首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
ZC3H20 and ZC3H21 are related trypanosome proteins with two C(x)8C(x)5C(x)3H zinc finger motifs. ZC3H20 is present at a low level in replicating mammalian-infective bloodstream forms, but becomes more abundant when they undergo growth arrest at high density; ZC3H21 appears only in the procyclic form of the parasite, which infects Tsetse flies. Each protein binds to several hundred mRNAs, with overlapping but not identical specificities. Both increase expression of bound mRNAs, probably through recruitment of the MKT1-PBP1 complex. At least 28 of the bound mRNAs decrease after depletion of ZC3H20, or of ZC3H20 and ZC3H21 together; their products include procyclic-specific proteins of the plasma membrane and energy metabolism. Simultaneous depletion of ZC3H20 and ZC3H21 causes procyclic forms to shrink and stop growing; in addition to decreases in target mRNAs, there are other changes suggestive of loss of developmental regulation. The bloodstream-form-specific protein RBP10 controls ZC3H20 and ZC3H21 expression. Interestingly, some ZC3H20/21 target mRNAs also bind to and are repressed by RBP10, allowing for dynamic regulation as RBP10 decreases and ZC3H20 and ZC3H21 increase during differentiation.  相似文献   

3.
4.
When Trypanosoma brucei differentiates from the bloodstream form to the procyclic form, there are decreases in the levels of many mRNAs encoding proteins required for the glycolytic pathway, and the mRNA encoding the RNA recognition motif protein RBP10 decreases in parallel. We show that RBP10 is a cytoplasmic protein that is specific to bloodstream-form trypanosomes, where it is essential. Depletion of RBP10 caused decreases in many bloodstream-form-specific mRNAs, with increases in mRNAs associated with the early stages of differentiation. The changes were similar to, but more extensive than, those caused by glucose deprivation. Conversely, forced RBP10 expression in procyclics induced a switch towards bloodstream-form mRNA expression patterns, with concomitant growth inhibition. Forced expression of RBP10 prevented differentiation of bloodstream forms in response to cis-aconitate, but did not prevent expression of key differentiation markers in response to glucose deprivation. RBP10 was not associated with heavy polysomes, showed no detectable in vivo binding to RNA, and was not stably associated with other proteins. Tethering of RBP10 to a reporter mRNA inhibited translation, and halved the abundance of the bound mRNA. We suggest that RBP10 may prevent the expression of regulatory proteins that are specific to the procyclic form.  相似文献   

5.
6.
7.
8.
9.
10.
The salivarian trypanosome Trypanosoma brucei infects mammals and is transmitted by tsetse flies. The mammalian ‘bloodstream form’ trypanosome has a variant surface glycoprotein coat and relies on glycolysis while the procyclic form from tsetse flies has EP protein on the surface and has a more developed mitochondrion. We show here that the mRNA for the procyclic-specific cytosolic phosphoglycerate kinase PGKB, like that for EP proteins, contains a regulatory AU-rich element (ARE) that destabilises the mRNA in bloodstream forms. The human HuR protein binds to, and stabilises, mammalian mRNAs containing AREs. Expression of HuR in bloodstream-form trypanosomes resulted in growth arrest and in stabilisation of the EP, PGKB and pyruvate, phosphate dikinase mRNAs, while three bloodstream-specific mRNAs were reduced in abundance. The synthesis and abundance of unregulated mRNAs and proteins were unaffected. Our results suggest that regulation of mRNA stability by AREs arose early in eukaryotic evolution.  相似文献   

11.
12.
13.
14.
Aurora kinase family members co-ordinate a range of events associated with mitosis and cytokinesis. Anti-cancer therapies are currently being developed against them. Here, we evaluate whether Aurora kinase-1 (TbAUK1) from pathogenic Trypanosoma brucei might be targeted in anti-parasitic therapies as well. Conditional knockdown of TbAUK1 within infected mice demonstrated its essential contribution to infection. An in vitro kinase assay was developed which used recombinant trypanosome histone H3 as a substrate. Tandem mass spectroscopy identified a novel phosphorylation site in the carboxyl-tail of recombinant trypanosome histone H3. Hesperadin, an inhibitor of human Aurora B, prevented the phosphorylation of substrate with IC50 of 40 nM. Growth of cultured bloodstream forms was also sensitive to Hesperadin (IC50 of 50 nM). Hesperadin blocked nuclear division and cytokinesis but not other aspects of the cell cycle. Consequently, growth arrested cells accumulated multiple kinetoplasts, flagella and nucleoli, similar to the effects of RNAi-dependent knockdown of TbAUK1 in cultured bloodstream forms cells. Molecular models predicted high-affinity binding of Hesperadin to both conserved and novel sites in TbAUK1. Collectively, these data demonstrate that cell cycle progression is essential for infections with T. brucei and that parasite Aurora kinases can be targeted with small-molecule inhibitors.  相似文献   

