首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Models capturing the full effects of weather conditions on animal populations are scarce. Here we decompose yearly temperature and rainfall into mean trends, yearly amplitude of change and residual variation, using daily records. We establish from multi-model inference procedures, based on 1125 life histories (from 1987 to 2008), that European badger (Meles meles) annual mortality and recruitment rates respond to changes in mean trends and to variability in proximate weather components. Variation in mean rainfall was by far the most influential predictor in our analysis. Juvenile survival and recruitment rates were highest at intermediate levels of mean rainfall, whereas low adult survival rates were associated with only the driest, and not the wettest, years. Both juvenile and adult survival rates also exhibited a range of tolerance for residual standard deviation around daily predicted temperature values, beyond which survival rates declined. Life-history parameters, annual routines and adaptive behavioural responses, which define the badgers’ climatic niche, thus appear to be predicated upon a bounded range of climatic conditions, which support optimal survival and recruitment dynamics. That variability in weather conditions is influential, in combination with mean climatic trends, on the vital rates of a generalist, wide ranging and K-selected medium-sized carnivore, has major implications for evolutionary ecology and conservation.  相似文献   

2.
We aimed to assess the impact of warmer and drier climate change conditions on the seed rain and seedling establishment of Globularia alypum L. and Erica multiflora L., two dominant species in Western coastal Mediterranean shrublands. We performed a non-intrusive field experiment in which we increased the night-time temperatures and excluded spring and autumn rainfall. We monitored the seed rain over 5 years and the seedling recruitment over 9 years on these experimental plots. Seed rain of E. multiflora was enhanced by warming treatment in relation to control, and higher annual rainfall, while seed rain of G. alypum was increased by drought treatment in relation to control, dry years and higher minimum annual temperature. Annual rainfall enhanced the seedling emergence of both species, which also positively correlated with annual mean temperatures. Drought treatment significantly decreased seedling emergence for both species, which was higher in open areas than below vegetation cover. The seedling survival of both species diminished at closer distances to competing neighbours, and in G. alypum seedling survival was higher with lower annual mean temperatures and higher annual rainfall, but also in drought treatment, which have experienced vegetation cover decline. The study confirms that the increasing aridity in Mediterranean ecosystems would constrain the early stages of development in typical co-occurring shrubs. However, there are contrasting responses to climatic conditions between species recruitment, which might favour changes in vegetation through modification of species relative abundance.  相似文献   

3.
This study aims to quantify the relative effects of density-dependent (feedback structure) and density-independent climatic factors (rainfall) in regulating the short-term population dynamics of wood mice Apodemus sylvaticus Linnaeus, 1758 in three Mediterranean forest plots. Rainfall and density explained additively 62% of variation in population growth rates (38 and 24%, respectively), with no differences among study plots. Population growth rate was positive during autumn–winter and negative during spring–summer during a 2.5-year period. Population rate of change was negatively affected by wood mouse density during the normal breeding season of Mediterranean mice (autumn–winter) but not outside it. Growth rate was positively affected by the cumulative amount of rainfall three months before the normal breeding season, but not during it. Female breeding activity and recruitment did not differ among plots, and was not affected by density or rainfall. However, recruitment was positively affected by density and, marginally, by rainfall. Our results suggest that intraspecific competition (density-dependence) and food availability (rainfall) are equally important factors driving wood mouse population dynamics in Mediterranean forests. Mechanisms underlying density-dependence during the breeding season seemed to be based on food-mediated survival rather than on behaviourally-mediated reproduction. Taken together, these results indicate a high sensitivity of marginal Mediterranean wood mouse populations to the expected climate changes in the Mediterranean region.  相似文献   

4.
Extreme climatic events have the potential to affect plant communities around the world, and especially in the Mediterranean basin, where the frequency of milder and drier summers is expected to be altered under a global-change scenario. We experimentally investigated the effect of three contrasting climatic scenarios on the diversity and abundance of the natural woody-recruit bank among three characteristic habitats in a Mediterranean-type ecosystem: forest, shrubland, and bare soil. The climatic scenarios were dry summers (30% summer rainfall reduction), wet summers (simulating summer storms), and current climatic conditions (control). Seedling emergence and survival after the first summer was recorded during 4 consecutive years. The wet summer boosted abundance and diversity at emergence and summer survival, rendering the highest Shannon H??index. By contrast, the dry summer had no effect on emergence, although survival tended to decline. Nonetheless, the habitat had a key role, bare soil showing almost null recruitment whatever the climatic scenario, and forest keeping the highest diversity in all of them. Our results show that recruit-bank density and diversity depends heavily on extreme climatic events. Community dynamics will depend not only on increased drought but also on the balance between dry and wet years.  相似文献   

