首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetic mechanism for the reaction catalyzed by the hypoxanthine phosphoribosyltransferase (HPRT) from Trypanosoma cruzi was analyzed to determine the feasibility of designing a parasite-specific mechanism-based inhibitor of this enzyme. The results show that the HPRT from T. cruzi follows an essentially ordered bi–bi reaction, and like its human counterpart also likely forms a dead end complex with purine substrates and the product pyrophosphate. Computational fitting of the kinetics data to multiple initial velocity equations gave results that are consistent with the dead end complex arising when the hypoxanthine- or guanine-bound form of the enzyme binds pyrophosphate rather than the phosphoribosylpyrophosphate substrate of the productive forward reaction. Limited proteolytic digestion was employed to provide additional support for formation of the dead end complex and to estimate the Kd values for substrates of both the forward and reverse reactions. Due to similarities with the kinetic mechanism of the human HPRT, the results reported here for the HPRT from T. cruzi indicate that the design of a mechanism-based inhibitor of the trypanosomal HPRT, that would not also inhibit the human enzyme, may be difficult. However, the results also show that a potent selective inhibitor of the trypanosomal HPRT might be achieved via the design of a bi-substrate type inhibitor that incorporates analogs of moieties for a purine base and pyrophosphate.  相似文献   

2.
Initial velocity studies and product inhibition patterns for purine nucleoside phosphorylase from rabbit liver were examined in order to determine the predominant catalytic mechanism for the synthetic (forward) and phosphorolytic (reverse) reactions of the enzyme. Initial velocity studies in the absence of products gave intersecting or converging linear double reciprocal plots of the kinetic data for both the synthetic and phosphorolytic reactions of the enzyme. The observed kinetic pattern was consistent with a sequential mechanism, requiring that both substrates add to the enzyme before products may be released. The product inhibition patterns showed mutual competitive inhibition between guanine and guanosine as variable substrates and inhibitors. Ribose 1-phosphate and inorganic orthophosphate were also mutually competitive toward each other. Other combinations of substrates and products gave noncompetitive inhibition. Apparent inhibition constants calculated for guanine as competitive inhibitor and for ribose 1-phosphate as noncompetitive inhibitor of the enzyme, with guanosine as variable substrate, did not vary significantly with increasing concentrations of inorganic orthophosphate as fixed substrate. These results suggest that the mechanism was order and that substrates add to the enzyme in an obligatory order. Dead end inhibition studies carried out in the presence of the products guanine and ribose 1-phosphate, respectively, showed that the kinetically significant abortive ternary complexes of enzyme-guanine-inorganic orthophosphate (EQB) and enzyme-guanose-ribose 1-phosphate (EAP) are formed. The results of dead end inhibition studies are consistent with an obligatory order of substrate addition to the enzyme. The nucleoside or purine is probably the first substrate to form a binary complex with the enzyme, and with which inorganic orthophosphate or ribose 1-phosphate may interact as secondary substrates. The evidences presented in this investigation support an Ordered Theorell-Chance mechanism for the enzyme.  相似文献   

3.
Malaria is a leading cause of worldwide mortality from infectious disease. Plasmodium falciparum proliferation in human erythrocytes requires purine salvage by hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRTase). The enzyme is a target for the development of novel antimalarials. Design and synthesis of transition-state analogue inhibitors permitted cocrystallization with the malarial enzyme and refinement of the complex to 2.0 A resolution. Catalytic site contacts in the malarial enzyme are similar to those of human hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) despite distinct substrate specificity. The crystal structure of malarial HGXPRTase with bound inhibitor, pyrophosphate, and two Mg(2+) ions reveals features unique to the transition-state analogue complex. Substrate-assisted catalysis occurs by ribooxocarbenium stabilization from the O5' lone pair and a pyrophosphate oxygen. A dissociative reaction coordinate path is implicated in which the primary reaction coordinate motion is the ribosyl C1' in motion between relatively immobile purine base and (Mg)(2)-pyrophosphate. Several short hydrogen bonds form in the complex of the enzyme and inhibitor. The proton NMR spectrum of the transition-state analogue complex of malarial HGXPRTase contains two downfield signals at 14.3 and 15.3 ppm. Despite the structural similarity to the human enzyme, the NMR spectra of the complexes reveal differences in hydrogen bonding between the transition-state analogue complexes of the human and malarial HG(X)PRTases. The X-ray crystal structures and NMR spectra reveal chemical and structural features that suggest a strategy for the design of malaria-specific transition-state inhibitors.  相似文献   

