首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ovarian angioarchitecture was studied by scanning electron microscopy of vascular corrosion casts in estrous, pseudopregnant (stimulated with human chorionic gonadotropin) and pregnant rabbits. In all samples, the proper ovarian branch of the ovarian artery (ramus ovaricus) entered the ovarian hilus near the caudal pole of the organ and ran parallel to the major axis of the hilus. The extraovarian venous drainage was formed by several vessels emptying into a distal large vein. The ramus ovaricus exhibited various degrees of coiling and branched in the medulla. The coiling of the ramus ovaricus and its ramifications were maintained in all samples. A venous meshwork and/or flat vein branches closely enveloped the arterial coils found in the hilus and outer medulla. At this level numerous arteriovenous contacts were demonstrated in all samples. The coiled arteries, prior to entering the ovarian cortex, supplied several small peripheral follicles which were drained by the hilar veins. In the cortex the coiled arteries branched in numerous thin, straight or slightly undulated arterioles which supplied developing estrous follicles and pseudopregnant corpora lutea. The arterioles supplying the pregnant corpora lutea were long, large and tightly spiraled. The venous drainage followed the modifications of the arterial supply. These data demonstrate that ovarian cycle and pregnancy induced significant changes in the cortical vessels, which adapted their structure to the temporary functional needs of the recruited follicles or corpora lutea. Hilar and medullary vessels have permanent structures that may represent morphological devices for (a) a continuous control of the blood flow (spiral arteries) and (b) a local recirculation of endocrine products (arteriovenous contacts) comparable to the ”countercurrent mechanism” previously shown to operate in ovaries of other species, but not yet found in rabbits. Received: 19 June 1996 / Accepted: 7 October 1996  相似文献   

2.
The cerebral vessels of the rat were filled with inks of different colours. The topography of the vessels of the amygdala were reconstructed from serial sections. The circulation of the individual amygdaloid nuclei was studied in detail. The arteries of the amygdala arise from the deep and cortical branches of the internal carotid and middle cerebral arteries. Eight major arteries were found to supply blood to the amygdala. All amygdaloid nuclei receive branches from both arterial trunks. The vast majority of the veins are collected by the middle cerebral and basal veins. Only a small fraction drains into the hippocampal vein. Of particular importance are the veins ending in the basal vein and those cortical ones that run in the rhinal sulcus. All amygdaloid nuclei have a multidirectional drainage.  相似文献   

3.
In 115 Wistar male rats structures and rates of tissue blood flow have been studied in the cortical and medullary renal substance histologically, polarographically (estimation of the volumetric tissue blood flow by hydrogen clearance). Systemic arterial (peritoneal aorta), venous (caudal vena cava) and lymphatic (renal lymph nodes) pressures have been measured, normal and after ligation of the thoracic duct at early (1-3 days), middle (1 month) and late (2-3 months) periods. In 1-3 days edema and dystrophy of the renal parenchyma, decrease of the blood flow rate in the cortical and its increase in the renal medullary substance, as well as a sharp elevation of pressure in the lymph nodes are observed. In 1 month of the experiment together with dystrophy and edema moderate sclerosis, decreasing blood flow rate in the cortical and medullary substance are noted. Increase of the systemic arterial and venous pressure and decreasing pressure in the lymph nodes, as well as a sharp increase of the renal nodes mass are revealed. In 2-3 months of the experiment, together with sclerosis of the renal parenchyma, elevated blood flow rate is observed in the kidneys and decreasing pressure in the lymph nodes up to its initial value takes place.  相似文献   