15.
16.
The eukaryotic Ccr4/Caf1/Not complex is involved in deadenylation of mRNAs. The Caf1 and Ccr4 subunits both potentially have deadenylating enzyme activity. We investigate here the roles of Ccr4 and Caf1 in deadenylation in two organisms that separated early in eukaryotic evolution: humans and trypanosomes. In Trypanosoma brucei, we found a complex containing CAF1, NOT1, NOT2 and NOT5, DHH1 and a possible homologue of Caf130; no homologue of Ccr4 was found. Trypanosome CAF1 has deadenylation activity, and is essential for cell survival. Depletion of trypanosome CAF1 delayed deadenylation and degradation of constitutively expressed mRNAs. Human cells have two isozymes of Caf1: simultaneous depletion of both inhibited degradation of an unstable reporter mRNA. In both species, depletion of Caf1 homologues inhibited deadenylation of bulk RNA and resulted in an increase in average poly(A) tail length.  相似文献   

17.
18.
19.
Li Y  Li Z  Wang CC 《Molecular microbiology》2003,49(1):251-265
Ubiquitination and proteasomal degradation of cell cycle regulatory proteins are known to play a pivotal role in controlling the progression of the eukaryotic cell cycle. Using the technique of RNA interference (RNAi) on the bloodstream form of Trypanosoma brucei, we were able to knock down expression of each of the 11 non-ATPase regulatory subunit proteins (Rpns) in the 19S regulatory complex of the 26S proteasome. In each case, the knock-down led to arrest of cells within the G1 and G2 phases, suggesting blockage of cell cycle progression at both G1/S and G2/M boundaries. This finding differs from that observed previously in the procyclic form of T. brucei, in which loss of individual Rpns blocks only passage across the G2/M boundary. Thus, proteasomal degradation of additional regulatory protein(s) may be required for exiting from G1 phase in the bloodstream form. In vitro differentiation of each of the 11 Rpn-depleted bloodstream form cell lines into the procyclic form was monitored. Each cell line proceeded to completion of the differentiation process like the wild-type cells with the total percentage of differentiated cells about equivalent to the sum of G1 and G2 cells. Thus, cells trapped in either G1 or G2 phase can apparently still enter and complete the process of differentiation, which is probably neither stage specific nor dependent on the progression of the T. brucei cell cycle. The process is probably a simple pattern change of gene expression in the trypanosome induced by a temperature decrease from 37 degrees C to 26 degrees C in the presence of citrate and cis-aconitate.  相似文献   

20.
The genome of the African trypanosome Trypanosoma brucei (Tb) contains at least three gene families (TbMSP-A, -B, and -C) encoding homologues of the abundant major surface protease (MSP, previously called GP63), which is found in all Leishmania species. TbMSP-B mRNA occurs in both procyclic and bloodstream trypanosomes, whereas TbMSP-A and -C mRNAs are detected only in bloodstream organisms. RNA interference (RNAi)-mediated gene silencing was used to investigate the function of TbMSP-B protein. RNAi directed against TbMSP-B but not TbMSP-A ablated the steady state TbMSP-B mRNA levels in both procyclic and bloodstream cells but had no effect on the kinetics of cultured trypanosome growth in either stage. Procyclic trypanosomes have been shown previously to have an uncharacterized cell surface metalloprotease activity that can release ectopically expressed surface proteins. To determine whether TbMSP-B is responsible for this release, transgenic variant surface glycoprotein 117 (VSG117) was expressed constitutively in T. brucei procyclic TbMSP-RNAi cell lines, and the amount of surface VSG117 was determined using a surface biotinylation assay. Ablation of TbMSP-B but not TbMSP-A mRNA resulted in a marked decrease in VSG release with a concomitant increase in steady state cell-associated VSG117, indicating that TbMSP-B mediates the surface protease activity of procyclic trypanosomes. This finding is consistent with previous pharmacological studies showing that peptidomimetic collagenase inhibitors block release of transgenic VSG from procyclic trypanosomes and are toxic for bloodstream but not procyclic organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号