4.
A system of hypoxanthine uptake and IMP retention was studied and characterized in human erythrocytes. It follows closely the system already described for rabbit erythrocytes[7]. IMP formation and retention are dependent on the activity of hypoxanthine phosphoribosyl-transferase and on intracellular availability of phosphoribosyl pyrophosphate (P-Rib-PP), which is one of the substrates. In the extrecellular medium, neither P-Rib-PP nor GMP -- a potent inhibitor of the enzyme in vitro -- has any influence on IMP retention. The amount of residual hypoxanthine phosphoribosyltransferase in erythrocyte ghost preparations is directly related to the residual hemoglobin content. Thus the enzyme is characterized as typically soluble and "loosely bound" to membranes. There is a slight difference in the kinetic properties of the ghost-bound and the free soluble enzyme. The possible importance of these results for purine uptake and utilization in human red cells is discussed.  相似文献   

5.
A flexible loop of amino acids (loop II) closes over the active site of hypoxanthine phosphoribosyltransferase (HPRT) as the enzyme approaches the transition state [Biochemistry 37 (1998) 17120]. Formerly, the deletion of much of loop II from the HPRT of Trypanosoma cruzi resulted in a 2-3 order of magnitude reduction in k(cat) values with relatively modest changes in the Michaelis constants for substrates [Biochim. Biophys. Acta 1537 (2001) 63-70]. However, the contributions of individual loop II residues to catalysis remained poorly understood or have been disputed. Herein, saturation mutagenesis was used to generate relatively random sets of mutations in the 12 residues of active site loop II in the HPRT from T. cruzi and steady-state kinetics was used to investigate reactions catalyzed by the mutants. The results of analyses of 18 different mutations in an evolutionarily invariant Ser-Tyr dipeptide are consistent with interactions, between main chain nitrogen atoms of these residues and the O1A atom of phosphoribosylpyrophosphate (PRPP) or pyrophosphate (PPi), being essential for efficient enzyme chemistry. The results of analyses of 55 mutations in the nine other amino acids in loop II are inconsistent with these residues participating directly in enzyme chemistry, but are consistent with several of their side chains influencing loop flexibility and folding, as well as the efficiency for nucleotide formation relative to pyrophosphorolysis.  相似文献   

6.
Lesch-Nyhan disease and its attenuated variants are caused by mutations in the HPRT1 gene, which encodes the purine recycling enzyme hypoxanthine-guanine phosphoribosyltransferase. The mutations are heterogeneous, with more than 400 different mutations already documented. Prior efforts to correlate variations in the clinical phenotype with different mutations have suggested that milder phenotypes typically are associated with mutants that permit some residual enzyme function, whereas the most severe phenotype is associated with null mutants. However, multiple exceptions to this concept have been reported. In the current studies 44 HPRT1 mutations associated with a wide spectrum of clinical phenotypes were reconstructed by site-directed mutagenesis, the mutant enzymes were expressed in vitro and purified, and their kinetic properties were examined toward their substrates hypoxanthine, guanine, and phosphoribosylpyrophosphate. The results provide strong evidence for a correlation between disease severity and residual catalytic activity of the enzyme (k(cat)) toward each of its substrates as well as several mechanisms that result in exceptions to this correlation. There was no correlation between disease severity and the affinity of the enzyme for its substrates (K(m)). These studies provide a valuable model for understanding general principles of genotype-phenotype correlations in human disease, as the mechanisms involved are applicable to many other disorders.  相似文献   

7.
A kinetic analysis of the incorporation of AMP into tRNA lacking the 3'-terminal residue by tRNA nucleotidyltransferase (EC 2.2.7.25) from Escherichia coli is presented. Initial velocity studies demonstrate that the mechanism is sequential and that high concentrations of tRNA give rise to substrate inhibition which is noncompetitive with respect to ATP. In addition, the substrate inhibition is more pronounced in the presence of pyrophosphate, which suggests the formation of an inhibitory enzyme-pyrophosphate-tRNA complex. Noncompetitive product inhibition is observed between all possible pairs of substrates and products. ADP and alpha,beta-methylene adenosine triphosphate are competitive dead end inhibitors of ATP, while the latter is a noncompetitive dead end inhibitor of the tRNA substrate. A nonrapid equilibrium random mechanism is proposed which is consistent with these data and offers an explanation for the noncompetitive substrate inhibition by tRNA.  相似文献   