4.
To understand how geometric factors affect arterial-to-venous (AV) oxygen shunting, a mathematical model of diffusive oxygen transport in the renal cortex was developed. Preglomerular vascular geometry was investigated using light microscopy (providing vein shape, AV separation, and capillary density near arteries) and published micro-computed tomography (CT) data (providing vessel size and AV separation; Nordsletten DA, Blackett S, Bentley MD, Ritman EL, Smith NP. IUPS Physiome Project. http://www.physiome.org.nz/publications/nordsletten_blackett_ritman_bentley_smith_2005/folder_contents). A "U-shaped" relationship was observed between the arterial radius and the distance between the arterial and venous lumens. Veins were found to partially wrap around the artery more consistently for larger rather than smaller arteries. Intrarenal arteries were surrounded by an area of fibrous tissue, lacking capillaries, the thickness of which increased from ~5 μm for the smallest arteries (<16-μm diameter) to ~20 μm for the largest arteries (>200-μm diameter). Capillary density was greater near smaller arteries than larger arteries. No capillaries were observed between wrapped AV vessel pairs. The computational model comprised a single AV pair in cross section. Geometric parameters critical in renal oxygen transport were altered according to variations observed by CT and light microscopy. Lumen separation and wrapping of the vein around the artery were found to be the critical geometric factors determining the amount of oxygen shunted between AV pairs. AV oxygen shunting increases both as lumen separation decreases and as the degree of wrapping increases. The model also predicts that capillaries not only deliver oxygen, but can also remove oxygen from the cortical parenchyma close to an AV pair. Thus the presence of oxygen sinks (capillaries or tubules) near arteries would reduce the effectiveness of AV oxygen shunting. Collectively, these data suggest that AV oxygen shunting would be favored in larger vessels common to the cortical and medullary circulations (i.e., arcuate and proximal interlobular arteries) rather than the smaller vessels specific to the cortical circulation (distal interlobular arteries and afferent arterioles).  相似文献   

5.
We studied the opisthonephric (mesonephric) kidneys of adult male and female Xenopus laevis using scanning electron microscopy (SEM) of vascular corrosion casts and light microscopy of paraplast embedded tissue sections. Both techniques displayed glomeruli from ventral to mid-dorsal regions of the kidneys with single glomeruli located dorsally close beneath the renal capsule. Glomeruli in general were fed by a single afferent arteriole and drained via a single thinner efferent arteriole into peritubular vessels. Light microscopy and SEM of vascular corrosion casts revealed sphincters at the origins of afferent arterioles, which arose closely, spaced from their parent renal arteries. The second source of renal blood supply via renal portal veins varied interindividually in branching patterns with vessels showing up to five branching orders before they became peritubular vessels. Main trunks and their first- and second-order branches revealed clear longish endothelial cell nuclei imprint patterns oriented parallel to the vessels longitudinal axis, a pattern characteristic for arteries. Peritubular vessels had irregular contours and were never seen as clear cylindrical structures. They ran rather parallel, anastomosed with neighbors and changed into renal venules and veins, which finally emptied into the ventrally located posterior caval vein. A third source of blood supply of the peritubular vessels by straight terminal portions of renal arteries (vasa recta) was not found.  相似文献   

6.
Developing lymph nodes from 30 human fetuses with crownrump lengths (CRL) of 38 mm (8.7 wk) to 245 mm (26 wk) were studied by light and electron microscopy. Blood vessels that appear to be postcapillary venules (PCV) are present in nodes of 47 mm CRL and older fetuses. These venules first appear in nodes whehn the nodal population of lymphocytes is sparse. In these early nodes PCV are distributed randomly and consist of a low endothelium, underlying basal lamina and incomplete pericyte sheath. Early nodal PCV are distinguised from other nodal blood vessels by the presence of lymphocyte diapedesis and several luminal lymphocytes. In the late stages of nodal development PCV are the more common non-capillary blood vessel and appear in the parenchyma near the periphery of the node. Late nodal PCV are generally characterized by a cuboidal endothelium that is rich in Golgi apparatus, lysosomes and Weibel-Palade bodies. The lumen and wall of late nodal PCV contain lymphocytes. The relationship between the development of the parenchyma of fetal nodes and the appearance and activity of PCV, the passage of lymphocytes through the PCV wall and the fine structure of developing PCV are described. It is suggested that the lymphocytes that first appear in developing nodes, and the majority of the lymphocytes found in late nodes, migrate to the node via the blood vascular system and enter the nodal parenchyma by passing across PCV endothelium.  相似文献   