5.
There is a growing interest in understanding and forecasting the responses of plant communities to projected changes of environmental conditions. Multi-stage demographic approaches, where plant recruitment is explored across multiple and consecutive stages, are essential to obtain a whole overview of the consequences of increasing aridity on tree recruitment and forest dynamics, but they are still rarely used. In this study, we present the results of an experimental rainfall exclusion aimed to evaluate the impact of projected increasing drought on multiple stage-specific probabilities of recruitment in a key tree species typical of late-successional Mediterranean woodlands (Quercus ilex L.). We calibrated linear and nonlinear likelihood models for the different demographic processes and calculated overall probabilities of recruitment along a wide range of microhabitat conditions. Rainfall exclusion altered Q. ilex recruitment throughout ontogeny. Seed maturation, seedling emergence and survival and, to a lesser extent, post-dispersal seed survival were the most sensitive demographic processes to decreased rainfall. Interestingly, both the identity of the most critical stages for recruitment and their specific sensitivity to rainfall manipulation depended largely on the yearly pattern of precipitation. The microhabitat heterogeneity strongly determined the success of recruitment in the study species. The experimental increase in drought displaced the peak of maximum overall recruitment towards the low end of the light gradient, suggesting that the dependence on shrubs for an effective recruitment in Q. ilex could be intensified under future environmental scenarios. In terms of phenotypic plasticity, Q. ilex seedlings responded more strongly to light availability than to experimentally increased drought, which could reduce its ability to persist under on-going environmental conditions due to climate change. Results from this study provide a full picture of the ecological and functional consequences of the projected rainfall reduction on tree recruitment and forest dynamics in two years of contrasting precipitation.  相似文献   

6.
In semi‐arid environments, aperiodic rainfall pulses determine plant production and resource availability for higher trophic levels, creating strong bottom‐up regulation. The influence of climatic factors on population vital rates often shapes the dynamics of small mammal populations in such resource‐restricted environments. Using a 21‐year biannual capture–recapture dataset (1993 to 2014), we examined the impacts of climatic factors on the population dynamics of the brush mouse (Peromyscus boylii) in semi‐arid oak woodland of coastal‐central California. We applied Pradel''s temporal symmetry model to estimate capture probability (p), apparent survival (φ), recruitment (f), and realized population growth rate (λ) of the brush mouse and examined the effects of temperature, rainfall, and El Niño on these demographic parameters. The population was stable during the study period with a monthly realized population growth rate of 0.993 ± SE 0.032, but growth varied over time from 0.680 ± 0.054 to 1.450 ± 0.083. Monthly survival estimates averaged 0.789 ± 0.005 and monthly recruitment estimates averaged 0.175 ± 0.038. Survival probability and realized population growth rate were positively correlated with rainfall and negatively correlated with temperature. In contrast, recruitment was negatively correlated with rainfall and positively correlated with temperature. Brush mice maintained their population through multiple coping strategies, with high recruitment during warmer and drier periods and higher survival during cooler and wetter conditions. Although climatic change in coastal‐central California will likely favor recruitment over survival, varying strategies may serve as a mechanism by which brush mice maintain resilience in the face of climate change. Our results indicate that rainfall and temperature are both important drivers of brush mouse population dynamics and will play a significant role in predicting the future viability of brush mice under a changing climate.  相似文献   

