首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three myosin heavy chain isoforms with unique peptide maps appear sequentially in the development of the chicken pectoralis major muscle. An embryonic isoform is expressed early and throughout development in the embryo. A second isoform appears just after hatching and predominates by 10 days ex ovo. A third isoform, indistinguishable from adult myosin heavy chain, predominates by 8 weeks after hatching. This sequence of myosin isoform change does not, however, appear during myogenesis in vitro. In cultures prepared from embryonic myoblasts only embryonic myosin heavy chain is expressed. This is true even in cultures maintained for 30 days. Myosin light chain expression also changes in vivo with a progressive increase in fast light chain 3 accumulation. In vitro, however, this shift to increasing fast light chain 3 accumulation does not occur. The results indicate that the myosin heavy chain and light chain pattern observed in vitro is identical to that of the embryonic muscle and that the conditions necessary for the shift in expression to a more mature myosin phenotype are not present in myogenic cultures. These cultures are therefore potentially of great value in probing further the neural and humoral determinants of muscle fiber maturation and growth.  相似文献   

2.
SCUBE3 (signal peptide CUB-EGF-like domain-containing protein 3) belongs to a newly identified secreted and cell membrane-associated SCUBE family, which is evolutionarily conserved in vertebrates. Scube3 is predominantly expressed in a variety of developing tissues in mice such as somites, neural tubes, and limb buds. However, its function during development remains unclear. In this study, we first showed that knockdown of SCUBE3 in C2C12 myoblasts inhibited FGF receptor 4 expression and FGF signaling, thus resulting in reduced myogenic differentiation. Furthermore, knockdown of zebrafish scube3 by antisense morpholino oligonucleotides specifically suppressed the expression of the myogenic marker myod1 within the lateral fast muscle precursors, whereas its expression in the adaxial slow muscle precursors was largely unaffected. Consistent with these findings, immunofluorescent staining of fast but not slow muscle myosin was markedly decreased in scube3 morphants. Further genetic studies identified fgf8 as a key regulator in scube3-mediated fast muscle differentiation in zebrafish. Biochemical and molecular analysis showed that SCUBE3 acts as a FGF co-receptor to augment FGF8 signaling. Scube3 may be a critical upstream regulator of fast fiber myogenesis by modulating fgf8 signaling during zebrafish embryogenesis.  相似文献   

3.
Although Wnt signaling plays an important role in body patterning during early vertebrate embryogenesis, the mechanisms by which Wnts control the individual processes of body patterning are largely unknown. In zebrafish, wnt3a and wnt8 are expressed in overlapping domains in the blastoderm margin and later in the tailbud. The combined inhibition of Wnt3a and Wnt8 by antisense morpholino oligonucleotides led to anteriorization of the neuroectoderm, expansion of the dorsal organizer, and loss of the posterior body structure-a more severe phenotype than with inhibition of each Wnt alone-indicating a redundant role for Wnt3a and Wnt8. The ventrally expressed homeobox genes vox, vent, and ved mediated Wnt3a/Wnt8 signaling to restrict the organizer domain. Of posterior body-formation genes, expression of the caudal-related cdx1a and cdx4/kugelig, but not bmps or cyclops, was strongly reduced in the wnt3a/wnt8 morphant embryos. Like the wnt3a/wnt8 morphant embryos, cdx1a/cdx4 morphant embryos displayed complete loss of the tail structure, suggesting that Cdx1a and Cdx4 mediate Wnt-dependent posterior body formation. We also found that cdx1a and cdx4 expression is dependent on Fgf signaling. hoxa9a and hoxb7a expression was down-regulated in the wnt3a/wnt8 and cdx1a/cdx4 morphant embryos, and in embryos with defects in Fgf signaling. Fgf signaling was required for Cdx-mediated hoxa9a expression. Both the wnt3a/wnt8 and cdx1a/cdx4 morphant embryos failed to promote somitogenesis during mid-segmentation. These data indicate that the cdx genes mediate Wnt signaling and play essential roles in the morphogenesis of the posterior body in zebrafish.  相似文献   

