首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification of the origin of parasites of nonindigenous species (NIS) can be complex. NIS may introduce parasites from their native range and acquire parasites from within their invaded range. Determination of whether parasites are non‐native or native can be complicated when parasite genera occur within both the NIS’ native range and its introduced range. We explored potential for spillover and spillback of lung parasites infecting Burmese pythons (Python bivittatus) in their invasive range (Florida). We collected 498 indigenous snakes of 26 species and 805 Burmese pythons during 2004–2016 and examined them for lung parasites. We used morphology to identify three genera of pentastome parasites, Raillietiella, a cosmopolitan form, and Porocephalus and Kiricephalus, both New World forms. We sequenced these parasites at one mitochondrial and one nuclear locus and showed that each genus is represented by a single species, R. orientalis, P. crotali, and K. coarctatus. Pythons are host to R. orientalis and P. crotali, but not K. coarctatus; native snakes are host to all three species. Sequence data show that pythons introduced R. orientalis to North America, where this parasite now infects native snakes. Additionally, our data suggest that pythons are competent hosts to P. crotali, a widespread parasite native to North and South America that was previously hypothesized to infect only viperid snakes. Our results indicate invasive Burmese pythons have affected parasite‐host dynamics of native snakes in ways that are consistent with parasite spillover and demonstrate the potential for indirect effects during invasions. Additionally, we show that pythons have acquired a parasite native to their introduced range, which is the initial condition necessary for parasite spillback.  相似文献   

2.
Understanding potential for range expansion is critical when evaluating the risk posed by invasive species. Burmese pythons (Python molurus bivittatus) are established in southern Florida and pose a significant threat to native ecosystems. Recent studies indicate that climate suitable for the species P. molurus exists throughout much of the southern United States. We examined survivorship, thermal biology, and behavior of Burmese pythons from South Florida in a semi-natural enclosure in South Carolina, where winters are appreciably cooler than in Florida, but within the predicted region of suitable climate. All pythons acclimated to the enclosure, but most died after failing to seek appropriate refugia during sub-freezing weather. The remaining snakes used refugia but died during an unusually cold period in January 2010. Although all snakes died during the study, most survived extended periods at temperatures below those typical of southern Florida and none exhibited obvious signs of disease. Our study represents a first step in evaluating the results of climate matching models and we address factors that may affect range expansion in this invasive species.  相似文献   

3.
To address the ongoing debate over the impact of invasive species on native terrestrial wildlife, we conducted a large-scale experiment to test the hypothesis that invasive Burmese pythons (Python molurus bivittatus) were a cause of the precipitous decline of mammals in Everglades National Park (ENP). Evidence linking pythons to mammal declines has been indirect and there are reasons to question whether pythons, or any predator, could have caused the precipitous declines seen across a range of mammalian functional groups. Experimentally manipulating marsh rabbits, we found that pythons accounted for 77% of rabbit mortalities within 11 months of their translocation to ENP and that python predation appeared to preclude the persistence of rabbit populations in ENP. On control sites, outside of the park, no rabbits were killed by pythons and 71% of attributable marsh rabbit mortalities were classified as mammal predations. Burmese pythons pose a serious threat to the faunal communities and ecological functioning of the Greater Everglades Ecosystem, which will probably spread as python populations expand their range.  相似文献   

4.

Background

Recent reports from the United States Geological Survey (USGS) suggested that invasive Burmese pythons in the Everglades may quickly spread into many parts of the U.S. due to putative climatic suitability. Additionally, projected trends of global warming were predicted to significantly increase suitable habitat and promote range expansion by these snakes. However, the ecological limitations of the Burmese python are not known and the possible effects of global warming on the potential expansion of the species are also unclear.

Methodology/Principal Findings

Here we show that a predicted continental expansion is unlikely based on the ecology of the organism and the climate of the U.S. Our ecological niche models, which include variables representing climatic extremes as well as averages, indicate that the only suitable habitat in the U.S. for Burmese pythons presently occurs in southern Florida and in extreme southern Texas. Models based on the current distribution of the snake predict suitable habitat in essentially the only region in which the snakes are found in the U.S. Future climate models based on global warming forecasts actually indicate a significant contraction in suitable habitat for Burmese pythons in the U.S. as well as in their native range.

