首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jing Li 《Biophysical journal》2009,97(11):L29-L31
The crystal structure of Na+-coupled galactose symporter (vSGLT) reports the transporter in its substrate-bound state, with a Na+ ion modeled in a binding site corresponding to that of a homologous protein, leucine transporter (LeuT). In repeated molecular dynamics simulations, however, we find the Na+ ion instable, invariably and spontaneously diffusing out of the transporter through a pathway lined by D189, which appears to facilitate the diffusion of the ion toward the cytoplasm. Further analysis of the trajectories and close structural examination, in particular, comparison of the Na+-binding sites of vSGLT and LeuT, strongly indicates that the crystal structure of vSGLT actually represents an ion-releasing state of the transporter. The observed dynamics of the Na+ ion, in contrast to the substrate, also suggests that the cytoplasmic release of the Na+ ion precedes that of the substrate, thus shedding light on a key step in the transport cycle of this secondary transporter.  相似文献   

2.
The structure of the sodium/galactose transporter (vSGLT), a solute-sodium symporter (SSS) from Vibrio parahaemolyticus, shares a common structural fold with LeuT of the neurotransmitter-sodium symporter family. Structural alignments between LeuT and vSGLT reveal that the crystallographically identified galactose-binding site in vSGLT is located in a more extracellular location relative to the central substrate-binding site (S1) in LeuT. Our computational analyses suggest the existence of an additional galactose-binding site in vSGLT that aligns to the S1 site of LeuT. Radiolabeled galactose saturation binding experiments indicate that, like LeuT, vSGLT can simultaneously bind two substrate molecules under equilibrium conditions. Mutating key residues in the individual substrate-binding sites reduced the molar substrate-to-protein binding stoichiometry to ∼1. In addition, the related and more experimentally tractable SSS member PutP (the Na+/proline transporter) also exhibits a binding stoichiometry of 2. Targeting residues in the proposed sites with mutations results in the reduction of the binding stoichiometry and is accompanied by severely impaired translocation of proline. Our data suggest that substrate transport by SSS members requires both substrate-binding sites, thereby implying that SSSs and neurotransmitter-sodium symporters share common mechanistic elements in substrate transport.  相似文献   

3.
The Vibrio parahaemolyticus sodium/glucose transporter (vSGLT) is a bacterial member of the SGLT gene family. Wild-type and mutant vSGLT proteins were expressed in Escherichia coli, and transport activity was measured in intact cells and plasma membrane vesicles. Two cysteine-less vSGLT proteins exhibited sugar transport rates comparable with that of the wild-type protein. Six residues in two regions of vSGLT known to be of functional importance in SGLT1 were replaced individually with cysteine in the cysteine-less protein. Characterization of these single cysteine-substituted vSGLTs showed that two residues (Gly-151 and Gln-428) are essential for transport function, whereas the other four residues (Leu-147, Leu-149, Ala-423, and Gln-425) are not. 2-Aminoethylmethanethiosulfonate (MTSEA) blocked Na(+)/glucose transport by only the transporter bearing a cysteine at position 425 (Q425C). MTSEA inhibition was reversed by dithiothreitol and blocked by the presence of both Na(+) and d-glucose, indicating that conformational changes of the vSGLT protein are involved in Na(+)/glucose transport. A split version of vSGLT was generated by co-expression of the N-terminal (N(7)) and C-terminal (C(7)) halves of the transporter. The split vSGLT maintained Na(+)-dependent glucose transport activity. Chemical cross-linking of split vSGLT, with a cysteine in each N(7) and C(7) fragment, suggested that hydrophilic loops between helices 4 and 5 and between helices 10 and 11 are within 8 A of each other. We conclude that the mechanism of Na(+)/glucose transport by vSGLT is similar to mammalian SGLTs and that further studies on vSGLT will provide novel insight to the structure and function of this class of cotransporters.  相似文献   

