首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiac hypertrophy plays a major role in heart failure and is related to patient morbidity and mortality. Calcium overloading is a main risk for cardiac hypertrophy, and Na+/K+-ATPase (NKA) has been found that it could not only regulate intracellular Na+ levels but also control the intracellular Ca2+ ([Ca2+]i) level through Na+/Ca2+-exchanger (NCX). Recent studies have reported that klotho could affect [Ca2+]i level. In this study, we aimed at exploring the role of klotho in improving isoproterenol-induced hypertrophic response of H9C2 cells. The H9C2 cells were randomly divided into control and isoproterenol (ISO) (10 μM) groups. Klotho protein (10 μg/ml) or NKAα2 siRNA was used to determine the changes in isoproterenol-induced hypertrophic response. The alterations of [Ca2+]i level were measured by spectrofluorometry. Our results showed that H9C2 cells which were treated with isoproterenol presented a higher level of [Ca2+]i and hypertrophic gene expression at 24 and 48 h compared with the control group. Moreover, the expressions of NKAα1 and NKAα2 were both increased in control and ISO groups after treating with klotho protein; meanwhile, the NKA activity was increased and NCX activity was decreased after treatment. Consistently, the [Ca2+]i level and hypertrophic gene expression were decreased in ISO group after klotho protein treatment. However, these effects were both prevented by transfecting with NKAα2 siRNA. In conclusion, these findings demonstrated that klotho inhibits isoproterenol-induced hypertrophic response in H9C2 cells by activating NKA and inhibiting the reverse mode of NCX and this effect may be associated with the upregulation of NKAα2 expression.  相似文献   

2.
Abstract: We have previously demonstrated that activation of the Na+-Ca2+ exchanger in the reverse mode causes Ca2+ influx in astrocytes. In addition, we showed that the exchange activity was stimulated by nitric oxide (NO)/cyclic GMP and inhibited by ascorbic acid. The present study demonstrates that the Na+-Ca2+ exchanger is involved in agonist-induced Ca2+ signaling in cultured rat astrocytes. The astrocytic intracellular Ca2+ concentration ([Ca2+]i) was increased by l -glutamate, noradrenaline (NA), and ATP, and the increases were all attenuated by the NO generator sodium nitroprusside (SNP). SNP also reduced the ionomycin-induced increase in [Ca2+]i. The Na-induced Ca2+ signal was also attenuated by S-nitroso-l -cysteine and 8-bromo cyclic GMP, whereas it was enhanced by 3,4-dichlorobenzamil, an inhibitor of the Na+-Ca2+ exchanger. Treatment of astrocytes with antisense, but not sense, deoxynucleotides to the sequence encoding the Na+-Ca2+ exchanger enhanced the ionomycin-induced increase in [Ca2+]i and blocked the effects of SNP and 8-bromo cyclic GMP in reducing the NA-induced Ca2+ signal. Furthermore, the ionomycin-induced Ca2+ signal was enhanced by removal of extracellular Na+ and pretreatment with ascorbic acid. These findings indicate that the Na+-Ca2+ exchanger is a target for NO modulation of elevated [Ca2+]i and that the exchanger plays a role in Ca2+ efflux when [Ca2+]i is raised above basal levels in astrocytes.  相似文献   

3.
The prevalence of death from cardiovascular disease is significantly higher in elderly populations; the underlying factors that contribute to the age‐associated decline in cardiac performance are poorly understood. Herein, we identify the involvement of sodium/glucose co‐transporter gene (SGLT2) in disrupted cellular Ca2+‐homeostasis, and mitochondrial dysfunction in age‐associated cardiac dysfunction. In contrast to younger rats (6‐month of age), older rats (24‐month of age) exhibited severe cardiac ultrastructural defects, including deformed, fragmented mitochondria with high electron densities. Cardiomyocytes isolated from aged rats demonstrated increased reactive oxygen species (ROS), loss of mitochondrial membrane potential and altered mitochondrial dynamics, compared with younger controls. Moreover, mitochondrial defects were accompanied by mitochondrial and cytosolic Ca2+ ([Ca2+]i) overload, indicative of disrupted cellular Ca2+‐homeostasis. Interestingly, increased [Ca2+]i coincided with decreased phosphorylation of phospholamban (PLB) and contractility. Aged‐cardiomyocytes also displayed high Na+/Ca2+‐exchanger (NCX) activity and blood glucose levels compared with young‐controls. Interestingly, the protein level of SGLT2 was dramatically increased in the aged cardiomyocytes. Moreover, SGLT2 inhibition was sufficient to restore age‐associated defects in [Ca2+]i‐homeostasis, PLB phosphorylation, NCX activity and mitochondrial Ca2+‐loading. Hence, the present data suggest that deregulated SGLT2 during ageing disrupts mitochondrial function and cardiac contractility through a mechanism that impinges upon [Ca2+]i‐homeostasis. Our studies support the notion that interventions that modulate SGLT2‐activity can provide benefits in maintaining [Ca2+]i and cardiac function with advanced age.  相似文献   