7.
Understanding mechanisms behind variability in early life survival of marine fishes through modeling efforts can improve predictive capabilities for recruitment success under changing climate conditions. Walleye pollock (Theragra chalcogramma) support the largest single-species commercial fishery in the United States and represent an ecologically important component of the Bering Sea ecosystem. Variability in walleye pollock growth and survival is structured in part by climate-driven bottom-up control of zooplankton composition. We used two modeling approaches, informed by observations, to understand the roles of prey quality, prey composition, and water temperature on juvenile walleye pollock growth: (1) a bioenergetics model that included local predator and prey energy densities, and (2) an individual-based model that included a mechanistic feeding component dependent on larval development and behavior, local prey densities and size, and physical oceanographic conditions. Prey composition in late-summer shifted from predominantly smaller copepod species in the warmer 2005 season to larger species in the cooler 2010 season, reflecting differences in zooplankton composition between years. In 2010, the main prey of juvenile walleye pollock were more abundant, had greater biomass, and higher mean energy density, resulting in better growth conditions. Moreover, spatial patterns in prey composition and water temperature lead to areas of enhanced growth, or growth ‘hot spots’, for juvenile walleye pollock and survival may be enhanced when fish overlap with these areas. This study provides evidence that a spatial mismatch between juvenile walleye pollock and growth ‘hot spots’ in 2005 contributed to poor recruitment while a higher degree of overlap in 2010 resulted in improved recruitment. Our results indicate that climate-driven changes in prey quality and composition can impact growth of juvenile walleye pollock, potentially severely affecting recruitment variability.  相似文献   

8.
This study explores how variation of macro- and micro-climatic conditions associated with changes in altitude affect early recruitment dynamics of the perennial herb Helleborus foetidus (Ranunculaceae). We also analyse the relevance of facilitation by woody vegetation on seedling recruitment along altitudinal gradient. We conducted a sowing experiment testing the effect of altitude (using three populations located at 1100, 1400 and 1650 m a.s.l.) and woody cover (open areas vs cover of woody species) on seedling emergence during two years and survival three years after sowing. Simultaneously, we characterised elevations and cover types in terms of climatic factors (surface air temperature and relative humidity) throughout a whole year, and light conditions (global site factor and red/infrared ligh ratio) using hemispheric photographs. We detected a significant effect of elevation on seedling emergence, with a higher emergence at lowest altitude. Woody cover greatly affected seedling survival and recruitment, both rates being higher under woody species than in open areas. Emergence was negatively correlated with winter stress factors, which increased with elevation. Survival and recruitment were negatively correlated with summer stress factors, which were ameliorated by woody cover and with altitude. Amelioration of climatic factors by woody cover was not influenced by altitude. Implications for species persistence in Mediterranean mountains under climate change scenarios are discussed.  相似文献   

9.
Certain populations of long‐distance migratory birds are suffering declines, which may be attributed to effects of climate change. In this article, we have analysed a long‐term (1991–2015) data set on a pied flycatcher Ficedula hypoleuca population breeding in nest‐boxes in a Mediterranean montane oak forest, exploring the trends in population size due to changes in nestling recruitment, female survival and female immigration. We have related these changes in population parameters to local climate, winter NAO index and to breeding density. During the last 25 yr the population has declined by half, mainly in association with a decrease in nestling mass and structural size which had repercussions on the probability of nestling recruitment to the population. Lower local nestling recruitment in certain years was linked to lower female immigration rate in the same years. On the other hand, the local survival of females remained stable throughout the study period. Laying date and breeding success were negatively affected by local temperatures while breeding, recruitment rate likewise by minimum temperature prior to breeding in April. As minimum April temperatures have increased across the study period, this may have affected recruitment and immigration rates negatively. On the other hand, tarsus length and body mass of nestlings were positively associated with winter NAO index, pointing to more global climatic links. Moreover, there was also a negative temporal trend in body mass of adults, implying increasingly difficult conditions for breeding. Declining recruit production in the study area could be attributed to a mismatch between the timing of arrival and breeding in the population, and the peak of food availability in this area.  相似文献   