Conclusions/Significance

The Burmese python is strongly limited to the small area of suitable environmental conditions in the United States it currently inhabits due to the ecological niche preferences of the snake. The ability of the Burmese python to expand further into the U.S. is severely limited by ecological constraints. Global warming is predicted to significantly reduce the area of suitable habitat worldwide, underscoring the potential negative effects of climate change for many species.  相似文献   

5.
In a laboratory setting, we tested the ability of 24 non-native, wild-caught hatchling Burmese pythons (Python molurus bivittatus) collected in the Florida Everglades to survive when given water containing salt to drink. After a one-month acclimation period in the laboratory, we grouped snakes into three treatments, giving them access to water that was fresh (salinity of 0, control), brackish (salinity of 10), or full-strength sea water (salinity of 35). Hatchlings survived about one month at the highest marine salinity and about five months at the brackish-water salinity; no control animals perished during the experiment. These results are indicative of a “worst-case scenario”, as in the laboratory we denied access to alternate fresh-water sources that may be accessible in the wild (e.g., through rainfall). Therefore, our results may underestimate the potential of hatchling pythons to persist in saline habitats in the wild. Because of the effect of different salinity regimes on survival, predictions of ultimate geographic expansion by non-native Burmese pythons that consider salt water as barriers to dispersal for pythons may warrant re-evaluation, especially under global climate change and associated sea-level-rise scenarios.  相似文献   

6.
Environmental DNA (eDNA) methods are used to detect DNA that is shed into the aquatic environment by cryptic or low density species. Applied in eDNA studies, occupancy models can be used to estimate occurrence and detection probabilities and thereby account for imperfect detection. However, occupancy terminology has been applied inconsistently in eDNA studies, and many have calculated occurrence probabilities while not considering the effects of imperfect detection. Low detection of invasive giant constrictors using visual surveys and traps has hampered the estimation of occupancy and detection estimates needed for population management in southern Florida, USA. Giant constrictor snakes pose a threat to native species and the ecological restoration of the Florida Everglades. To assist with detection, we developed species-specific eDNA assays using quantitative PCR (qPCR) for the Burmese python (Python molurus bivittatus), Northern African python (P. sebae), boa constrictor (Boa constrictor), and the green (Eunectes murinus) and yellow anaconda (E. notaeus). Burmese pythons, Northern African pythons, and boa constrictors are established and reproducing, while the green and yellow anaconda have the potential to become established. We validated the python and boa constrictor assays using laboratory trials and tested all species in 21 field locations distributed in eight southern Florida regions. Burmese python eDNA was detected in 37 of 63 field sampling events; however, the other species were not detected. Although eDNA was heterogeneously distributed in the environment, occupancy models were able to provide the first estimates of detection probabilities, which were greater than 91%. Burmese python eDNA was detected along the leading northern edge of the known population boundary. The development of informative detection tools and eDNA occupancy models can improve conservation efforts in southern Florida and support more extensive studies of invasive constrictors. Generic sampling design and terminology are proposed to standardize and clarify interpretations of eDNA-based occupancy models.  相似文献   

7.
The “Judas” technique is based on the idea that a radio-tagged individual can be used to “betray” conspecifics during the course of its routine social behavior. The Burmese python (Python bivittatus) is an invasive constrictor in southern Florida, and few methods are available for its control. Pythons are normally solitary, but from December–April in southern Florida, they form breeding aggregations containing up to 8 individuals, providing an opportunity to apply the technique. We radio-tracked 25 individual adult pythons of both sexes during the breeding season from 2007–2012. Our goals were to (1) characterize python movements and determine habitat selection for betrayal events, (2) quantify betrayal rates of Judas pythons, and (3) compare the efficacy of this tool with current tools for capturing pythons, both in terms of cost per python removed (CPP) and catch per unit effort (CPUE). In a total of 33 python-seasons, we had 8 betrayal events (24 %) in which a Judas python led us to new pythons. Betrayal events occurred more frequently in lowland forest (including tree islands) than would be expected by chance alone. These 8 events resulted in the capture of 14 new individuals (1–4 new pythons per event). Our effort comparison shows that while the Judas technique is more costly than road cruising surveys per python removed, the Judas technique yields more large, reproductive females and is effective at a time of year that road cruising is not, making it a potential complement to the status quo removal effort.  相似文献   