4.
Although water permeation across cell membranes occurs through several types of membrane proteins, the only permeation mechanism resolved at atomic scale is that through aquaporins. Crystallization of the Vibrio parahaemolyticus sodium-galactose transporter (vSGLT) allows investigation of putative water permeation pathways through both vSGLT and the homologous human Na-glucose cotransporter (hSGLT1) using computational methods. Grand canonical Monte Carlo and molecular dynamics simulations were used to stably insert water molecules in both proteins, showing the presence of a water-filled pathway composed of ∼100 water molecules. This provides a structural basis for passive water permeation that is difficult to reconcile with the water cotransport hypothesis. Potential-of-mean-force calculations of water going through the crystal structure of vSGLT shows a single barrier of 7.7 kCal mol−1, in agreement with previously published experimental data for cotransporters of the SGLT family. Electrophysiological and volumetric experiments performed on hSGLT1-expressing Xenopus oocytes showed that the passive permeation pathway exists in different conformational states. In particular, experimental conditions that aim to mimic the conformation of the crystal structure displayed passive water permeability. These results provide groundwork for understanding the structural basis of cotransporter water permeability.  相似文献   

5.
We identified a glucose and galactose transporter gene from the plant-pathogenic bacterium Xanthomonas oryzae pv. oryzae. Sequence analysis indicated that the gene, named glt, encoded a polypeptide of 592 amino acid residues and the product was significantly homologous with members of the Na+/glucose cotransporter (SGLT) family from mammalian and bacterial origin, especially with vSGLT from Vibrio parahaemolyticus (50% identity). GLT functioned as a glucose and galactose transporter in an Escherichia coli mutant deficient in glucose and galactose transport activity. A protonophore inhibited the transport activity, suggesting that GLT is a H+-coupled glucose/galactose symporter.  相似文献   

6.
Sodium-Galactose Transporter (SGLT) is a secondary active symporter which accumulates sugars into cells by using the electrochemical gradient of Na+ across the membrane. Previous computational studies provided insights into the release process of the two ligands (galactose and sodium ion) into the cytoplasm from the inward-facing conformation of Vibrio parahaemolyticus sodium/galactose transporter (vSGLT). Several aspects of the transport mechanism of this symporter remain to be clarified: (i) a detailed kinetic and thermodynamic characterization of the exit path of the two ligands is still lacking; (ii) contradictory conclusions have been drawn concerning the gating role of Y263; (iii) the role of Na+ in modulating the release path of galactose is not clear. In this work, we use bias-exchange metadynamics simulations to characterize the free energy profile of the galactose and Na+ release processes toward the intracellular side. Surprisingly, we find that the exit of Na+ and galactose is non-concerted as the cooperativity between the two ligands is associated to a transition that is not rate limiting. The dissociation barriers are of the order of 11–12 kcal/mol for both the ion and the substrate, in line with kinetic information concerning this type of transporters. On the basis of these results we propose a branched six-state alternating access mechanism, which may be shared also by other members of the LeuT-fold transporters.  相似文献   

7.
It is well accepted that cotransporters facilitate water movement by two independent mechanisms: osmotic flow through a water channel in the protein and flow driven by ion/substrate cotransport. However, the molecular mechanism of transport-linked water flow is controversial. Some researchers believe that it occurs via cotransport, in which water is pumped along with the transported cargo, while others believe that flow is osmotic in response to an increase in intracellular osmolarity. In this letter, we report the results of a 200-ns molecular dynamics simulation of the sodium-dependent galactose cotransporter vSGLT. Our simulation shows that a significant number of water molecules cross the protein through the sugar-binding site in the presence as well as the absence of galactose, and 70-80 water molecules accompany galactose as it moves from the binding site into the intracellular space. During this event, the majority of water molecules in the pathway are unable to diffuse around the galactose, resulting in water in the inner half of the transporter being pushed into the intracellular space and replaced by extracellular water. Thus, our simulation supports the notion that cotransporters act as both passive water channels and active water pumps with the transported substrate acting as a piston to rectify the motion of water.  相似文献   