8.
Stitt M 《Plant physiology》1989,89(2):628-633
The product inhibition of potato (Solanum tuberosum) tuber pyrophosphate:fructose-6-phosphate phosphotransferase by inorganic pyrophosphate and inorganic phosphate has been studied. The binding of substrates for the forward (glycolytic) and the reverse (gluconeogenic) reaction is random order, and occurs with only weak competition between the substrate pair fructose-6-phosphate and pyrophosphate, and between the substrate pair fructose-1,6-bisphosphate and phosphate. Pyrophosphate is a powerful inhibitor of the reverse reaction, acting competitively to fructose-1,6-biphosphate and noncompetitively to phosphate. At the concentrations needed for catalysis of the reverse reaction, phosphate inhibits the forward reaction in a largely noncompetitive mode with respect to both fructose-6-phosphate and pyrophosphate. At higher concentrations, phosphate inhibits both the forward and the reverse reaction by decreasing the affinity for fructose-2,6-bisphosphate and thus, for the other three substrates. These results allow a model to be proposed, which describes the interactions between the substrates at the catalytic site. They also suggest the enzyme may be regulated in vivo by changes of the relation between metabolites and phosphate and could act as a means of controlling the cytosolic pyrophosphate concentration.  相似文献   

9.
The 6-oxopurine phosphoribosyltransferase (HPRT, EC 2.4.2.8) from the hyperthermophile Pyrococcus horikoshii was expressed in Escherichia coli and purified. Steady-state kinetic studies indicated that the enzyme is able to use hypoxanthine, guanine and xanthine. The first two substrates showed similar catalytic efficiencies, and xanthine presented a much lower value (around 20 times lower), but the catalytic constant was comparable to that of hypoxanthine. The enzyme was not able to bind to GMP-agarose, but was able to bind the other reverse reaction substrate, inorganic pyrophosphate, with low affinity (K(d) of 4.7+/-0.1 mM). Dynamic light scattering and analytical gel filtration suggested that the enzyme exists as a homohexamer in solution.  相似文献   

10.
Serine hydroxymethyltransferase (SHMT) was studied in several American trypanosomatids, Trypanosoma cruzi epimastigotes displaying, in contrast with T. rangeli, high enzymatic activity. Several Leishmania spp. members, including L. braziliensis, L. mexicana and L. garnhami promastigotes, under identical assay conditions, showed low enzymatic activity. The T. cruzi and leishmanial enzymes presented several different kinetic properties, and thus apparent Km for THF was 0.30 mM for the trypanosomal SHMT vs 0.60 mM for the leishmanial enzyme, while the apparent Km for serine was 0.40 mM for trypanosomal SHMT vs 0.15 mM for leishmanial enzyme. There were significant variations in the specific activity of SHMT between the several different trypanosomatids strains studied, but the meaning of these results is not clear because they showed no correlation either with taxonomy or infectivity.  相似文献   

11.
The chemical and kinetic mechanisms of purified aspartate-beta-semialdehyde dehydrogenase from Escherichia coli have been determined. The kinetic mechanism of the enzyme, determined from initial velocity, product and dead end inhibition studies, is a random preferred order sequential mechanism. For the reaction examined in the phosphorylating direction L-aspartate-beta-semialdehyde binds preferentially to the E-NADP-Pi complex, and there is random release of the products L-beta-aspartyl phosphate and NADPH. Substrate inhibition is displayed by both Pi and NADP. Inhibition patterns versus the other substrates suggest that Pi inhibits by binding to the phosphate subsite in the NADP binding site, and the substrate inhibition by NADP results from the formation of a dead end E-beta-aspartyl phosphate-NADP complex. The chemical mechanism of the enzyme has been examined by pH profile and chemical modification studies. The proposed mechanism involves the attack of an active site cysteine sulfhydryl on the carbonyl carbon of aspartate-beta-semialdehyde, with general acid assistance by an enzyme lysine amino group. The resulting thiohemiacetal is oxidized by NADP to a thioester, with subsequent attack by the dianion of enzyme bound phosphate. The collapse of the resulting tetrahedral intermediate leads to the acyl-phosphate product and liberation of the active site cysteine.  相似文献   