7.
Structure of the arterial bed in human lymph nodes   总被引:1,自引:0,他引:1  
Blood vessels, that bring blood to various areas of the human superficial inguinal lymph nodes are predominantly arterioles and precapillaries. They are often arranged radially from the hilus to the capsule and from the capsule towards the portal thickening. The arteries and arterioles of the portal and capsular trabeculae reach the paracortical zone, occupying an intermediate position between the medullary cords and the cortex of the lymph node. The arterioles of the paracortical zone, passing between the cortex and the medullary cords, acquire an arcuate appearance. In both directions from them (into central and peripheral areas of the node) precapillaries branch off at a right angle. The cortex is supplied with blood by the arteriolar branches of the paracortical zone and the capsule of the node. The cortical precapillaries branch into capillaries either within the lymphoid nodules, or along their periphery. In the medullary cords those arterioles branch, that get from the portal thickening, portal trabeculae and paracortical zone.  相似文献   

8.
Microvascular anatomy and histomorphology of larval and adult spleens of the Clawed Toad, Xenopus laevis were studied by light microscopy of paraplast embedded serial tissue sections and scanning electron microscopy (SEM) of vascular corrosion casts (VCCs). Histology showed i) that white and red pulp are present at the onset of metamorphic climax (stage 57) and ii) that splenic vessels penetrated deeply into the splenic parenchyma at the height of metamorphic climax (stage 64). Scanning electron microscopy of VCCs demonstrated gross arterial supply and venous drainage, splenic microvascular patterns as well as the structure of the interstitial (extravasal) spaces representing the “open circulation routes.” These spaces identified themselves as interconnected resin masses of two distinct forms, namely “broccoli‐shaped” forms and highly interconnected small resin structures. Arterial and venous trees were clearly identified, as were transitions from capillaries to interstitial spaces and from interstitial spaces to pulp venules. Venous sinuses were not diagnosed (nonsinusal spleen). The splenic circulation in Xenopus laevis is “open.” It is hypothesized that red blood cells circulate via splenic artery, central arteries, penicillar arteries, and red pulp capillaries primarily via “broccoli‐shaped” interstitial spaces, pulp venules and veins into subcapsular veins to splenic veins while lymphocytes circulate also via the interstitial spaces represented by the highly interconnected small resin structures in vascular corrosion casts. In physiological terms, the former most likely represent the fast route for blood circulation, while the latter represent the slow route. J. Morphol. 277:1559–1569, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
目的:探讨在兔脑皮层动脉粥样硬化时血管内缘流厚度的变化。方法:用共聚焦激光扫描显微镜比较家兔脑皮质动脉内缘流厚度在正常、粥样硬化病理状态下的不同。结果:在血管直径为74.87±3.26μm的血管中血液缘流厚度在病理状态下随血管的舒张、收缩而发生改变;而在血管直径为94.33±2.84μm的缘流厚度在血管收缩时发生改变。结论:动脉粥样硬化的家兔模型中血液缘流厚度随血液的流变性质改变而改变。  相似文献   

10.
The vascularization of the brain and the pituitary region of the Australian lungfish, Neoceratodus forsteri is described from serial section reconstruction. The distal lobe has no direct arterial blood supply and receives blood solely from a pituitary portal system basically similar to that of other sarcopterygians. The primary capillary plexus of the median eminence receives its arterial blood from the infundibular arteries, which on their way distribute some small branches to the prechiasmatic region. The primary plexus also receives capillaries from the adjacent pial hypothalamic plexus. The primary capillary plexus of the median eminence comprises a rostral 'uncovered' and caudal 'covered' part which are not sharply delineated. Distinct portal vessels connect the 'uncovered' rostral part of the primary plexus with the secondary capillary plexus supplying the rostral subdivision of the pars distalis. The 'covered' caudal part of the primary plexus merges into the proximal subdivision of the pars distalis, apparently without formation of distinct portal vessels. The primary plexus has some connections with the plexus intermedius via a hypophysial stem capillary plexus. The plexus intermedius has a substantial arterial supply and gives off capillaries to the parenchyma of the pars intermedia. The adenohypophysis is drained into an unpaired hypophysial vein. The significance of the vascular pathways is discussed from comparative, functional, and evolutionary viewpoints.  相似文献   