8.
Untangling the causes of native species loss in human-modified systems is difficult and often controversial. Evaluating the impact of non-native species in these systems is particularly challenging, as additional human perturbations often precede or accompany introductions. One example is the ongoing debate over whether mammal declines within Everglades National Park (ENP) were caused by either the establishment of non-native Burmese pythons (Python molurus bivittatus) or the effects of other anthropogenic stressors. We examined the influence of both pythons and a host of alternative stressors—altered hydrology and habitat characteristics, mercury contamination and development—on the distribution of the marsh rabbit (Sylvilagus palustris), a once common mammal in ENP. Distance from the epicenter of the python invasion best explained marsh rabbit occurrence in suitable habitat patches, whereas none of the alternative stressors considered could explain marsh rabbit distribution. Estimates of the probability of marsh rabbit occurrence ranged from 0 at the python invasion epicenter to nearly 1.0 150 km from the invasion epicenter. These results support the hypothesis that invasive pythons shape the distribution of marsh rabbits in southern Florida. The loss of marsh rabbits and similar species will likely alter trophic interactions and ecosystem function within the Everglades, an internationally important hotspot of biodiversity. Further, our results suggest that non-native species can have profound impacts on mainland biodiversity.  相似文献   

9.
A recent record cold spell in southern Florida (2–11 January 2010) provided an opportunity to evaluate responses of an established population of Burmese pythons (Python molurus bivittatus) to a prolonged period of unusually cold weather. We observed behavior, characterized thermal biology, determined fate of radio-telemetered (n = 10) and non-telemetered (n = 104) Burmese pythons, and analyzed habitat and environmental conditions experienced by pythons during and after a historic cold spell. Telemetered pythons had been implanted with radio-transmitters and temperature-recording data loggers prior to the cold snap. Only one of 10 telemetered pythons survived the cold snap, whereas 59 of 99 (60%) non-telemetered pythons for which we determined fate survived. Body temperatures of eight dead telemetered pythons fluctuated regularly prior to 9 January 2010, then declined substantially during the cold period (9–11 January) and exhibited no further evidence of active thermoregulation indicating they were likely dead. Unusually cold temperatures in January 2010 were clearly associated with mortality of Burmese pythons in the Everglades. Some radio-telemetered pythons appeared to exhibit maladaptive behavior during the cold spell, including attempting to bask instead of retreating to sheltered refugia. We discuss implications of our findings for persistence and spread of introduced Burmese pythons in the United States and for maximizing their rate of removal.  相似文献   

10.
At the gastroesophageal junction, most vertebrates possess a functional lower esophageal sphincter (LES) which may serve to regulate the passage of liquids and food into the stomach and prevent the reflux of gastric contents into the esophagus. Snakes seemingly lack an LES and consume meals large enough to extend anteriorly from the stomach into the esophagus thereby providing the opportunity for the reflux of gastric juices. To explore whether snakes experience or can prevent gastric reflux, we examined post-feeding changes of luminal pH of the distal esophagus and stomach, the fine scale luminal pH profile at the gastroesophageal junction, and the morphology of the gastroesophageal junction for the Burmese python (Python molurus), the African brown house snake (Lamprophis fuliginosus), and the diamondback water snake (Nerodia rhombifer). For each species fasted, there was no distension of the gastroesophageal junction and only modest changes in luminal pH from the distal esophagus into the stomach. Feeding resulted in marked distension and changes in tissue morphology of the gastroesophageal junction. Simultaneously, there was a significant decrease in luminal pH of the distal esophagus for pythons and house snakes, and for all three species a steep gradient in luminal pH decreasing across a 3-cm span from the distal edge of the esophagus into the proximal edge of the stomach. The moderate acidification of the distalmost portion of the esophagus for pythons and house snakes suggests that there is some anterior movement of gastric juices across the gastroesophageal junction. Given that this modest reflux of gastric fluid is localized to the most distal region of the esophagus, snakes are apparently able to prevent and protect against acid reflux in the absence of a functional LES.  相似文献   