4.
Although the role of Na+ in several aspects of Ca2+ regulation has already been shown, the exact mechanism of intracellular Ca2+ concentration ([Ca2+]i) increase resulting from an enhancement in the persistent, non‐inactivating Na+ current (INa,P), a decisive factor in certain forms of epilepsy, has yet to be resolved. Persistent Na+ current, evoked by veratridine, induced bursts of action potentials and sustained membrane depolarization with monophasic intracellular Na+ concentration ([Na+]i) and biphasic [Ca2+]i increase in CA1 pyramidal cells in acute hippocampal slices. The Ca2+ response was tetrodotoxin‐ and extracellular Ca2+‐dependent and ionotropic glutamate receptor‐independent. The first phase of [Ca2+]i rise was the net result of Ca2+ influx through voltage‐gated Ca2+ channels and mitochondrial Ca2+ sequestration. The robust second phase in addition involved reverse operation of the Na+–Ca2+ exchanger and mitochondrial Ca2+ release. We excluded contribution of the endoplasmic reticulum. These results demonstrate a complex interaction between persistent, non‐inactivating Na+ current and [Ca2+]i regulation in CA1 pyramidal cells. The described cellular mechanisms are most likely part of the pathomechanism of certain forms of epilepsy that are associated with INa,P. Describing the magnitude, temporal pattern and sources of Ca2+ increase induced by INa,P may provide novel targets for antiepileptic drug therapy.  相似文献   

5.
The large inner membrane electrochemical driving force and restricted volume of the matrix confer unique constraints on mitochondrial ion transport. Cation uptake along with anion and water movement induces swelling if not compensated by other processes. For mitochondrial Ca2+ uptake, these include activation of countertransporters (Na+/Ca2+ exchanger and Na+/H+ exchanger) coupled to the proton gradient, ultimately maintained by the proton pumps of the respiratory chain, and Ca2+ binding to matrix buffers. Inorganic phosphate (Pi) is known to affect both the Ca2+ uptake rate and the buffering reaction, but the role of anion transport in determining mitochondrial Ca2+ dynamics is poorly understood. Here we simultaneously monitor extra- and intra-mitochondrial Ca2+ and mitochondrial membrane potential (ΔΨm) to examine the effects of anion transport on mitochondrial Ca2+ flux and buffering in Pi-depleted guinea pig cardiac mitochondria. Mitochondrial Ca2+ uptake proceeded slowly in the absence of Pi but matrix free Ca2+ ([Ca2+]mito) still rose to ∼50 μm. Pi (0.001–1 mm) accelerated Ca2+ uptake but decreased [Ca2+]mito by almost 50% while restoring ΔΨm. Pi-dependent effects on Ca2+ were blocked by inhibiting the phosphate carrier. Mitochondrial Ca2+ uptake rate was also increased by vanadate (Vi), acetate, ATP, or a non-hydrolyzable ATP analog (AMP-PNP), with differential effects on matrix Ca2+ buffering and ΔΨm recovery. Interestingly, ATP or AMP-PNP prevented the effects of Pi on Ca2+ uptake. The results show that anion transport imposes an upper limit on mitochondrial Ca2+ uptake and modifies the [Ca2+]mito response in a complex manner.  相似文献   