11.
To understand how arterial-to-venous (AV) oxygen shunting influences kidney oxygenation, a mathematical model of oxygen transport in the renal cortex was created. The model consists of a multiscale hierarchy of 11 countercurrent systems representing the various branch levels of the cortical vasculature. At each level, equations describing the reactive-advection-diffusion of oxygen are solved. Factors critical in renal oxygen transport incorporated into the model include the parallel geometry of arteries and veins and their respective sizes, variation in blood velocity in each vessel, oxygen transport (along the vessels, between the vessels and between vessel and parenchyma), nonlinear binding of oxygen to hemoglobin, and the consumption of oxygen by renal tissue. The model is calibrated using published measurements of cortical vascular geometry and microvascular Po(2). The model predicts that AV oxygen shunting is quantitatively significant and estimates how much kidney Vo(2) must change, in the face of altered renal blood flow, to maintain cortical tissue Po(2) at a stable level. It is demonstrated that oxygen shunting increases as renal Vo(2) or arterial Po(2) increases. Oxygen shunting also increases as renal blood flow is reduced within the physiological range or during mild hemodilution. In severe ischemia or anemia, or when kidney Vo(2) increases, AV oxygen shunting in proximal vascular elements may reduce the oxygen content of blood destined for the medullary circulation, thereby exacerbating the development of tissue hypoxia. That is, cortical ischemia could cause medullary hypoxia even when medullary perfusion is maintained. Cortical AV oxygen shunting limits the change in oxygen delivery to cortical tissue and stabilizes tissue Po(2) when arterial Po(2) changes, but renders the cortex and perhaps also the medulla susceptible to hypoxia when oxygen delivery falls or consumption increases.  相似文献   

12.
Using the India ink double-perfusion technique, the blood vessels of the rat's medial hypothalamus were reconstructed from serial sections. The area studied comprised the ventromedial, dorsomedial and perifornical nuclei. The arterial supply of this territory comes from the middle hypothalamic and the anterior, middle and posterior tuberal arteries. The drainage is strictly undirectional: ventralward by the anterior, middle and posterior ventromedial, the posteromedial and posterolateral hypothalamic veins, all ending in the basal vein. The arteries of the ventromedial and dorsomedial nuclei are distinct from those of the arcuate nucleus and median eminence, and their drainage is not connected with the portal vessels. The nuclei studied, even at the levels of their subdivisions, possess own arteries whose territories of supply can well be distinguished with a minimum of overlap. The topography of these arteries is described in detail. The medial hypothalamus has no vascular connections with other regions of the diencephalon including the thalamus.  相似文献   

13.
Lymph nodes (LN''s), located throughout the body, are an integral component of the immune system. They serve as a site for induction of adaptive immune response and therefore, the development of effector cells. As such, LNs are key to fighting invading pathogens and maintaining health. The choice of LN to study is dictated by accessibility and the desired model; the inguinal lymph node is well situated and easily supports studies of biologically relevant models of skin and genital mucosal infection.The inguinal LN, like all LNs, has an extensive microvascular network supplying it with blood. In general, this microvascular network includes the main feed arteriole of the LN that subsequently branches and feeds high endothelial venules (HEVs). HEVs are specialized for facilitating the trafficking of immune cells into the LN during both homeostasis and infection. How HEVs regulate trafficking into the LN under both of these circumstances is an area of intense exploration. The LN feed arteriole, has direct upstream influence on the HEVs and is the main supply of nutrients and cell rich blood into the LN. Furthermore, changes in the feed arteriole are implicated in facilitating induction of adaptive immune response. The LN microvasculature has obvious importance in maintaining an optimal blood supply to the LN and regulating immune cell influx into the LN, which are crucial elements in proper LN function and subsequently immune response. The ability to study the LN microvasculature in vivo is key to elucidating how the immune system and the microvasculature interact and influence one another within the LN. Here, we present a method for in vivo imaging of the inguinal lymph node. We focus on imaging of the microvasculature of the LN, paying particular attention to methods that ensure the study of healthy vessels, the ability to maintain imaging of viable vessels over a number of hours, and quantification of vessel magnitude. Methods for perfusion of the microvasculature with vasoactive drugs as well as the potential to trace and quantify cellular traffic are also presented. Intravital microscopy of the inguinal LN allows direct evaluation of microvascular functionality and real-time interface of the direct interface between immune cells, the LN, and the microcirculation. This technique potential to be combined with many immunological techniques and fluorescent cell labelling as well as manipulated to study vasculature of other LNs.  相似文献   