4.
The myosin heavy chain gene, MYHM743-2, is highly expressed in fast muscle fibers of torafugu embryos. However, the regulatory mechanisms involved in its expression have been unclear. In this study, we examined spatio-temporal expression patterns of this gene during development by injecting expression vectors containing the GFP reporter gene fused to the 5'-flanking region of MYHM743-2 into fertilized eggs of zebrafish and medaka. Although the -2.1 kb 5'-flanking region of torafugu MYHM743-2 showed no homology with the corresponding regions of zebrafish and medaka orthologous genes on the rVISTA analysis, the torafugu 5'-flanking region activated the GFP expression which was detected in the myotomal compartment for both zebrafish and medaka embryos. The GFP expression was localized to fast and slow muscle fibers in larvae as revealed by immunohistochemical analysis. In addition to the above tissues, GFP was also expressed in jaw, eye and pectoral fin muscles in embryos and larvae. These results clearly demonstrated that the 2.1 kb 5'-flanking region of MYHM743-2 contains essential cis-regulatory sequences for myogenesis that are conserved among torafugu, zebrafish and medaka.  相似文献   

5.
6.
Muscle activity contributes to formation of the neuromuscular junction and affects muscle metabolism and contractile properties through regulated gene expression. However, the mechanisms coordinating these diverse activity-regulated processes remain poorly characterized. Recently, it was reported that histone deacetylase 4 (HDAC4) can mediate denervation-induced myogenin and nicotinic acetylcholine receptor gene expression. Here, we report that HDAC4 is not only necessary for denervation-dependent induction of genes involved in synaptogenesis (nicotinic acetylcholine receptor and muscle-specific receptor tyrosine kinase) but also for denervation-dependent suppression of genes involved in glycolysis (muscle-specific enolase and phosphofructokinase). In addition, HDAC4 differentially regulates genes involved in muscle fiber type specification by inducing myosin heavy chain IIA and suppressing myosin heavy chain IIB. Consistent with these regulated gene profiles, HDAC4 is enriched in fast oxidative fibers of innervated tibialis anterior muscle and HDAC4 knockdown enhances glycolysis in cultured myotubes. HDAC4 mediates gene induction indirectly by suppressing the expression of Dach2 and MITR that function as myogenin gene corepressors. In contrast, HDAC4 is directly recruited to myocyte enhancer factor 2 sites within target promoters to mediate gene suppression. Finally, we discovered an HDAC4/myogenin positive feedback loop that coordinates gene induction and repression underlying muscle phenotypic changes after muscle denervation.  相似文献   

7.
Despite the prevalence of developmental myopathies resulting from muscle fiber defects, the earliest stages of myogenesis remain poorly understood. Unc45b is a molecular chaperone that mediates the folding of thick-filament myosin during sarcomere formation; however, Unc45b may also mediate specific functions of non-muscle myosins (NMMs). unc45b Mutants have specific defects in striated muscle development, which include myocyte detachment indicative of dysfunctional adhesion complex formation. Given the necessity for non-muscle myosin function in the formation of adhesion complexes and premyofibril templates, we tested the hypothesis that the unc45b mutant phenotype is not mediated solely by interaction with muscle myosin heavy chain (mMHC). We used the advantages of a transparent zebrafish embryo to determine the temporal and spatial patterns of expression for unc45b, non-muscle myosins and mMHC in developing somites. We also examined the formation of myocyte attachment complexes (costameres) in wild-type and unc45b mutant embryos. Our results demonstrate co-expression and co-regulation of Unc45b and NMM in myogenic tissue several hours before any muscle myosin heavy chain is expressed. We also note deficiencies in the localization of costamere components and NMM in unc45b mutants that is consistent with an NMM-mediated role for Unc45b during early myogenesis. This represents a novel role for Unc45b in the earliest stages of muscle development that is independent of muscle mMHC folding.  相似文献   