10.
High diversification of woody seeder lineages is characteristic of the south-western cape floristic region (CFR), South Africa, which has been explained as a consequence of its mild Mediterranean climate and reliable winter rainfall. Such climatic regime reduces the risk of post-fire recruitment failure, acting as an ecological filter that favours seeder populations, thus promoting genetic differentiation and diversification in seeder populations, as previously seen in the South African heath Erica coccinea. To explore this hypothesis further, genetic population structure was investigated in two Mediterranean Erica species, one seeder (Erica umbellata) and the other resprouter (Erica australis), using nuclear microsatellites. These two species are endemic to the western Mediterranean Basin and co-occur in heathlands of the Strait of Gibraltar region. Mean annual rainfall in this region is similar to that from the south-western CFR, but summer stress is more marked and winter rainfall is much less reliable. Contrary to what was found in E. coccinea, average genetic diversity levels were considerably lower in seeder populations (E. umbellata), regardless of an apparently higher gene flow among them. No differences in genetic differentiation among populations were found between the two species. The occurrence of less favourable climatic conditions for post-fire recruitment in the western Mediterranean compared to the south-western CFR may affect seeder populations more strongly than resprouter and may thus account for lower levels of within-population genetic diversity in the seeder E. umbellata. In addition, putatively higher migration rates in the seeder E. umbellata, may contribute to reduce its potential for genetic differentiation. This study provides evidence that high divergence of seeder populations is not a general rule in fire-prone, Mediterranean-type ecosystems.  相似文献   

11.
Abstract. The Mediterranean Basin harbours paleo‐endemic species with a highly restricted and fragmented distribution. Many of them might also be of the remnant type, for which the regional dynamics depends on the persistence of extant populations. Therefore, a key issue for the long‐term persistence of these species is to assess the variability and effects of ecological factors determining plant performance. We investigated the spatio‐temporal variability in plant traits and ecological factors of Ramonda myconi, a preglacial relict species with remnant dynamics, in 5 populations over 4–7 yr. Ecological factors contributing to fecundity showed a high degree of between‐year variability. Pre‐dispersal fruit predation had a minor influence on total reproductive output, and most of the variability was found among individuals within populations and years. Spatio‐temporal variability in growth and survival was rather low but significant, whereas recruitment showed important between‐population variability. Among‐year variability in fecundity and growth was related to climatic fluctuations on a regional scale, notably rainfall and temperature in a particular period, while the spatial variability in survival and recruitment was explained by within‐population (patch) habitat quality. Although R. myconi is able to withstand repeated periods of drought, water availability seems to be the most important factor affecting plant performance in all the study populations. These findings suggest that the long‐term persistence of species showing remnant population dynamics in habitats under the influence of Mediterranean climate might be threatened by increased aridity as a result of climate change.  相似文献   

12.
Temperate species occupying habitats at the northern limit of their geographical distribution are limited by weather and climatic conditions. Such conditions often directly affect population dynamics, and thus, influence shifts in distribution via changes in demographic parameters. We examined this question by following three distinct populations of wild turkeys inhabiting areas exposed to a gradient of meteorological conditions at the northern limit of the species distribution. Four years of radio-telemetry on 181 birds and monitoring of 95 nests revealed that population demographics of wild turkeys were influenced by snow depth, winter temperature and summer rainfall. During winter, survival of turkeys decreased drastically when snow depth remained >30 cm for >10 days and also decreased as temperatures got colder. In the spring, snow persistence delayed nest initiation, whereas nest survival was negatively affected by rainfall. Our findings show that the effects of critical meteorological factors such as snow and temperature can be compounded when both reach the limit of a species tolerance simultaneously.  相似文献   

13.
The relationship between genetic diversity and fitness, a major issue in evolutionary and conservation biology, is expected to be stronger in traits affected by many loci and those directly influencing fitness. Here we explore the influence of heterozygosity measured at 15 neutral markers on individual survival, one of the most important parameters determining individual fitness. We followed individual survival up to recruitment and during subsequent adult life of 863 fledgling pied flycatchers born in two consecutive breeding seasons. Mark-recapture analyses showed that individual heterozygosity did not influence juvenile or adult survival. In contrast, the genetic relatedness of parents was negatively associated with the offspring’s survival during the adult life, but this effect was not apparent in the juvenile (from fledgling to recruitment) stage. Stochastic factors experienced during the first year of life in this long-distance migratory species may have swamped a relationship between heterozygosity and survival up to recruitment.  相似文献   