11.
Successful invasions of secretive alien species often go unrecognized until spread has exceeded the point where control or eradication is feasible. In such situations, understanding factors that contributed to establishment can be critical to preventing subsequent introductions of previously-successful invaders or ecologically similar species. The Burmese python (Python molurus bivittatus), a native to Southeast Asia, is abundant in the pet trade and is now well-established in southern Florida. Although there can be little argument that the ultimate source of Florida pythons was the pet industry, there has been limited consideration of biological support for scenarios that may have lead to their establishment. In this study we use information on python capture rates and biologically-derived population growth models to evaluate the plausibility of various scenarios for python establishment. Our results indicate that scenarios involving relatively recent establishment (post-1990) require large numbers (100–1,000) of founders or unrealistically high juvenile survivorship. Intentional simultaneous release of large numbers of pythons is unlikely and accidental release of large numbers of founders is inconsistent with the spatial and temporal pattern of pythons captures in the region. We conclude that the most parsimonious scenario for establishment of pythons in Florida involves the release of a relatively small number of founders prior to 1985. Our results demonstrate that for pythons and other species with low inherent detection probabilities, early action during incipient phases of an invasion is critical and understanding likely introduction scenarios is important for preventing similar situations from occurring elsewhere or with other species.  相似文献   

12.
Antipredator behaviours and the ability to appropriately assess predation risk contribute to increased fitness. Predator avoidance can be costly; however, so we expect prey to most strongly avoid predators that pose the greatest risk (i.e., prey should show threat sensitivity). For invasive species, effectively assessing the relative risk posed by predators in the new environment may help them establish in new environments. We examined the antipredator behaviour of introduced Asian house geckos, Hemidactylus frenatus (Schlegel), by determining if they avoided shelters scented with the chemical cues of native predatory snakes (spotted pythons, Antaresia maculosa [Peters]; brown tree snakes, Boiga irregularis [Merrem]; common tree snakes, Dendrelaphis punctulata [Grey]; and carpet pythons, Morelia spilota [Lacépède]). We also tested if Asian house geckos collected from vegetation vs. anthropogenic substrates (buildings) responded differently to the chemical cues of predatory snakes. Asian house geckos did not show a generalised antipredator response, that is, they did not respond to the chemical cues of all snakes in the same way. Asian house geckos avoided the chemical cues of carpet pythons more strongly than those of other snake species, providing some support for the threat‐sensitivity hypothesis. There was no difference in the antipredator behaviour of Asian house geckos collected from buildings vs. natural vegetation, suggesting that individuals that have invaded natural habitats have not changed their antipredator behaviour compared to urban individuals. Overall, we found some evidence indicating Asian house geckos are threat‐sensitive to some Australian predacious snakes.  相似文献   

13.
The Burmese python (Python molurus bivittatus) is established in Everglades National Park and neighboring areas in south Florida. Beyond its substantial ecological impacts to native fauna in south Florida, concerns have been raised as to its potential to occupy other parts of the USA, even as far north as Washington, DC. During a recent period of cold weather, seven of nine captive Burmese pythons held in outdoor pens at our facility in north-central Florida died, or would have died absent our intervention. This cold-induced mortality occurred despite the presence of refugia with heat sources. Our findings cast doubt on the ability of free-ranging Burmese pythons to establish and persist beyond the subtropical environment of south Florida.  相似文献   

14.

Background

Aquatic tentacled snakes (Erpeton tentaculatus) can take advantage of their prey''s escape response by startling fish with their body before striking. The feint usually startles fish toward the snake''s approaching jaws. But when fish are oriented at a right angle to the jaws, the C-start escape response translates fish parallel to the snake''s head. To exploit this latter response, snakes must predict the future location of the fish. Adult snakes can make this prediction. Is it learned, or are tentacled snakes born able to predict future fish behavior?

Methods and Findings

Laboratory-born, naïve snakes were investigated as they struck at fish. Trials were recorded at 250 or 500 frames per second. To prevent learning, snakes were placed in a water container with a clear transparency sheet or glass bottom. The chamber was placed over a channel in a separate aquarium with fish below. Thus snakes could see and strike at fish, without contact. The snake''s body feint elicited C-starts in the fish below the transparency sheet, allowing strike accuracy to be quantified in relationship to the C-starts. When fish were oriented at a right angle to the jaws, naïve snakes biased their strikes to the future location of the escaping fish''s head, such that the snake''s jaws and the fish''s translating head usually converged. Several different types of predictive strikes were observed.