6.
Neuronal dendrites are vulnerable to injury under diverse pathological conditions. However, the underlying mechanisms for dendritic Na+ overload and the selective dendritic injury remain poorly understood. Our current study demonstrates that activation of NHE-1 (Na+/H+ exchanger isoform 1) in dendrites presents a major pathway for Na+ overload. Neuronal dendrites exhibited higher pHi regulation rates than soma as a result of a larger surface area/volume ratio. Following a 2-h oxygen glucose deprivation and a 1-h reoxygenation, NHE-1 activity was increased by ∼70–200% in dendrites. This elevation depended on activation of p90 ribosomal S6 kinase. Moreover, stimulation of NHE-1 caused dendritic Na+i accumulation, swelling, and a concurrent loss of Ca2+i homeostasis. The Ca2+i overload in dendrites preceded the changes in soma. Inhibition of NHE-1 or the reverse mode of Na+/Ca2+ exchange prevented these changes. Mitochondrial membrane potential in dendrites depolarized 40 min earlier than soma following oxygen glucose deprivation/reoxygenation. Blocking NHE-1 activity not only attenuated loss of dendritic mitochondrial membrane potential and mitochondrial Ca2+ homeostasis but also preserved dendritic membrane integrity. Taken together, our study demonstrates that NHE-1-mediated Na+ entry and subsequent Na+/Ca2+ exchange activation contribute to the selective dendritic vulnerability to in vitro ischemia.  相似文献   

7.
8.
The P2U purinergic agonist ATP (0.3 mM) elicited an increase in [Ca2+]i due to Ca2+ release from intracellular stores in transfected Chinese hamster ovary cells that express the bovine cardiac Na+/Ca2+ exchanger (CK1.4 cells). The following observations indicate that ATP-evoked Ca2+ release was accompanied by a Ca2+- dependent regulatory activation of Na+/Ca2+ exchange activity: Addition of extracellular Ca2+ (0.7 mM) 0–1 min after ATP evoked a dramatic rise in [Ca2+]i in Na+-free media (Li+ substitution) compared to Na+-containing media; no differences between Na+- and Li+-based media were observed with vector-transfected cells. In the presence of physiological concentrations of extracellular Na+ and Ca2+, the ATP-evoked rise in [Ca2+]i declined more rapidly in CK1.4 cells compared to control cells, but then attained a long-lived plateau of elevated [Ca2+]i which eventually came to exceed the declining [Ca2+]i values in control cells. ATP elicited a transient acceleration of exchange-mediated Ba2+ influx, consistent with regulatory activation of the Na+/Ca2+ exchanger. The acceleration of Ba2+ influx was not observed in vector-transfected control cells, or in CK1.4 cells in the absence of intracellular Na+ or when the Ca2+ content of the intracellular stores had been reduced by prior treatment with ionomycin. The protein kinase C activator phorbol 12-myristate 13-acetate attenuated the exchange-mediated rise in [Ca2+]i under Na+-free conditions, but did not inhibit the ATP-evoked stimulation of Ba2+ influx. The effects of PMA are therefore not due to inhibition of exchange activity, but probably reflect the influence of protein kinase C on other Ca2+ homeostatic mechanisms. We conclude that exchange activity is accelerated during ATP-evoked Ca2+ release from intracellular stores through regulatory activation by increased [Ca2+]i. In the absence of extracellular Ca2+, the stimulation of exchange activity is short-lived and follows the time course of the [Ca2+]i transient; in the presence of extracellular Ca2+, we suggest that the exchanger remains activated for a longer period of time, thereby stabilizing and prolonging the plateau phase of store-dependent Ca2+ entry.  相似文献   

9.
This study addressed the hypothesis that cardiac Sirtuin 1 (Sirt1) deficiency alters cardiomyocyte Ca2+ and Na+ regulation, leading to cardiac dysfunction and arrhythmogenesis. We used mice with cardiac‐specific Sirt1 knockout (Sirt1?/?). Sirt1flox/flox mice were served as control. Sirt1?/? mice showed impaired cardiac ejection fraction with increased ventricular spontaneous activity and burst firing compared with those in control mice. The arrhythmic events were suppressed by KN93 and ranolazine. Reduction in Ca2+ transient amplitudes and sarcoplasmic reticulum (SR) Ca2+ stores, and increased SR Ca2+ leak were shown in the Sirt1?/? mice. Electrophysiological measurements were performed using patch‐clamp method. While L‐type Ca2+ current (ICa, L) was smaller in Sirt1?/? myocytes, reverse‐mode Na+/Ca2+ exchanger (NCX) current was larger compared with those in control myocytes. Late Na+ current (INa, L) was enhanced in the Sirt1?/? mice, alongside with elevated cytosolic Na+ level. Increased cytosolic and mitochondrial reactive oxygen species (ROS) were shown in Sirt1?/? mice. Sirt1?/? cardiomyocytes showed down‐regulation of L‐type Ca2+ channel α1c subunit (Cav1.2) and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a), but up‐regulation of Ca2+/calmodulin‐dependent protein kinase II and NCX. In conclusions, these findings suggest that deficiency of Sirt1 impairs the regulation of intracellular Ca2+ and Na+ in cardiomyocytes, thereby provoking cardiac dysfunction and arrhythmogenesis.  相似文献   