14.
Postobstructive pulmonary vasculopathy, produced by chronic ligation of one pulmonary artery, markedly increases bronchial blood flow. Previously, using arterial and venous occlusion, we determined that bronchial collaterals enter the pulmonary circuit at the distal end of the arterial segment. In this study, we tested the hypothesis that pressure in bronchial collaterals (Pbr) closely approximates that at the downstream end of the arterial segment (Pao). We pump perfused [111 +/- 10 (SE) ml/min] left lower lobes of seven open-chest live dogs 3-15 mo after ligation of the left main pulmonary artery. Bronchial blood flow was 122 +/- 16 ml/min. We measured pulmonary arterial and venous pressures and, by arterial and venous occlusion, respectively, Pao and the pressure at the upstream end of the venous segment (Pvo). Pbr was obtained by micropuncture of 34 pleural surface bronchial vessels 201 +/- 16 microns in diameter. We found that Pbr (14.4 +/- 1.0 mmHg) was similar to Pao (15.0 +/- 0.8 mmHg) but differed significantly (P < 0.01) from Pvo (11.3 +/- 0.5 mmHg). In addition, Pbr was independent of systemic arterial pressure and bronchial vessel diameter. Light and electron microscopy revealed that, in the lobes with the ligated pulmonary artery, the new bronchial collaterals entered the thickened pleura from the parenchyma via either bronchovascular bundles or interlobular septa and had sparsely muscularized walls. We conclude that, in postobstructive pulmonary vasculopathy, bronchial collateral pressure measured by micropuncture is very close to the pressure in precapillary pulmonary arteries and that most of the pressure drop in the bronchial collaterals occurs in vessels > 350 microns in diameter.  相似文献   

15.
Summary Dual innervation of snake cerebral blood vessels by adrenergic and cholinergic fibres was demonstrated with the use of histochemical methods. Although the nerve plexuses are somewhat less dense, the essential features of innervation of the blood vessels are similar to those of mammals with the exception that the adrenergic plexuses are more prominent than the cholinergic plexuses. The major arteries of the cerebral carotid system have a rich nerve supply. However, the innervation is less rich in the basilar and poor in the spinal (vertebral) arteries. Although the arteries supplying the right side of head are poorly developed, three pairs of arteries, cerebral carotids, ophthalmics and spinals, supply the snake brain. The carotids and ophthalmics are densely innervated and are accompanied by thick nerve bundles, suggesting that the nerves preferentially enter the skull along those arteries. Some parenchymal arterioles are also dually innervated. Connection between the brain parenchyma and intracerebral capillaries via both cholinergic and adrenergic fibres was observed. In addition cholinergic nerve fibres, connecting capillaries and the intramedullary nerve fibre bundles, were noticed. Capillary blood flow may be influenced by both adrenergic and cholinergic central neurons. The walls of capillaries also exhibit heavy acetylcholinesterase activity. This may indicate an important role for the capillary in the regulation of intracerebral blood flow.  相似文献   