Conclusions

The results show that some predators have adapted their nervous systems to directly compensate for the future behavior of prey in a sensory realm that usually requires learning. Instead of behavior selected during their lifetime, newborn tentacled snakes exhibit behavior that has been selected on a different scale—over many generations. Counter adaptations in fish are not expected, as tentacled snakes are rare predators exploiting fish responses that are usually adaptive.  相似文献   

15.
Woodland and forest degradation, driven predominately by agricultural and pastoral production, is a crisis facing many species globally, in particular hollow‐dependent fauna. Large predatory species play important roles in both ecosystems and conservation strategies, but few studies have examined habitat selection of such species in intensively human‐modified landscapes. We quantified habitat selection and resource use by a large, top‐order and threatened snake (carpet python, Morelia spilota), between adjacent areas of high and low anthropogenic modification in inland Australia, a region that has undergone considerable alteration since European settlement. At the low‐impact site, snakes preferred tree hollows and a structurally complex understorey, whereas at the high‐impact site, snakes preferred homestead attics. Based on the decline of the species in this region, however, high‐impact landscapes may only support snakes when they are adjacent to low‐impact habitats. Invasive species comprised a large part of snake diets in both landscape types. Carpet pythons, with large home ranges and habitat requirements that overlap with many smaller threatened mammalian and avian fauna, are generally well liked and easily identifiable by rural landholders. Accordingly, they may play a key role in conservation strategies aimed at the protection of woodland and hollow‐dependent fauna in heavily modified landscapes of Australia's inland regions. However, invasive species, which tend to contribute to declines in native species inhabiting arid and semi‐arid Australia, are beneficial and important to pythons. Our study therefore highlights the diversity of effects that two major threats to biodiversity – habitat loss and invasive species – can have on different species within the same ecosystem.  相似文献   

16.
Madsen T  Ujvari B  Olsson M 《Oecologia》2005,142(3):407-412
We document the impact of blood parasite infections caused by Hepatozoon sp. on water python (Liasis fuscus) life history traits such as growth rates, condition, reproductive output and survival. Individual snakes maintained similar among-year parasite loads. Hepatozoon infections affected python growth rate, i.e. snakes suffering from high infection levels exhibited significantly slower growth compared to individuals with low parasite loads. Our results suggest that the parasites also affected the pythons nutritional status (condition), as snakes with low condition scores suffered from higher parasite infection levels than snakes with high scores. Furthermore, our data suggest that parasitaemia may affect female reproductive output, as reproductive female pythons harboured lower parasite loads compared to non-reproductive adult females. High levels of parasite infections also affected juvenile python survival, as recaptured snakes harboured significantly lower parasite loads compared to non-recaptured yearling pythons. In our study area, water python have very few natural predators and, hence, experience low mortality rates and commonly reach an age of >15 years. In contrast to results obtained in other studies, parasite loads in larger/older pythons were lower compared to younger snakes, suggesting that only snakes harbouring lower levels of parasitaemia were able to survive to old age. We suggest that a possible cause for the opposing results regarding parasite prevalence and host age may be due to different levels of extrinsic mortality rates and longevity. Long-lived organisms, such as water pythons, may invest relatively more into crucial self-maintenance functions such as parasite defence, compared to short-lived organisms.  相似文献   

17.
Abstract Squamate reptiles are significant components of woodland vertebrate communities in eastern Australia, but their ecology is poorly understood. We investigated seasonal variation in habitat use by the Inland Carpet Python, Morelia spilota metcalfei Wells and Wellington (Pythonidae), a threatened snake that inhabits the woodland environments of the Murray–Darling Basin. Nine pythons were radiotracked within and near the Mount Meg Flora and Fauna Reserve in north‐eastern Victoria to investigate how habitat structure and prey distribution (namely, that of the European Rabbit, Oryctolagus cuniculus L. (Leporidae)) influenced seasonal movement patterns. Data were analysed over three spatial scales to allow firm interpretations regarding resource selection. Pythons exhibited distinct seasonal trends in habitat use. During the cooler spring months, snakes chose warm, well‐insulated microhabitats, primarily rocky outcrops on north‐ and north‐west‐facing hillsides. Pythons moved widely during the summer months, apparently in search of prey. Snake localities could be readily linked to rabbit distribution at this time. Specifically, snakes moved to more open, disturbed habitats that contained a high density of rabbits, and consistently selected microhabitats in close proximity to rabbit burrows. In autumn, habitat use was transitional, as snakes progressively returned to the rocky hillsides where they overwintered. Thus, trends in habitat use were influenced by the snakes' thermoregulatory and foraging strategies. Careful management of specific habitats and feral prey populations is required to conserve populations of this endangered snake.  相似文献   

