首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Chemically synthesized dinucleoside P1, P2-di-, P1, P3-tri- and P1, P4-tetraphosphates, derivatives of 5′-linked 7-methylguanosine and guanosine were characterized with respect to their structural properties and functional effect on eukaryotic translation inhibition.  相似文献   

2.
3.
Ribose-based nucleoside 5′-diphosphates and triphosphates and related nucleotides were compared in their potency at the P2Y receptors with the corresponding nucleoside 5′-phosphonate derivatives. Phosphonate derivatives of UTP and ATP activated the P2Y2 receptor but were inactive or weakly active at P2Y4 receptor. Uridine 5′-(diphospho)phosphonate was approximately as potent at the P2Y2 receptor as at the UDP-activated P2Y6 receptor. These results suggest that removal of the 5′-oxygen atom from nucleotide agonist derivatives reduces but does not prevent interaction with the P2Y2 receptor. Uridine 5′-(phospho)phosphonate as well as the 5′-methylenephosphonate equivalent of UMP were inactive at the P2Y4 receptor and exhibited maximal effects at the P2Y2 receptor that were ?50% of that of UTP suggesting novel action of these analogues.  相似文献   

4.
We explored the influence of modifications of uridine 5'-methylenephosphonate on biological activity at the human P2Y(2) receptor. Key steps in the synthesis of a series of 5-substituted uridine 5'-methylenephosphonates were the reaction of a suitably protected uridine 5'-aldehyde with [(diethoxyphosphinyl)methylidene]triphenylphosphorane, C-5 bromination and a Suzuki-Miyaura coupling. These analogues behaved as selective agonists at the P2Y(2) receptor, with three analogues exhibiting potencies in the submicromolar range. Although maximal activities observed with the phosphonate analogues were much less than observed with UTP, high concentrations of the phosphonates had no effect on the stimulatory effect of UTP. These results suggest that these phosphonates bind to an allosteric site of the P2Y(2) receptor.  相似文献   

5.
We previously found that Merkel cells (MCs) of the rat and monkey show a strong immunoreaction of the -subunit of Gq protein. The Gq-subunit isoform activates isozymes of phospholipase C- (PLC-), which produces inositol-(1,4,5)-triphosphate (IP3) which mobilizes intracellular Ca++ from calcium stores via IP3 receptors. Glutamate and adenosine triphosphate (ATP), which are candidates for neurotransmitters in Merkel endings, are known to couple to Gq. Although MCs showed positive immunoreactions of metabotropic glutamate receptor 5 (mGluR5) in our preliminary study, these cells were not reactive to all antibodies to PLC- isozymes. We, therefore, reinvestigated immunohistochemical affinities to MCs of antibodies to PLC- isozymes and mGluRs using frozen sections of rat sinus hair follicles that were briefly postfixed in formaldehyde. We also studied the immunohistochemical expressions of P2Y receptors for ATP and IP3 receptor subtypes using similar sections. Merkel cells showed positive immunoreactions of PLC-1 and mGluR5. It was also found that MCs show positive immunoreactions of P2Y2, IP3R-I, and IP3R-II receptors. These results suggest that the Gq isoform in MCs couples to both the P2Y2 receptor and mGluR5 and regulates the intracellular Ca++ concentration via the PLC-–IP3 cascade.  相似文献   

6.
The equilibrium geometries, total energies, and vibrational frequencies of anions X2Y2 (X = C, Si, Ge and Y = N, P, As) are theoretically investigated with density functional theory (DFT) method. Our calculation shows that for C2N2 species, the D 2h isomer is the most stable four-membered structure, and for other species the C 2v isomer in which two X atoms are contrapuntal is the most stable structure at the B3LYP/6-311 +G* level. Wiberg bond index (WBI) and negative nucleus-independent chemical shift (NICS) value indicate the existence of delocalization in stable X2Y2 structures. A detailed molecular orbital (MO) analysis further reveals that stable isomers of these species have strongly aromatic character, which strengthens the structural stability and makes them closely connected with the concept of aromaticity.  相似文献   

7.
Summary Organic pyrophosphates such as UppA and NAD are formed when a solution containing a nucleotide, a nucleoside 5-polyphosphate, Mg2+ and imidazole are allowed to dry out. We suggest that this synthesis may have occured concurrently with oligonucleotide formation.Abbreviations Im Imidazole - CDI 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride - EDTA ethylenediaminetetraacetic acid - A adenosine - U uridine - pnA adenosine 5-poly-phosphate containing n phosphate residues - pU uridine 5-phosphate - AppA P1,P2-diadenosine 5-pyrophosphate - UppA P1-(uridine 5)-P2-(adenosine 5)-pyrophosphate - ImpA adenosine 5-phosphorimidazolide - NMN nicotinamide mononucleotide - NAD nicotinamide-adenine dinucleotide  相似文献   