10.
Previous studies in chick embryo cardiac myocytes have shown that the inhibition of Na+/K+-ATPase with ouabain induces cell shrinkage in an isosmotic environment (290 mOsm). The same inhibition produces an enhanced RVD (regulatory volume decrease) in hyposmotic conditions (100 mOsm). It is also known that submitting chick embryo cardiomyocytes to a hyperosmotic solution induces shrinkage and a concurrent intracellular alkalization. The objective of this study was to evaluate the involvement of intracellular pH (pHi), intracellular Ca2+ ([Ca2+]i) and Na+/K+-ATPase inhibition during hyposmotic swelling. Changes in intracellular pH and Ca2+ were monitored using BCECF and fura-2, respectively. The addition of ouabain (100 M) under both isosmotic and hyposmotic stimuli resulted in a large increase in [Ca2+]i (200%). A decrease in pHi (from 7.3 ± 0.09 to 6.4 ± 0.08, n = 6; p < 0.05) was only observed when ouabain was applied during hyposmotic swelling. This acidification was prevented by the removal of extracellular Ca2+. Inhibition of Na+/H2+ exchange with amiloride (1 mM) had no effect on the ouabain-induced acidification. Preventing the mitochondrial accumulation of Ca2+ using CCCP (10 M) resulted in a blockade of the progressive acidification normally induced by ouabain. The inhibition of mitochondrial membrane K+/H+ exchange with DCCD (1 mM) also completely prevented the acidification. Our results suggest that intracellular acidification upon cell swelling is mediated by an initial Ca2+ influx via Na+/Ca2+ exchange, which under hyposmotic conditions activates the K+ and Ca2+ mitochondrial exchange systems (K+/H+ and Ca2+/H+).Deceased  相似文献   

11.
Ion transport and regulation were studied in two, alternatively spliced isoforms of the Na+-Ca2+ exchanger from Drosophila melanogaster. These exchangers, designated CALX1.1 and CALX1.2, differ by five amino acids in a region where alternative splicing also occurs in the mammalian Na+-Ca2+ exchanger, NCX1. The CALX isoforms were expressed in Xenopus laevis oocytes and characterized electrophysiologically using the giant, excised patch clamp technique. Outward Na+-Ca2+ exchange currents, where pipette Ca2+ o exchanges for bath Na+ i, were examined in all cases. Although the isoforms exhibited similar transport properties with respect to their Na+ i affinities and current–voltage relationships, significant differences were observed in their Na+ i- and Ca2+ i-dependent regulatory properties. Both isoforms underwent Na+ i-dependent inactivation, apparent as a time-dependent decrease in outward exchange current upon Na+ i application. We observed a two- to threefold difference in recovery rates from this inactive state and the extent of Na+ i-dependent inactivation was approximately twofold greater for CALX1.2 as compared with CALX1.1. Both isoforms showed regulation of Na+-Ca2+ exchange activity by Ca2+ i, but their responses to regulatory Ca2+ i differed markedly. For both isoforms, the application of cytoplasmic Ca2+ i led to a decrease in outward exchange currents. This negative regulation by Ca2+ i is unique to Na+-Ca2+ exchangers from Drosophila, and contrasts to the positive regulation produced by cytoplasmic Ca2+ for all other characterized Na+-Ca2+ exchangers. For CALX1.1, Ca2+ i inhibited peak and steady state currents almost equally, with the extent of inhibition being ≈80%. In comparison, the effects of regulatory Ca2+ i occurred with much higher affinity for CALX1.2, but the extent of these effects was greatly reduced (≈20–40% inhibition). For both exchangers, the effects of regulatory Ca2+ i occurred by a direct mechanism and indirectly through effects on Na+ i-induced inactivation. Our results show that regulatory Ca2+ i decreases Na+ i-induced inactivation of CALX1.2, whereas it stabilizes the Na+ i-induced inactive state of CALX1.1. These effects of Ca2+ i produce striking differences in regulation between CALX isoforms. Our findings indicate that alternative splicing may play a significant role in tailoring the regulatory profile of CALX isoforms and, possibly, other Na+-Ca2+ exchange proteins.  相似文献   