8.
9.
The Na(+)/galactose cotransporter (vSGLT) of Vibrio parahaemolyticus, tagged with C-terminal hexahistidine, has been purified to apparent homogeneity by Ni(2+) affinity chromatography and gel filtration. Resequencing the vSGLT gene identified an important correction: the N terminus constitutes an additional 13 functionally essential residues. The mass of His-tagged vSGLT expressed under its native promoter, as determined by electrospray ionization-mass spectrometry (ESI-MS), verifies these 13 residues in wild-type vSGLT. A fusion protein of vSGLT and green fluorescent protein, comprising a mass of over 90 kDa, was also successfully analyzed by ESI-MS. Reconstitution of purified vSGLT yields proteoliposomes active in Na(+)-dependent galactose uptake, with sugar preferences (galactose > glucose > fucose) reflecting those of wild-type vSGLT in vivo. Substrates are transported with apparent 1:1 stoichiometry and apparent K(m) values of 129 mm (Na(+)) and 158 microm (galactose). Freeze-fracture electron microscopy of functional proteoliposomes shows intramembrane particles of a size consistent with vSGLT existing as a monomer. We conclude that vSGLT is a suitable model for the study of sugar cotransporter mechanisms and structure, with potential applicability to the larger SGLT family of important sodium:solute cotransporters. It is further demonstrated that ESI-MS is a powerful tool for the study of proteomics of membrane transporters.  相似文献   

10.
Solute:sodium symporters (SSSs) transport vital molecules across the plasma membrane of all living organisms. vSGLT, the Na(+)/galactose transporter of Vibrio parahemeolyticus, is the only SSS for which high resolution structural information is available, revealing a LeuT-like fold and a Na(+)-binding site analogous to the Na2 site of LeuT. Whereas the core transmembrane segments (TMs) of SSSs share high structural similarity with other transporters of LeuT-like fold, TM1 does not correspond to any TM in those structural homologs and was only resolved for the backbone atoms in the initial vSGLT structure (Protein Data Bank code 3DH4). To assess the role of TM1 in Na(+)-coupled substrate symport by the SSSs, here we have studied the role of a conserved residue in TM1 by computational modeling in conjunction with radiotracer transport and binding studies. Based on our sequence alignment and much topological data for homologous PutP, the Na(+)/proline transporter, we have simulated a series of vSGLT models with shifted TM1 residue assignments. We show that in two converged vSGLT models that retained the original TM1 backbone conformation, a conserved residue, Tyr-19, is associated with the Na(+) binding interaction network. In silico and in vitro mutagenesis of homologous Tyr-14 in PutP revealed the involvement of this conserved residue in Na(+)-dependent substrate binding and transport. Thus, our combined computational and experimental data provide the first clues about the importance of a conserved residue in TM1, a unique TM in the proteins with LeuT-like fold, in the Na(+)-coupled symport mechanism of SSSs.  相似文献   

11.
The recent determination of high-resolution crystal structures of several transporters offers unprecedented insights into the structural mechanisms behind secondary transport. These proteins utilize the facilitated diffusion of the ions down their electrochemical gradients to transport the substrate against its concentration gradient. The structural studies revealed striking similarities in the structural organization of ion and solute binding sites and a well-conserved inverted-repeat topology between proteins from several gene families. In this paper we will overview recent atomistic simulations applied to study the mechanisms of selective binding of ion and substrate in LeuT, Glt, vSGLT and hSERT as well as its consequences for the transporter conformational dynamics. This article is part of a Special Issue entitled: Membrane protein structure and function.  相似文献   

12.
A mitochondrial carrier family (MCF) of transport proteins facilitates the transfer of charged small molecules across the inner mitochondrial membrane. The human genome has ∼50 genes corresponding to members of this family. All MCF proteins contain three repeats of a characteristic and conserved PX(D/E)XX(K/R) motif thought to be central to the mechanism of these transporters. The mammalian mitochondrial folate transporter (MFT) is one of a few MCF members, known as the P(I/L)W subfamily, that have evolved a tryptophan residue in place of the (D/E) in the second conserved motif; the function of this substitution (Trp-142) is unclear. Molecular dynamics simulations of the MFT in its explicit membrane environment identified this tryptophan, as well as several other residues lining the transport cavity, to be involved in a series of sequential interactions that coordinated the movement of the tetrahydrofolate substrate within the transport cavity. We probed the function of these residues by mutagenesis. The mutation of every residue identified by molecular dynamics to interact with tetrahydrofolate during simulated transit into the aqueous channel severely impaired folate transport. Mutation of the subfamily-defining tryptophan residue in the MFT to match the MCF consensus at this position (W142D) was incompatible with cell survival. These studies indicate that MFT Trp-142, as well as other residues lining the transporter interior, coordinate tetrahydrofolate descent and positioning of the substrate in the transporter basin. Overall, we identified residues in the walls and at the base of the transport cavity that are involved in substrate recognition by the MFT.  相似文献   