8.
Abstract

A procedure was developed for the chemical synthesis of P1,P2-dinucleoside-5′-diphosphates (N1(5′)pp(5′)N2) on a nanomolar scale Reaction conditions for activating purine-5′-monophosphates (pA, pG, and pm7G) by 1,1′-carbonyldiimidazole were studied and optimized in respect to solvents and amount of activating reagent used. Various dinucleoside-5′-diphosphates were synthesized in 62-98% yield by incubating activated and non-activated purine-5′-monophosphates. Two unexpected by-products were formed by competition reactions: the imidazolidate of the non-activated nucleotide and the corresponding symmetrically substituted dinucleoside-5′-diphosphate. A mechanism is proposed to explain the observed side reactions.  相似文献   

9.
A key component of the response to DNA damage caused by ionizing radiation is DNA repair. Release of extracellular nucleotides, such as ATP, from cells plays a role in signaling via P2 receptors. We show here that release of ATP, followed by activation of P2Y receptors, is involved in the response to γ-irradiation-induced DNA damage. Formation of phosphorylated histone variant H2AX (γH2AX) foci, which are induced in nuclei by DNA damage and contribute to accumulation of DNA-repair factors, was increased at 1-3h after γ-ray irradiation (2.0Gy) of human lung cancer A549 cells. Focus formation was suppressed by pre-treatment with the ecto-nucleotidase apyrase. Pre-treatment with ecto-nucleotidase inhibitor ARL67156 or post-treatment with ATP or UTP facilitated induction of γH2AX, indicating that extracellular nucleotides play a role in induction of γH2AX foci. Next, we examined the effect of P2 receptor inhibitors on activation of ataxia telangiectasia mutated (ATM; a protein kinase) and accumulation of 53BP1 (a DNA repair factor), both of which are important for DNA repair, at DNA damage sites. P2Y6 receptor antagonist MRS2578, P2Y12 receptor antagonist clopidogrel, and P2X7 receptor antagonists A438079 and oxATP significantly inhibited these processes. Release of ATP was detected within 2.5min after irradiation, but was blocked by A438079. Activation of ATM and accumulation of 53BP1 were decreased in P2Y6 or P2Y12 receptor-knockdown cells. We conclude that autocrine/paracrine signaling through P2X7-dependent ATP release and activation of P2Y6 and P2Y12 receptors serves to amplify the cellular response to DNA damage caused by γ-irradiation.  相似文献   

10.
Abstract

Uridine 5′-O-triphosphate (UTP) is a potent agonist of the purinergic receptor designated P2Y2. UTP is rapidly metabolized in human tissue. To find a compound with similar activity that may be more slowly metabolized, a series of 4-substituted uridine 5′-triphosphates were prepared and evaluated in a P2Y2 receptor second messenger assay.  相似文献   

11.
Purinergic Signalling - ATP is a cotransmitter released with other neurotransmitters from sympathetic nerves, where it stimulates purinergic receptors. Purinergic adenosine P1 receptors (coupled to...  相似文献   

12.
Dinucleoside polyphosphates act as agonists on purinergic P2Y receptors to mediate a variety of cellular processes. Symmetrical, naturally occurring purine dinucleotides are found in most living cells and their actions are generally known. Unsymmetrical purine dinucleotides and all pyrimidine containing dinucleotides, however, are not as common and therefore their actions are not well understood. To carry out a thorough examination of the activities and specificities of these dinucleotides, a robust method of synthesis was developed to allow manipulation of either nucleoside of the dinucleotide as well as the phosphate chain lengths. Adenosine containing dinucleotides exhibit some level of activity on P2Y1 while uridine containing dinucleotides have some level of agonist response on P2Y2 and P2Y6. The length of the linking phosphate chain determines a different specificity; diphosphates are most accurately mimicked by dinucleoside triphosphates and triphosphates most resemble dinucleoside tetraphosphates. The pharmacological activities and relative metabolic stabilities of these dinucleotides are reported with their potential therapeutic applications being discussed.  相似文献   

13.
14.
P2Y 受体研究进展   总被引:4,自引:0,他引:4  
Mei L  Fang WG 《生理科学进展》2005,36(2):155-158
P2受体作为一类核苷酸受体,可分为门控离子通道P2X受体和G蛋白偶联P2Y受体。P2Y受体在人体内分布广泛,功能复杂,迄今为止已从人体组织细胞克隆出9种P2Y受体,分别为P2Y1,2,4,6,11,1,13,14,15受体。本文对P2Y受体的结构特征、生理功能、药理特性和临床应用进行综述。  相似文献   

15.
1. Addition of 2mm-thymidine, although resulting in the cessation of cell division, allows the continuation of phospholipid and protein synthesis and results in an increase in mean cell volume for at least 15h. 2. 5-Fluorouracil 2'-deoxyriboside inhibits cell division but differs from thymidine by inhibiting the synthesis of phospholipid and protein in a more marked manner. 3. The relation between these results and the P815Y cell cycle is discussed.  相似文献   

