, and using the annual crop plant Vigna unguiculata (L.) Walp. responses to drought are described at the leaf and the whole plant level. In the first step of this analysis theoretical criteria are developed to define optimal water use. In the second step experimental data are used to test to what extent Vigna follows a theoretically optimal regulation of water and carbon relations. The analysis indicates that the ecological adaptation of regulatory processes may be quantified at a functional level.  相似文献   

19.
20.
Barua  Sumit  Kim  Jong Youl  Kim  Jae Young  Kim  Jae Hwan  Lee  Jong Eun 《Neurochemical research》2019,44(4):735-750

The central nervous system (CNS) is the most injury-prone part of the mammalian body. Any acute or chronic, central or peripheral neurological disorder is related to abnormal biochemical and electrical signals in the brain cells. As a result, ion channels and receptors that are abundant in the nervous system and control the electrical and biochemical environment of the CNS play a vital role in neurological disease. The N-methyl-d-aspartate receptor, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid receptor, kainate receptor, acetylcholine receptor, serotonin receptor, α2-adrenoreceptor, and acid-sensing ion channels are among the major channels and receptors known to be key components of pathophysiological events in the CNS. The primary amine agmatine, a neuromodulator synthesized in the brain by decarboxylation of l-arginine, can regulate ion channel cascades and receptors that are related to the major CNS disorders. In our previous studies, we established that agmatine was related to the regulation of cell differentiation, nitric oxide synthesis, and murine brain endothelial cell migration, relief of chronic pain, cerebral edema, and apoptotic cell death in experimental CNS disorders. In this review, we will focus on the pathophysiological aspects of the neurological disorders regulated by these ion channels and receptors, and their interaction with agmatine in CNS injury.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号