12.
Phosphorolysis catalyzed by Cellulomonas sp. PNP with typical nucleoside substrate, inosine (Ino), and non-typical 7-methylguanosine (m7Guo), with either nucleoside or phosphate (Pi) as the varied substrate, kinetics of the reverse synthetic reaction with guanine (Gua) and ribose-1-phosphate (R1P) as the varied substrates, and product inhibition patterns of synthetic and phosphorolytic reaction pathways were studied by steady-state kinetic methods. It is concluded that, like for mammalian trimeric PNP, complex kinetic characteristics observed for Cellulomonas enzyme results from simultaneous occurrence of three phenomena. These are sequential but random, not ordered binding of substrates, tight binding of one substrate purine bases, leading to the circumstances that for such substrates (products) rapid-equilibrium assumptions do not hold, and a dual role of Pi, a substrate, and also a reaction modifier that helps to release a tightly bound purine base.  相似文献   

13.
Schistosomiasis is a trematode infection of some 200 million people. The hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) of the major etiologic agent, Schistosoma mansoni, has been proposed as a potential target for antischistosomal chemotherapy [Dovey, H. F., McKerrow, J. H., & Wang, C. C. (1984) Mol. Biochem. Parasitol, 11, 157-167]. The steady-state kinetic mechanism for the schistosomal HGPRTase has been determined by including both hypoxanthine and guanine in the forward and reverse reactions under identical conditions. Double-reciprocal plots of initial velocity versus the concentration of one substrate, at a series of fixed concentrations of the other, give groups of intersecting straight lines indicating a sequential mechanism for the schistosomal HGPRTase-catalyzed reactions. In product inhibition studies, the results show that magnesium pyrophosphate (MgPPi) is a noncompetitive inhibitor with respect to dimagnesium phosphoribose pyrophosphate (Mg2PRPP), hypoxanthine, and guanine. Also, magnesium inosine monophosphate (MgIMP) and magnesium guanosine monophosphate (MgGMP) are noncompetitive inhibitors with respect to hypoxanthine or guanine, respectively, but are competitive inhibitors to Mg2PRPP. Furthermore, Mg2PRPP is a competitive inhibitor with respect to MgIMP and MgGMP but is a non-competitive inhibitor to MgPPi. The minimum kinetic model which fits the experimental data is an ordered bi-bi mechanism, where the substrates bind to the enzyme in a defined order (first Mg2PRPP followed by the purine bases), while products are released in sequence (first MgPPi followed by MgIMP or MgGMP).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The structure of the recombinant Trypanosoma rangeli sialidase (TrSA) has been determined at 1.6A resolution, and the structures of its complexes with the transition state analog inhibitor 2-deoxy-2,3-dehydro-N-acetyl-neuraminic acid (DANA), Neu-5-Ac-thio-alpha(2,3)-galactoside (NATG) and N-acetylneuraminic acid (NANA) have been determined at 1.64A, 2.1A and 2.85A, respectively. The 3D structure of TrSA is essentially identical to that of the natural enzyme, except for the absence of covalently attached sugar at five distinct N-glycosylation sites. The protein exhibits a topologically rigid active site architecture that is unaffected by ligand binding. The overall binding of DANA to the active site cleft is similar to that observed for other viral and bacterial sialidases, dominated by the interactions of the inhibitor carboxylate with the conserved arginine triad. However, the interactions of the other pyranoside ring substituents (hydroxyl, N-acetyl and glycerol moieties) differ between trypanosomal, bacterial and viral sialidases, providing a structural basis for specific inhibitor design. Sialic acid is found to bind the enzyme with the sugar ring in a distorted (half-chair or boat) conformation and the 2-OH hydroxyl group at hydrogen bonding distance of the carboxylate of Asp60, substantiating a direct catalytic role for this residue. A detailed comparison of TrSA with the closely related structure of T.cruzi trans-sialidase (TcTS) reveals a highly conserved catalytic center, where subtle structural differences account for strikingly different enzymatic activities and inhibition properties. The structure of TrSA in complex with NATG shows the active site cleft occupied by a smaller compound which could be identified as DANA, probably the product of a hydrolytic side reaction. Indeed, TrSA (but not TcTS) was found to cleave O and S-linked sialylated substrates, further stressing the functional differences between trypanosomal sialidases and trans-sialidases.  相似文献   

15.
Chinese hamster ovary cell mutants resistant to the purine analogs 6-thioguanine or 8-azaguanine have been isolated following mutagenesis with ethyl methane sulfonate. The activities of hypoxanthine phosphoribosyltransferase (HPRT) in three such mutants have been found to exhibit an increased Km for the substrate 5-phosphoribosyl-1-pyrophosphate. The isoelectric point of the mutant enzyme activity has also changed in two mutants. Hybrid cells containing one mutant and one wild-type allele express both genes. Segregants that have lost only the wild-type allele can be selected on the basis of drug resistance. Two mutants exhibiting different alterations in HPRT activity can complement in a hybrid cell to yield a wild-type growth pattern and enzyme activity with intermediate electrophoretic and kinetic properties. The results suggest intracistronic complementation between structural gene mutants of HPRT.  相似文献   