16.
The amyloid precursor protein (APP) is proteolytically processed by β- and γ-secretases to release amyloid-β peptide (Aβ), the main component found in senile plaques of Alzheimer's disease (AD) patient brains. Alternatively, APP can be cleaved within the Aβ sequence by α-secretase, thus precluding the generation of Aβ. We have demonstrated that activation of the P2X7 receptor leads to a reduction of α-secretase activity in Neuro-2a cells. Moreover, the P2X7 ligand 2'(3')-O-(4-benzoylbenzoyl) ATP (BzATP) can also activate a different P2 receptor in these cells. This receptor, whose pharmacology resembles that of the P2Y(2) receptor, has an opposite effect, leading to increases in α-secretase activity. Our study suggests that P2X7R and P2Y(2)R could be novel therapeutic targets in AD.  相似文献   

17.
Abstract

In this article, we describe the synthesis of 5-nitro-1-(2-deoxy-α-D-erythro-pentofuranosyl)cytosine (), 5-nitro-1-(2-deoxy-β-D-erythro-pentofuranosyl)cytosine (), 5-amino-1-(2-deoxy-α-D-erythro-pentofuranosyl)cytosine (), 5-nitro-1- (2-deoxy-β-D-erythro-pentofuranosyl)cytosine (), 5-nitro-1-(2,3-dideoxy-β- D-ribofuranosyl)uracil (), 5-amino-1-(2,3-dideoxy-α,β-D-ribofuranosyl)uracil (7), 5-nitro-1-(2,3-dideoxy-α,β-D-ribofuranosyl)cytosine (8) and 5-amino-1-(2,3-dideoxy-β-D-ribofuranosyl)cytosine (). The prepared compounds were tested for their activity against HIV and HBV viruses, but they did not show significant activity.  相似文献   

18.
The discovery, of a series of 2-Cl-5-heteroaryl-benzamide antagonists of the P2X(7) receptor via parallel medicinal chemistry is described. Initial analogs suffered from poor metabolic stability and low Vd(ss). Multi parametric optimization led to identification of pyrazole 39 as a viable lead with excellent potency and oral bioavailability. Further attempts to improve the low Vd(ss) of 39 via introduction of amines led to analogs 40 and 41 which maintained the favorable pharmacology profile of 39 and improved Vd(ss) after iv dosing. But these analogs suffered from poor oral absorption, probably driven by poor permeability.  相似文献   

19.
This review describing the role of P2Y receptors in neuropathological conditions focuses on obvious differences between results demonstrating either a role in neuroprotection or in neurodegeneration, depending on in vitro and in vivo models. Such critical juxtaposition puts special emphasis on discussions of beneficial and detrimental effects of P2Y receptor agonists and antagonists in these models. The mechanisms reported to underlie the protection in vitro include increased expression of oxidoreductase genes, like carbonyl reductase and thioredoxin reductase; increased expression of inhibitor of apoptosis protein-2; extracellular signal-regulated kinase- and Akt-mediated antiapoptotic signaling; increased expression of Bcl-2 proteins, neurotrophins, neuropeptides, and growth factors; decreased Bax expression; non-amyloidogenic APP shedding; and increased neurite outgrowth in neuronal cells. Animal studies investigating the influence of P2Y receptors in middle cerebral artery occlusion (MCAO) models for stroke prove beneficial effects of P2Y receptor antagonists. In MCAO mice and rats, the application of broad-range P2 receptor antagonists decreased the infarct volume and improved neurological outcome. Moreover, antagonists of the P2Y1 receptor, one of the most abundant P2Y receptor subtypes in brain tissue, decreased neuronal loss and improved spatial memory in rats after traumatic brain injury (TBI). Currently available data show a discrepancy between in vitro and in vivo models concerning the benefits of P2Y receptor activation in pathological conditions. In vitro models demonstrate protection by P2Y receptor agonists, but in vivo P2Y receptor activation deteriorates the outcome after MCAO and controlled cortical impact brain injury, a TBI model. To broaden the scope of the review, we additionally discuss publications that demonstrate detrimental effects of P2Y receptor agonists in vitro and publications showing protective effects of agonists in vivo. All these studies help to better understand the significant role of P2Y receptors especially in stroke models and to develop pharmacological strategies for the treatment of stroke.  相似文献   

20.
We report the design and synthesis of a series of BACE1 inhibitors incorporating mono- and bicyclic 6-substituted 2-oxopiperazines as novel P1′ and P2′ ligands and isophthalamide derivative as P2-P3 ligands. Among mono-substituted 2-oxopiperazines, inhibitor 5a with N-benzyl-2-oxopiperazine and isophthalamide showed potent BACE1 inhibitory activity (Ki = 2 nM). Inhibitor 5g, with N-benzyl-2-oxopiperazine and substituted indole-derived P2-ligand showed a reduction in potency. The X-ray crystal structure of 5g-bound BACE1 was determined and used to design a set of disubstituted 2-oxopiperazines and bicyclic derivatives that were subsequently investigated. Inhibitor 6j with an oxazolidinone derivative showed a BACE1 inhibitory activity of 23 nM and cellular EC50 of 80 nM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号