13.
The transport cycle in the glutamate transporter (GlT) is catalyzed by the cotransport of three Na+ ions. However, the positions of only two of these ions (Na1 and Na2 sites) along with the substrate have been captured in the crystal structures reported for both the outward-facing and the inward-facing states of Gltph. Characterizing the third ion binding site (Na3) is necessary for structure-function studies attempting to investigate the mechanism of transport in GlTs at an atomic level, particularly for the determination of the sequence of the binding events during the transport cycle. In this study, we report a series of molecular dynamics simulations performed on various bound states of Gltph (the apo state, as well as in the presence of Na+, the substrate, or both), which have been used to identify a putative Na3 site. The calculated trajectories have been used to determine the water accessibility of potential ion-binding residues in the protein, as a prerequisite for their ion binding. Combined with conformational analysis of the key regions in the protein in different bound states and several additional independent simulations in which a Na+ ion was randomly introduced to the interior of the transporter, we have been able to characterize a putative Na3 site and propose a plausible binding sequence for the substrate and the three Na+ ions to the transporter during the extracellular half of the transport cycle. The proposed Na3 site is formed by a set of highly conserved residues, namely, Asp312, Thr92, and Asn310, along with a water molecule. Simulation of a fully bound state, including the substrate and the three Na+ ions, reveals a stable structure—showing closer agreement to the crystal structure when compared to previous models lacking an ion in the putative Na3 site. The proposed sequence of binding events is in agreement with recent experimental models suggesting that two Na+ ions bind before the substrate, and one after that. Our results, however, provide additional information about the sites involved in these binding events.  相似文献   

14.
The predicted topology of the mammalian high-affinity sodium/glucose cotransporter (SGLT1), in the region surrounding transmembrane segments 4 and 5, disagrees with the recent published crystal structure of bacterial SGLT from Vibrio parahaemolyticus (vSGLT). To investigate this issue further, 38 residues from I143 to A180 in the N-terminal half of rabbit SGLT1 were each replaced with cysteine and then expressed in COS-7 cells or Xenopus laevis oocytes. The membrane orientations of the substituted cysteines were determined by treatment with the thiol-specific reagent N-Biotinoylaminoethyl methanethiosulfonate (biotin-MTSEA), combined with the membrane impermeant thiol-specific reagent sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES). The present results combined with previous structure/function studies of SGLT1, suggest that transmembrane domain (TM) 4 of mammalian SGLT1 extends from residue 143-171 and support the topology observed in the crystal structure of vSGLT.  相似文献   

15.
Current advances in structural biology provide valuable insights into structure-function relationship of membrane transporters by solving crystal structures of bacterial homologs of human transporters. Therefore, scientists consider bacterial transporters as useful structural models for designing of drugs targeted in human diseases. The functional homology between Vibrio parahaemolyticus Na(+)/galactose transporter (vSGLT) and Na(+)/glucose cotransporter SGLT1 has been well established a decade ago. Now the crystal structure of vSGLT is considered quite valuable in explaining not only the cotransport mechanisms, but it also acts as a representative protein in understanding the protein stability and amino acid interactions within the core structure. We investigated the molecular mechanisms of genetic variations in SGLT1 that cause glucose-galactose malabsorption (GGM) defects using the crystal structure of vSGLT as a model sugar transporter. Our in silico mutagenesis and modeling analysis suggest that the GGM genetic variations lead to conformational changes either by structure destabilization or by formation of unnecessary interaction within the core structure of SGLT1 thereby explaining the genetic defects in Na(+) dependent sugar translocation across the cell membrane.  相似文献   

16.
FocA belongs to the formate-nitrate transporter family and plays an essential role in the export and uptake of formate in organisms. According to the available crystal structures, the N-terminal residues of FocA are structurally featureless at physiological conditions but at reduced pH form helices to harbor the cytoplasmic entrance of the substrate permeation pathway, which apparently explains the cessation of electrical signal observed in electrophysiological experiments. In this work, we found by structural analysis and molecular dynamics simulations that those N-terminal helices cannot effectively preclude the substrate permeation. Equilibrium simulations and thermodynamic calculations suggest that FocA is permeable to both formate and formic acid, the latter of which is transparent to electrophysiological studies as an electrically neutral species. Hence, the cease of electrical current at acidic pH may be caused by the change of the transported substrate from formate to formic acid. In addition, the mechanism of formate export at physiological pH is discussed.  相似文献   