16.
Hypoxanthine-guanine phosphoribosyltransferase (HPRT; IMP: pyrophosphate phosphoribosyltransferase, EC 2.4.2.8) functions in the purine-metabolic salvage pathway. Two clinical syndromes are associated with a deficiency in HPRT enzyme activity. Virtually complete deficiency leads to the Lesch-Nyhan syndrome, whereas partial deficiency results in hyperuricemia and severe gouty arthritis. Marked heterogeneity in the mutations leading to HPRT deficiency has been found. Mutant enzymes vary with respect to levels of HPRT immunoreactive protein, electrophoretic migration, kinetic properties and amino acid sequence. Analysis of DNA and RNA from patients with HPRT deficiency has revealed point mutations, an internal gene duplication and partial as well as complete gene deletions accounting for the various HPRT mutant enzymes.  相似文献   

17.
Phosphorolysis catalyzed by Cellulomonas sp. PNP with typical nucleoside substrate, inosine (Ino), and non-typical 7-methylguanosine (m7Guo), with either nucleoside or phosphate (Pd) as the varied substrate, kinetics of the reverse synthetic reaction with guanine (Gua) and ribose-1-phosphate (R1P) as the varied substrates, and product inhibition patterns of synthetic and phosphorolytic reaction pathways were studied by steady-state kinetic methods. It is concluded that, like for mammalian trimeric PNP, complex kinetic characteristics observed for Cellulomonas enzyme results from simultaneous occurrence of three phenomena. These are sequential but random, not ordered binding of substrates, tight binding of one substrate purine bases, leading to the circumstances that for such substrates (products) rapid-equilibrium assumptions do not hold, and a dual role of Pi, a substrate, and also a reaction modifier that helps to release a tightly bound purine base.  相似文献   

18.
A novel point mutation (I137T) was identified in the hypoxanthine‐guanine phosphoribosyltransferase (HPRT) encoding gene, in a patient with partial deficiency of the enzyme. The mutation, ATT to ACT (substitution of isoleucine to threonine), occurred at codon 137, which is within the region encoding the binding site for 5‐phosphoribosyl‐1‐pyrophosphate (PRPP). The mutation caused decreased affinity for PRPP, manifested clinically as a Lesch–Nyhan variant (excessive purine production and delayed acquisition of language skills). The partial HPRT deficiency could be detected only by measuring HPRT activity in intact fibroblasts (uptake of hypoxanthine into nucleotides).  相似文献   

19.
Steady-state kinetic studies of DNA polymerase alpha purified from mouse myeloma MOPC104E cells have been carried out. The results of initial velocity analysis with or without sodium pyrophosphate, a product inhibitor, indicated that the reaction mechanism of this enzyme can be categorized as an ordered Bi Bi type where the concentration of the ternary complex is very low.  相似文献   

20.
Hypoxanthine phosphoribosyltransferases (HPRTs) are potential drug targets in the treatment of diseases caused by parasites. Also, defects in the human HPRT can result in gouty arthritis or Lesch-Nyhan syndrome. Active site loop I of HPRTs has been implicated in interactions between enzyme subunits that can influence the relative efficiencies of forward and reverse reactions, but the functional roles for invariant loop I residues (analogous with human Leu67 and Gly69) are poorly understood. Herein, saturation mutagenesis, complement selection, and steady-state kinetics were used to investigate the functional roles for Leu67 and Gly69. Seventy clones from a library of mutants were sequenced and more than 30 different mutations, or combinations of mutations, were identified. Several recombinant HPRTs with mutations at positions 67 and/or 69 supported the growth of a bacterial auxotroph on selective media, but only two of the mutants (L67M and G69S) could be recovered in the soluble fraction from bacteria induced to over-express the enzyme. The results of steady-state kinetic studies for L67M are consistent with the side chain of this residue participating in hydrophobic interactions between dimer subunits that are important for the proper positioning of main chain atoms that influence enzyme chemistry and the binding of PRPP, PPi, and hypoxanthine. The results for mutations at position 69 are consistent with only hydrogen or a small polar side chain being tolerated at this site. Kinetic studies of G69S suggest that side chains of residues at position 69 that project into the active site likely interfere with the binding of PRPP and PPi, as well as the positioning of a metal ion that indirectly influences the binding of purine bases and purine moieties of nucleotide substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号