18.
Animal translocation is a popular tool in wildlife management. It is frequently used to solve human–animal conflicts and recently has been applied as a mitigation tool when animals inhabit land desired for development. However, its success is uncertain and involves risks. In order to provide useful information to wildlife managers about the effect of translocation distance on animal movement behavior and survival, we translocated 40 Long-haired field mice (Abrothrix longipilis) at different distances from their territories (0–1,300 m) in central Chile and recorded the location and survival of each mouse over 3 days. Translocated animals showed low release site fidelity and traveled two- to four-fold longer distances than the nontranslocated group. Only mice translocated at shorter distances (100 m) oriented their movement toward their origin site and had a high probability of homing (80 %). There were threshold distances from after which homing and traveling strongly decreased. All individuals released close to their capture site (≤100 m) remained alive, while mortality reached 22 % at longer translocation distances, principally as a result of fighting between rodents. Therefore, long translocation distances prevented short-term homing and decreased traveled distances (a desirable outcome), but risks associated with conspecific encounters need to be avoided. Because mice showed a high motivation to explore surroundings, it is advisable to release animals in sites with alternative places to colonize. Our results emphasize the need for a strong justification in wildlife translocation projects and the development of alternative techniques to improve animal welfare and conservation.  相似文献   

19.
Water snakes (Natrix natrix), rat snakes (Ptyas korros), cobras (Naja naja), pythons (Python molurus), tortoises (Kachuga sp.), plankton fish (Cirrhina mrigala), frogs (Rana tigrina), toads (Bufo sp.) and monitors (Varanus indicus) were screened for evidence of Q-fever infection by the capillary agglutination test on sera to detect antibodies and/or by attempts to demonstrate Coxiella burnetii in spleen and liver samples. Sero-reactors were observed among water and rat snakes, pythons and tortoises. The organism was isolated from the spleen and liver of the monitor, tortoise and python.  相似文献   

20.
《Zoology (Jena, Germany)》2015,118(6):403-412
Snakes possess an elongated body form and serial placement of organs which provides the opportunity to explore historic and adaptive mechanisms of organ position. We examined the influence of body size and sex on the position of, and spatial associations between, the heart, liver, small intestine, and right kidney for ten phylogenetically diverse species of snakes that vary in body shape and habitat. Snake snout–vent length explained much of the variation in the position of these four organs. For all ten species, the position of the heart and liver relative to snout–vent length decreased as a function of size. As body size increased from neonate to adult, these two organs shifted anteriorly an average of 4.7% and 5.7% of snout–vent length, respectively. Similarly, the small intestine and right kidney shifted anteriorly with an increase in snout–vent length for seven and five of the species, respectively. The absolute and relative positioning of these organs did not differ between male and female Burmese pythons (Python molurus). However, for diamondback water snakes (Nerodia rhombifer), the liver and small intestine were more anteriorly positioned in females as compared to males, whereas the right kidney was positioned more anteriorly for males. Correlations of residuals of organ position (deviation from predicted position) demonstrated significant spatial associations between organs for nine of the ten species. For seven species, individuals with hearts more anterior (or posterior) than predicted also tended to possess livers that were similarly anteriorly (or posteriorly) placed. Positive associations between liver and small intestine positions and between small intestine and right kidney positions were observed for six species, while spatial associations between the heart and small intestine, heart and right kidney, and liver and right kidney were observed in three or four species. This study demonstrates that size, sex, and spatial associations may have potential interacting effects when testing evolutionary scenarios for the position of snake organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号