8.
9.
10.
A mutant affecting the heavy chain of myosin in Caenorhabditis elegans   总被引:41,自引:0,他引:41  
A set of non-complementing, closely linked, ethyl methanesulphonate-induced mutations in Caenorhabditis elegans specifically affects the structure and function of body-wall muscle cells but not the pharyngeal musculature. One of these mutations, e675, is semidominant and results in the production of a new protein of about 203,000 molecular weight in addition to normal myosin at about 210,000 Mr. The abnormal polypeptide chain is structurally very similar to normal myosin heavy chain when maps of iodinated peptides are compared.The E675 mutant shows a clear relation between defective movement, disruption of the body-wall muscle structure, and the molecular defect in the myosin heavy chains. The altered chain is synthesized in heterozygotes, suggesting that the e675 mutation is either in a structural gene for the heavy chain or in a cis acting control element. The hypothesis that there are two classes of myosin heavy chain within the same cells is discussed.  相似文献   

11.
12.
Muscle tissues contain the most classic sarcomeric myosin, called myosin II, which consists of 2 heavy chains (MYHs) and 4 light chains. In the case of humans (tetrapod), a total of 6 fast skeletal-type MYH genes (MYHs) are clustered on a single chromosome. In contrast, torafugu (teleost) contains at least 13 fast skeletal MYHs, which are distributed in 5 genomic regions; the MYHs are clustered in 3 of these regions. In the present study, the evolutionary relationship among fast skeletal MYHs is elucidated by comparing the MYHs of teleosts and tetrapods with those of cyclostome lampreys, one of two groups of extant jawless vertebrates (agnathans). We found that lampreys contain at least 3 fast skeletal MYHs, which are clustered in a head-to-tail manner in a single genomic region. Although there was apparent synteny in the corresponding MYH cluster regions between lampreys and tetrapods, phylogenetic analysis indicated that lamprey and tetrapod MYHs have independently duplicated and diversified. Subsequent transgenic approaches showed that the 5′-flanking sequences of Japanese lamprey fast skeletal MYHs function as a regulatory sequence to drive specific reporter gene expression in the fast skeletal muscle of zebrafish embryos. Although zebrafish MYH promoters showed apparent activity to direct reporter gene expression in myogenic cells derived from mice, promoters from Japanese lamprey MYHs had no activity. These results suggest that the muscle-specific regulatory mechanisms are partially conserved between teleosts and tetrapods but not between cyclostomes and tetrapods, despite the conserved synteny.  相似文献   

13.
The Wnt signaling pathway is highly conserved across metazoa and has pleiotropic functions in the development of many animals. Binding of a secreted Wnt ligand to its Frizzled (Fz) receptor activates Dishevelled, which then drives one of three major signaling cascades, canonical (β-catenin), calcium, or planar cell polarity signaling. These pathways have distinct developmental effects and function in different processes in different organisms. Here we report the expression of six wnt and three fz genes during embryogenesis of the sea star, Patiria miniata, as a first step in uncovering the roles of Wnt signaling in the development of this organism. wnt3, wnt4, wnt8, and wnt16 are expressed in nested domains in the endoderm and lateral ectoderm from blastula through late gastrula stages; wnt2 and wnt5 are expressed in the mesoderm and anterior endoderm. Expression of different fz paralogs is detected in the mesoderm; posterior endoderm and ectoderm; and anterior ectoderm. Taken together, this suggests that Wnt signaling can occur throughout most of the embryo and may therefore play multiple roles during sea star development.  相似文献   