12.
Isoform 3 of the Na+-Ca2+ exchanger (NCX3) is crucial for maintaining intracellular calcium ([Ca2+]i) homeostasis in excitable tissues. In this sense NCX3 plays a key role in neuronal excitotoxicity and Ca2+ extrusion during skeletal muscle relaxation. Alternative splicing generates two variants (NCX3-AC and NCX3-B). Here, we demonstrated that NCX3 variants display a tissue-specific distribution in mice, with NCX3-B as mostly expressed in brain and NCX-AC as predominant in skeletal muscle. Using Fura-2-based Ca2+ imaging, we measured the capacity and regulation of the two variants during Ca2+ extrusion and uptake in different conditions. Functional studies revealed that, although both variants are activated by intracellular sodium ([Na+]i), NCX3-AC has a higher [Na+]i sensitivity, as Ca2+ influx is observed in the presence of extracellular Na+. This effect could be partially mimicked for NCX3-B by mutating several glutamate residues in its cytoplasmic loop. In addition, NCX3-AC displayed a higher capacity of both Ca2+ extrusion and uptake compared with NCX3-B, together with an increased sensitivity to intracellular Ca2+. Strikingly, substitution of Glu580 in NCX3-B with its NCX3-AC equivalent Lys580 recapitulated the functional properties of NCX3-AC regarding Ca2+ sensitivity, Lys580 presumably acting through a structure stabilization of the Ca2+ binding site. The higher Ca2+ uptake capacity of NCX3-AC compared with NCX3-B is in line with the necessity to restore Ca2+ levels in the sarcoplasmic reticulum during prolonged exercise. The latter result, consistent with the high expression in the slow-twitch muscle, suggests that this variant may contribute to the Ca2+ handling beyond that of extruding Ca2+.  相似文献   

13.
Hypoxia is a common denominator of many vascular disorders, especially those associated with ischemia. To study the effect of oxygen depletion on endothelium, we developed an in vitro model of hypoxia on human umbilical vein endothelial cells (HUVEC). Hypoxia strongly activates HUVEC, which then synthesize large amounts of prostaglandins and platelet‐activating factor. The first step of this activation is a decrease in ATP content of the cells, followed by an increase in the cytosolic calcium concentration ([Ca2+]i) which then activates the phospholipase A2 (PLA2). The link between the decrease in ATP and the increase in [Ca2+]i was not known and is investigated in this work. We first showed that the presence of extracellular Na+ was necessary to observe the hypoxia‐induced increase in [Ca2+]i and the activation of PLA2. This increase was not due to the release of Ca2+ from intracellular stores, since thapsigargin did not inhibit this process. The Na+/Ca2+ exchanger was involved since dichlorobenzamil inhibited the [Ca2+]i and the PLA2 activation. The glycolysis was activated, but the intracellular pH (pHi) in hypoxic cells did not differ from control cells. Finally, the hypoxia‐induced increase in [Ca2+]i and PLA2 activation were inhibited by phlorizin, an inhibitor of the Na+‐glucose cotransport. The proposed biochemical mechanism occurring under hypoxia is the following: glycolysis is first activated due to a requirement for ATP, leading to an influx of Na+ through the activated Na+‐glucose cotransport followed by the activation of the Na+/Ca2+ exchanger, resulting in a net influx of Ca2+. J. Cell. Biochem. 84: 115–131, 2002. © 2001 Wiley‐Liss, Inc.  相似文献   