16.
1--The innervation of the liver and gallbladder of Rana ridibunda has been studied by the following methods: (a) demonstration of cholinesterase activity; (b) FIF method for catecholamines; (c) immunohistochemistry for VIP and (d) electron microscopy. 2--The hepatocytes are arranged in regular rows of hepatic cords, very little connective tissue is distributed in the parenchyma, the innervation being restricted to the big branches of blood vessels. 3--Well defined cholinergic and adrenergic plexuses surround the hepatic arteries, portal veins and biliary ducts. The VIPergic innervation is scarce in the liver but a richly branched plexus spreads in the wall of the gallbladder. 4--Cholinesterase-positive cells are widely distributed accompanying the nerve trunks of the gallbladder. The innervation distribution is prominent in the portion of the gallbladder next to the hepatic hilus. 5--A population of melanin-storing cells besides free melanin granules are present in the liver parenchyma and are prominent in the gallbladder where the melanocytes are disposed in close contact with blood vessels and nerve structures. We have observed that the number of these visceral melanocytes considerably increases in winter, particularly in the liver.  相似文献   

17.
The development of blood vessels during the first three postnatal weeks was studied in the ventral stripe of the spinotrapezius muscle of the rat by use of India ink-gelatine injections, and electron microscopy. The number of terminal arterioles and collecting venules remained unchanged postnatally in the observed area. A remarkable proximodistal gradient of vascular development was apparent: while the basic structure of the hilar vessels remained unchanged in the time studied, the intramuscular arteries and veins matured gradually. More peripherally, gradual maturation of terminal and precapillary arterioles was observed. The capillary endothelium and the pericytes showed immature features, and remained unchanged during the time studied. An intense rebuilding activity was found in the endothelial cells of the growing venules, expressed by various forms of gaps, covered by an intact basal lamina and pericytes. Numerous mast cells and macrophages were found along all vessels. Intramuscular lymphatics were not present prior to the first postnatal week.  相似文献   

18.
19.
Unique luminal configurations exhibited by small arterial vessels in contracted spleens of dog and cat were studied by means of vascular corrosion casts examined by scanning electron microscopy. Concertina-like pleating was seen in casts of trabecular arteries/arterioles, whereas within lymphatic nodules arteriolar casts lacked pleating and were smooth and uniformly cylindrical (as were all small arterial vessels in distended spleens). Morphological details of arterial vessels observed in histological sections indicated that pleating is not due to contraction of specially arranged vascular smooth muscle but to overall shortening of trabecular arterial vessels, caused by contraction of longitudinal smooth muscle in trabeculae. Another phenomenon observed in casts from contracted spleens was an almost complete "pinching-off" of many arteriolar lumens; histological evidence indicated that this is due to contraction of vascular smooth muscle, which selectively diverts flow away from certain regions of the organ. Also noted was a markedly convoluted, tortuous configuration of arterioles (penicilli) in the red pulp of contracted spleens.  相似文献   

20.
Summary Male Wistar rats were injected intravenously with 5-(3H)uridine-labeled lymphocytes isolated from lymph nodes of syngeneic donors and enriched in T cells. After short periods of time (3 to 120 min after injection), labeled lymphocytes were localized in spleen compartments using autoradiography to identify routes of lymphocyte movement from blood into splenic parenchyma and to follow migration pathways of recirculating lymphocytes within the periarterial lymphoid sheath (PALS). Topographical analysis of labeled lymphocytes was performed in specific planes of PALS characterized by the diameter of the arterial vessel and termed PALS large, PALS medium, and PALS small (PALS L, PALS M, PALS S, respectively). Attention was also paid to accumulations of labeled lymphocytes close to the arterial vessel wall. Initially, labeled lymphocytes were localized in PALS S and PALS M near the terminal branching of arterial vessels and in the marginal zone (MZ). We conclude that lymphocytes emigrate from blood into splenic parenchyma within two white pulp compartments: in MZ, and directly within PALS through the wall of capillary vessels. The sequential accumulation of labeled cells near arterial vessels of increasing diameter suggests that the recirculating pool of lymphocytes migrates into the central part of PALS L by two routes: from MZ, and along arterial vessels from PALS S and PALS M.R.B. was a fellow of the Alexander von Humboldt-Stiftung, on leave from the Department of Histology and Embryology, Institut of Biostructure, Academy of Medicine, ul. Swiecickiego 6, PL-60-781 Pozna, Poland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号