14.
The Wnt signaling pathway is highly conserved across metazoa and has pleiotropic functions in the development of many animals. Binding of a secreted Wnt ligand to its Frizzled (Fz) receptor activates Dishevelled, which then drives one of three major signaling cascades, canonical (β-catenin), calcium, or planar cell polarity signaling. These pathways have distinct developmental effects and function in different processes in different organisms. Here we report the expression of six wnt and three fz genes during embryogenesis of the sea star, Patiria miniata, as a first step in uncovering the roles of Wnt signaling in the development of this organism. wnt3, wnt4, wnt8, and wnt16 are expressed in nested domains in the endoderm and lateral ectoderm from blastula through late gastrula stages; wnt2 and wnt5 are expressed in the mesoderm and anterior endoderm. Expression of different fz paralogs is detected in the mesoderm; posterior endoderm and ectoderm; and anterior ectoderm. Taken together, this suggests that Wnt signaling can occur throughout most of the embryo and may therefore play multiple roles during sea star development.  相似文献   

15.
16.
《The Journal of cell biology》1985,101(5):1643-1650
We prepared monoclonal antibodies specific for fast or slow classes of myosin heavy chain isoforms in the chicken and used them to probe myosin expression in cultures of myotubes derived from embryonic chicken myoblasts. Myosin heavy chain expression was assayed by gel electrophoresis and immunoblotting of extracted myosin and by immunostaining of cultures of myotubes. Myotubes that formed from embryonic day 5-6 pectoral myoblasts synthesized both a fast and a slow class of myosin heavy chain, which were electrophoretically and immunologically distinct, but only the fast class of myosin heavy chain was synthesized by myotubes that formed in cultures of embryonic day 8 or older myoblasts. Furthermore, three types of myotubes formed in cultures of embryonic day 5-6 myoblasts: one that contained only a fast myosin heavy chain, a second that contained only a slow myosin heavy chain, and a third that contained both a fast and a slow heavy chain. Myotubes that formed in cultures of embryonic day 8 or older myoblasts, however, were of a single type that synthesized only a fast class of myosin heavy chain. Regardless of whether myoblasts from embryonic day 6 pectoral muscle were cultured alone or mixed with an equal number of myoblasts from embryonic day 12 muscle, the number of myotubes that formed and contained a slow class of myosin was the same. These results demonstrate that the slow class of myosin heavy chain can be synthesized by myotubes formed in cell culture, and that three types of myotubes form in culture from pectoral muscle myoblasts that are isolated early in development, but only one type of myotube forms from older myoblasts; and they suggest that muscle fiber formation probably depends upon different populations of myoblasts that co-exist and remain distinct during myogenesis.  相似文献   

17.
18.
19.
20.
A variety of human diseases arise from mutations that alter muscle contraction. Evolutionary conservation allows genetic studies in Drosophila melanogaster to be used to better understand these myopathies and suggest novel therapeutic strategies. Integrin-mediated adhesion is required to support muscle structure and function, and expression of Integrin adhesive complex (IAC) proteins is modulated to adapt to varying levels of mechanical stress within muscle. Mutations in flapwing (flw), a catalytic subunit of myosin phosphatase, result in non-muscle myosin hyperphosphorylation, as well as muscle hypercontraction, defects in size, motility, muscle attachment, and subsequent larval and pupal lethality. We find that moderately elevated expression of the IAC protein PINCH significantly rescues flw phenotypes. Rescue requires PINCH be bound to its partners, Integrin-linked kinase and Ras suppressor 1. Rescue is not achieved through dephosphorylation of non-muscle myosin, suggesting a mechanism in which elevated PINCH expression strengthens integrin adhesion. In support of this, elevated expression of PINCH rescues an independent muscle hypercontraction mutant in muscle myosin heavy chain, MhcSamba1. By testing a panel of IAC proteins, we show specificity for PINCH expression in the rescue of hypercontraction mutants. These data are consistent with a model in which PINCH is present in limiting quantities within IACs, with increasing PINCH expression reinforcing existing adhesions or allowing for the de novo assembly of new adhesion complexes. Moreover, in myopathies that exhibit hypercontraction, strategic PINCH expression may have therapeutic potential in preserving muscle structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号