14.
A mathematical model of calcium dynamics in vascular smooth muscle cell (SMC) was developed based on data mostly from rat mesenteric arterioles. The model focuses on (a) the plasma membrane electrophysiology; (b) Ca2+ uptake and release from the sarcoplasmic reticulum (SR); (c) cytosolic balance of Ca2+, Na+, K+, and Cl ions; and (d) IP3 and cGMP formation in response to norepinephrine (NE) and nitric oxide (NO) stimulation. Stimulation with NE induced membrane depolarization and an intracellular Ca2+ ([Ca2+]i) transient followed by a plateau. The plateau concentrations were mostly determined by the activation of voltage-operated Ca2+ channels. NE causes a greater increase in [Ca2+]i than stimulation with KCl to equivalent depolarization. Model simulations suggest that the effect of [Na+]i accumulation on the Na+/Ca2+ exchanger (NCX) can potentially account for this difference. Elevation of [Ca2+]i within a concentration window (150-300 nM) by NE or KCl initiated [Ca2+]i oscillations with a concentration-dependent period. The oscillations were generated by the nonlinear dynamics of Ca2+ release and refilling in the SR. NO repolarized the NE-stimulated SMC and restored low [Ca2+]i mainly through its effect on Ca2+-activated K+ channels. Under certain conditions, Na+-K+-ATPase inhibition can result in the elevation of [Na+]i and the reversal of NCX, increasing resting cytosolic and SR Ca2+ content, as well as reactivity to NE. Blockade of the NCX's reverse mode could eliminate these effects. We conclude that the integration of the selected cellular components yields a mathematical model that reproduces, satisfactorily, some of the established features of SMC physiology. Simulations suggest a potential role of intracellular Na+ in modulating Ca2+ dynamics and provide insights into the mechanisms of SMC constriction, relaxation, and the phenomenon of vasomotion. The model will provide the basis for the development of multi-cellular mathematical models that will investigate microcirculatory function in health and disease.  相似文献   

15.
The strength of the heart beat depends on the amplitude and time course of the transient increase in [Ca2+] in the myocytes with each cycle. [Na+]i modulates cardiac contraction through its effect on the Ca2+ flux through the Na/Ca exchanger. Cardiac excitation–contraction coupling has been postulated to occur in a microdomain or ‘fuzzy’ space at the junction of the T-tubules and the sarcoplasmic reticulum. This ‘fuzzy’ space is well described for the Ca2+ fluxes and the interaction between the L-type Ca2+ channel, the Ca2+ release channel of the sarcoplasmic reticulum and the Na/Ca exchanger. Co-localization of the Na+ transporters, in particular the Na/K pump and the Na+ channel, within this ‘fuzzy’ space is not as well established. The functional and morphological characteristics of the ‘fuzzy’ space for Na+ and its interaction with the Ca2+ handling suggest that this space is not strictly co-inciding with the Ca2+ microdomain. In this space [Na+] can be several-fold higher or lower than [Na+] in the bulk cytosol. This has implications for modulation of [Ca2+]i during a single beat as well as during alterations in Na+ fluxes seen in pathological conditions.  相似文献   

16.
17.
Although low Na+ is known to increase the intracellular Ca2+ concentration ([Ca2+]i) in cardiac muscle, the exact mechanisms of low Na+-induced increases in [Ca2+]i are not completely defined. To gain information in this regard, we examined the effects of low Na+ (35 mM) on freshly isolated cardiomyocytes from rat heart in the absence and presence of different interventions. The [Ca2+]i in cardiomyocytes was measured fluorometrically with Fura-2 AM. Following a 10 min incubation, the low Na+-induced increase in [Ca2+]i was only observed in cardiomyocytes depolarized with 30 mM KCl, but not in quiescent cardiomyocytes. In contrast, low Na+ did not alter the ATP-induced increase in [Ca2+]i in the cardiomyocytes. This increase in [Ca2+]i due to low Na+ and elevated KCl was dependent on the extracellular concentration of Ca2+ (0.25–2.0 mM). The L-type Ca2+-channel blockers, verapamil and diltiazem, at low concentrations (1 M) depressed the low Na+, KCl-induced increase in [Ca2+]i without significantly affecting the response to low Na+ alone. The low Na+, high KCl-induced increase in [Ca2+]i was attenuated by treatments of cardiomyocytes with high concentrations of both verapamil (5 and 10 M), and diltiazem (5 and 10 M) as well as with amiloride (5–20 M), nickel (1.25–5.0 mM), cyclopiazonic acid (25 and 50 M) and thapsigargin (10 and 20 M). On the other hand, this response was augmented by ouabain (1 and 2 mM) and unaltered by 5-(N-methyl-N-isobutyl) amiloride (5 and 10 M). These data suggest that in addition to the sarcolemmal Na+–Ca2+ exchanger, both sarcolemmal Na+–K+ATPase, as well as the sarcoplasmic reticulum Ca2+-pump play prominent roles in the low Na+-induced increase in [Ca2+]i. (Mol Cell Biochem 263: 151–162, 2004)  相似文献   