17.
Salla disease and infantile sialic acid storage disorder are human diseases caused by loss of function of sialin, a lysosomal transporter that mediates H+-coupled symport of acidic sugars N-acetylneuraminic acid and glucuronic acid out of lysosomes. Along with the closely related vesicular glutamate transporters, sialin belongs to the SLC17 transporter family. Despite their critical role in health and disease, these proteins remain poorly understood both structurally and mechanistically. Here, we use substituted cysteine accessibility screening and radiotracer flux assays to evaluate experimentally a computationally generated three-dimensional structure model of sialin. According to this model, sialin consists of 12 transmembrane helices (TMs) with an overall architecture similar to that of the distantly related glycerol 3-phosphate transporter GlpT. We show that TM4 in sialin lines a large aqueous cavity that forms a part of the substrate permeation pathway and demonstrate substrate-induced alterations in accessibility of substituted cysteine residues in TM4. In addition, we demonstrate that one mutant, F179C, has a dramatically different effect on the apparent affinity and transport rate for N-acetylneuraminic acid and glucuronic acid, suggesting that it may be directly involved in substrate recognition and/or translocation. These findings offer a basis for further defining the transport mechanism of sialin and other SLC17 family members.  相似文献   

18.
le Coutre J  Turk E  Kaback HR  Wright EM 《Biochemistry》2002,41(25):8082-8086
A detailed structural study of the prokaryotic sodium/galactose transporter (vSGLT) from Vibrio parahaemolyticus using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy reveals stepwise increases in alpha-helicity upon binding of sodium and D-galactose. These increases in helicity correlate with decreases in beta-structural elements. The changes are accompanied by stepwise reductions in the degree of H/D exchange (HDX), suggesting reduced accessibility of water to the protein backbone. The data demonstrate discrete conformational changes from one intermediate to the next during the catalytic cycle of the protein and are interpreted in a model of the symport reaction mechanism.  相似文献   

19.
Sugars, the major energy source for many organisms, must be transported across biological membranes. Glucose is the most abundant sugar in human plasma and in many other biological systems and has been the primary focus of sugar transporter studies in eukaryotes. We have previously cloned and characterized a family of glucose transporter genes from the protozoan parasite Leishmania. These transporters, called LmGT1, LmGT2, and LmGT3, are homologous to the well characterized glucose transporter (GLUT) family of mammalian glucose transporters. We have demonstrated that LmGT proteins are important for parasite viability. Here we show that one of these transporters, LmGT2, is a more effective carrier of the pentose sugar d-ribose than LmGT3, which has a 6-fold lower relative specificity (Vmax/Km) for ribose. A pair of threonine residues, located in the putative extracellular loops joining transmembrane helices 3 to 4 and 7 to 8, define a filter that limits ribose approaching the exofacial substrate binding pocket in LmGT3. When these threonines are substituted by alanine residues, as found in LmGT2, the LmGT3 permease acquires ribose permease activity that is similar to that of LmGT2. The location of these residues in hydrophilic loops supports recent suggestions that substrate recognition is separated from substrate binding and translocation in this important group of transporters.  相似文献   

20.
To investigate substrate recruitment and transport across the Escherichia coli Ammonia transporter B (AmtB) protein, we performed molecular dynamics simulations of the AmtB trimer. We have identified residues important in recruitment of ammonium and intraluminal binding sites selective of ammonium, which provide a means of cation selectivity. Our results indicate that A162 guides translocation of an extraluminal ammonium into the pore lumen. We propose a mechanism for transporting the intraluminally recruited proton back to periplasm. Our mechanism conforms to net transport of ammonia and can explain why ammonia conduction is lost upon mutation of the conserved residue D160. We unify previous suggestions of D160 having either a structural or an ammonium binding function. Finally, our simulations show that the channel lumen is hydrated from the cytoplasmic side via the formation of single file water, while the F107/F215 stack at the inner-most part of the periplasmic vestibule constitutes a hydrophobic filter preventing AmtB from conducting water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号