14.
Large‐scale climate modes such as El Niño Southern Oscillation (ENSO) influence population dynamics in many species, including marine top predators. However, few quantitative studies have investigated the influence of large‐scale variability on resident marine top predator populations. We examined the effect of climate variability on the abundance and temporary emigration of a resident bottlenose dolphin (Tursiops aduncus) population off Bunbury, Western Australia (WA). This population has been studied intensively over six consecutive years (2007–2013), yielding a robust dataset that captures seasonal variations in both abundance and movement patterns. In WA, ENSO affects the strength of the Leeuwin Current (LC), the dominant oceanographic feature in the region. The strength and variability of the LC affects marine ecosystems and distribution of top predator prey. We investigated the relationship between dolphin abundance and ENSO, Southern Annular Mode, austral season, rainfall, sea surface salinity and sea surface temperature (SST). Linear models indicated that dolphin abundance was significantly affected by ENSO, and that the magnitude of the effect was dependent upon season. Dolphin abundance was lowest during winter 2009, when dolphins had high temporary emigration rates out of the study area. This coincided with the single El Niño event that occurred throughout the study period. Coupled with this event, there was a negative anomaly in SST and an above average rainfall. These conditions may have affected the distribution of dolphin prey, resulting in the temporary emigration of dolphins out of the study area in search of adequate prey. This study demonstrated the local effects of large‐scale climatic variations on the short‐term response of a resident, coastal delphinid species. With a projected global increase in frequency and intensity of extreme climatic events, resident marine top predators may not only have to contend with increasing coastal anthropogenic activities, but also have to adapt to large‐scale climatic changes.  相似文献   

15.
Highly variable patterns in temperature and rainfall events can have pronounced consequences for small mammals in resource-restricted environments. Climatic factors can therefore play a crucial role in determining the fates of small mammal populations. We applied Pradel's temporal symmetry model to a 21-year capture–recapture dataset to study population dynamics of the pinyon mouse (Peromyscus truei) in a semi-arid mixed oak woodland in California, USA. We examined time-, season- and sex-specific variation in realized population growth rate (λ) and its constituent vital rates, apparent survival and recruitment. We also tested the influence of climatic factors on these rates. Overall monthly apparent survival was 0.81 ± 0.004 (estimate ± SE). Survival was generally higher during wetter months (October–May) but varied over time. Monthly recruitment rate was 0.18 ± 0.01, ranging from 0.07 ± 0.01 to 0.63 ± 0.07. Although population growth rate (λ) was highly variable, overall monthly growth rate was close to 1.0, indicating a stable population during the study period (λ ± SE = 0.99 ± 0.01). Average temperature and its variability negatively affected survival, whereas rainfall positively influenced survival and recruitment rates, and thus the population growth rate. Our results suggest that seasonal rainfall and variation in temperature at the local scale, rather than regional climatic patterns, more strongly affected vital rates in this population. Discerning such linkages between species' population dynamics and environmental variability are critical for understanding local and regional impacts of global climate change, and for gauging viability and resilience of populations in resource-restricted environments.  相似文献   

16.
The long-term variability of marine turtle populations remains poorly understood, limiting science and management. Here we use basin-scale climate indices and regional surface temperatures to estimate loggerhead sea turtle (Caretta caretta) nesting at a variety of spatial and temporal scales. Borrowing from fisheries research, our models investigate how oceanographic processes influence juvenile recruitment and regulate population dynamics. This novel approach finds local populations in the North Pacific and Northwest Atlantic are regionally synchronized and strongly correlated to ocean conditions--such that climate models alone explain up to 88% of the observed changes over the past several decades. In addition to its performance, climate-based modeling also provides mechanistic forecasts of historical and future population changes. Hindcasts in both regions indicate climatic conditions may have been a factor in recent declines, but future forecasts are mixed. Available climatic data suggests the Pacific population will be significantly reduced by 2040, but indicates the Atlantic population may increase substantially. These results do not exonerate anthropogenic impacts, but highlight the significance of bottom-up oceanographic processes to marine organisms. Future studies should consider environmental baselines in assessments of marine turtle population variability and persistence.  相似文献   

17.
The Southern Ocean has been disproportionately affected by climate change and is therefore an ideal place to study the influence of changing environmental conditions on ecosystems. Changes in the demography of predator populations are indicators of broader shifts in food web structure, but long‐term data are required to study these effects. Southern elephant seals (Mirounga leonina) from Macquarie Island have consistently decreased in population size while all other major populations across the Southern Ocean have recently stabilized or are increasing. Two long‐term mark‐recapture studies (1956–1967 and 1993–2009) have monitored this population, which provides an opportunity to investigate demographic performance over a range of climatic conditions. Using a 9‐state matrix population model, we estimated climate influences on female survival by incorporating two major climatic indices into our model: The Southern Annular Mode (SAM) and the Southern Oscillation Index (SOI). Our best model included a 1 year lagged effect of SAM and an unlagged SOI as covariates. A positive relationship with SAM1 (lagged) related the previous year''s SAM with juvenile survival, potentially due to changes in local prey availability surrounding Macquarie Island. The unlagged SOI had a negative effect on both juvenile and adult seals, indicating that sea ice dynamics and access to foraging grounds on the East Antarctic continental shelf could explain the different contributions of ENSO events on the survival of females in this population.  相似文献   