18.
We examined Ba2+ influx using isotopic and fura-2 techniques in transfected Chinese hamster ovary cells expressing the bovine cardiac Na+/Ca2+ exchanger (CK1.4 cells). Ba2+ competitively inhibited exchange-me diated 45Ca2+ uptake with a K i ∼ 3 mM. Ba2+ uptake was stimulated by pretreating the cells with ouabain and by removing extracellular Na+, as expected for Na+/Ba2+ exchange activity. The maximal velocity of Ba2+ accumulation was estimated to be 50% of that for Ca2+. When the monovalent cation ionophore gramicidin was used to equilibrate internal and external concentrations of Na+, Ba2+ influx was negligible in the absence of Na+ and increased to a maximum at 20–40 mM Na+. At higher Na+ concentrations, Ba2+ influx declined, presumably due to the competition between Na+ and Ba2+ for transport sites on the exchanger. Unlike Ca2+, Ba2+ did not appear to be taken up by intracellular organelles: Thus, 133Ba2+ uptake in ouabain-treated cells was not reduced by mitochondrial inhibitors such as Cl-CCP or oligomycin-rotenone. Moreover, intracellular Ca2+ stores that had been depleted of Ca2+ by pretreatment of the cells with ionomycin (a Ca2+ ionophore) remained empty during a subsequent period of Ba2+ influx. Ca2+ uptake or release by intracellular organelles secondarily regulated exchange activity through alterations in [Ca2+]i. Exchange-mediated Ba2+ influx was inhibited when cytosolic [Ca2+] was reduced to 20 nM or less and was accelerated at cytosolic Ca2+ concentrations of 25–50 nM. We conclude that (a) Ba2+ substitutes for Ca2+ as a transport substrate for the exchanger, (b) cytosolic Ba2+ does not appear to be sequestered by intracellular organelles, and (c) exchange-mediated Ba2+ influx is accelerated by low concentrations of cytosolic Ca2+.  相似文献   

19.
Binding of ouabain to Na+/K+-ATPase activated multiple signal transduction pathways including stimulation of Src, Ras, p42/44 MAPKs and production of reactive oxygen species (ROS) in rat cardiac myocytes. Inhibition of either Src or Ras ablated ouabain-induced increase in both [Ca2+]i and contractility. While PD98059 abolished the effects of ouabain on [Ca2+]i, it only caused a partial inhibition of ouabain-induced increases in contractility. On the other hand, pre-incubation of myocytes with N-acetyl cysteine (NAC) reduced the effects of ouabain on contractility, but not [Ca2+]i. Furthermore, 5-hydroxydecanoate (5-HD) blocked ouabain-induced ROS production and partially inhibited ouabain-induced increases in contractility in cardiac myocytes. Pre-incubation of myocytes with both 5-HD and PD98059 completely blocked ouabain's effect on contractility. Finally, we found that opening of mitochondrial KATP channel by diazoxide increased intracellular ROS and significantly raised contractility in cardiac myocytes. These new findings indicate that ouabain regulates cardiac contractility via both [Ca2+]i and ROS. While activation of MAPKs leads to increases in [Ca2+]i, opening of mitochondrial KATP channel relays the ouabain signal to increased ROS production in cardiac myocytes.  相似文献   

20.
Intracellular [Na+]i and [Ca2+]i imbalance significantly contribute to neuro-axonal dysfunctions and maladaptive myelin repair or remyelination failure in chronic inflammatory demyelinating diseases such as multiple sclerosis. Progress in recent years has led to significant advances in understanding how [Ca2+]i signaling network drive degeneration or remyelination of demyelinated axons.The Na+/Ca2+ exchangers (NCXs), a transmembrane protein family including three members encoded by ncx1, ncx2, and ncx3 genes, are emerging important regulators of [Na+]i and [Ca2+]i both in neurons and glial cells. Here we review recent advance highlighting the role of NCX exchangers in axons and myelin-forming cells, i.e. oligodendrocytes, which represent the major targets of the aberrant inflammatory attack in multiple sclerosis. The contribution of NCX subtypes to axonal pathology and myelin synthesis will be discussed. Although a definitive understanding of mechanisms regulating axonal pathology and remyelination failure in chronic demyelinating diseases is still lacking and requires further investigation, current knowledge suggest that NCX activity plays a crucial role in these processes. Defining the relative contributions of each NCX transporter in axon pathology and myelinating glia will constitute not only a major advance in understanding in detail the intricate mechanism of neurodegeneration and remyelination failure in demyelinating diseases but also will help to identify neuroprotective or remyelinating strategies targeting selective NCX exchangers as a means of treating MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号