18.
The impacts of climatic change on organisms depend on the interaction of multiple stressors and how these may affect the interactions among species. Consumer–prey relationships may be altered by changes to the abundance of either species, or by changes to the per capita interaction strength among species. To examine the effects of multiple stressors on a species interaction, we test the direct, interactive effects of ocean warming and lowered pH on an abundant marine herbivore (the amphipod Peramphithoe parmerong), and whether this herbivore is affected indirectly by these stressors altering the palatability of its algal food (Sargassum linearifolium). Both increased temperature and lowered pH independently reduced amphipod survival and growth, with the impacts of temperature outweighing those associated with reduced pH. Amphipods were further affected indirectly by changes to the palatability of their food source. The temperature and pH conditions in which algae were grown interacted to affect algal palatability, with acidified conditions only affecting feeding rates when algae were also grown at elevated temperatures. Feeding rates were largely unaffected by the conditions faced by the herbivore while feeding. These results indicate that, in addition to the direct effects on herbivore abundance, climatic stressors will affect the strength of plant–herbivore interactions by changes to the susceptibility of plant tissues to herbivory.  相似文献   

19.
The rear edges of tree species have begun to be perceived as highly valuable for genetic resources conservation and management. In view of expected climatic changes, the responses of trees at their xeric limits may largely be determined by their capacity to cope with augmented environmental variance. We assess the heritability of early survival of Patagonian cypress in two common-garden field tests with contrasting summer water deficits, comprising 140 and 163 open-pollinated families from 10 marginal xeric populations. The first experiment underwent less rigorous conditions than the average mesic, Mediterranean climatic conditions, which were sufficient to reveal additive genetic effects of summer drought on seedling survival. The second trial suffered strong summer water-deficit stress and a winter extreme cold event. In this harsher environment, the heritabilities of survival under summer water-deficit stress were high in all the populations (h 2?=?0.84 on average), while the heritabilities of seasonal, extreme cold survival were moderate or even nil (h 2?=?0.28 on average). We did not find evidence of genetic differentiation among populations in their capabilities to survive droughts and cold extremes. Our results indicate that even when climatic changes were strong enough to cause the extinction of the most threatened populations, heritable variation for traits underlying drought and cold tolerances may allow the marginal xeric edge of cypress to persist under augmented environmental variance, without losing overall genetic diversity.  相似文献   

20.
Factors controlling brown trout Salmo trutta recruitment in Mediterranean areas are largely unknown, despite the relevance this may have for fisheries management. The effect of hydrological variability on survival of young brown trout was studied during seven consecutive years in five resident populations from the southern range of the species distribution. Recruit density at the end of summer varied markedly among year-classes and rivers during the study period. Previous work showed that egg density the previous fall did not account for more than 50% of the observed variation in recruitment density. Thus, we expected that climatic patterns, as determinants of discharge and water temperature, would play a role in the control of young trout abundance. We tested this by analyzing the effects of flow variation and predictability on young trout survival during the spawning to emergence and the summer drought periods. Both hatching and emergence times and length of hatching and emergence periods were similar between years within each river but varied considerably among populations, due to differences in water temperature. Interannual variation in flow attributes during spawning to emergence and summer drought affected juvenile survival in all populations, once the effect of endogenous factors was removed. Survival rate was significantly related to the timing, magnitude and duration of extreme water conditions, and to the rate of change in discharge during hatching and emergence times in most rivers. The magnitude and duration of low flows during summer drought appeared to be a critical factor for survival of young trout. Our findings suggest that density-independent factors, i.e., hydrological variability, play a central role in the population dynamics of brown trout in populations from low-latitude range margins. Reported effects of hydrologic attributes on trout survival are likely to be increasingly important if, as predicted, climate change leads to greater extremes and variability of flow regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号