首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electron-transfer site of spinach plastocyanin   总被引:2,自引:0,他引:2  
J D Rush  F Levine  W H Koppenol 《Biochemistry》1988,27(16):5876-5884
Two sites for electron transfer have been proposed for plastocyanin: one near the copper ion and the other close to the acid patch formed by residues 42-45. Calculations of electrostatic properties of spinach plastocyanin and ionic strength dependences of electron-transfer reactions of this protein have been used to distinguish between these two sites. Calculations show that the electric potential field of spinach plastocyanin is highly asymmetric and that the protein has a dipole moment of 360 D. The negative end of the dipole axis emerges between the negative patches formed by residues 42-45, which is though to be the cation binding site, and residues 59-61. The angles between the dipole vector and vectors from the center of mass to the copper ion and to the acid patch are 90 degrees and 30 degrees, respectively. The angle between the dipole vector and a line from the center of mass to the site of electron transfer is evaluated from the ionic strength dependence of electron-transfer rates at pH 7.8 with the help of equations developed by Van Leeuwen et al. [van Leeuwen, J.W., Mofers, F.J.M., & Veerman, E.C.I. (1981) Biochim. Biophys. Acta 635, 434] and Van Leeuwen [van Leeuwen, J.W. (1983) Biochim. Biophys. Acta 743, 408]. The angles found are 85 degrees, 110 degrees, and 75 +/- 15 degrees for reactions with tris(1,10-phenanthroline)cobalt(III), hexacyanoferrate(III), and ferrocytochrome c, respectively. The electric potential field calculations suggest that the hexacyanoferrate(III) interaction angle corresponds to a unique site of minimum repulsion at the hydrophobic region of the protein surface, close to the copper ion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effect of complex formation between ferricytochrome c and cytochrome c peroxidase (Ferrocytochrome-c:hydrogen peroxide oxidoreductase, EC 1.11.1.5) on the reduction of cytochrome c by N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), reduced N-methylphenazonium methosulfate (PMSH), and ascorbate has been determined at low ionic strength (pH 7) and 25 degrees C. Complex formation with the peroxidase enhances the rate of ferricytochrome c reduction by the neutral reductants TMPD and PMSH. Under all experimental conditions investigated, complex formation with cytochrome c peroxidase inhibits the ascorbate reduction of ferricytochrome c. This inhibition is due to the unfavorable electrostatic interactions between the ascorbate dianion and the negatively charged cytochrome c-cytochrome c peroxidase complex. Corrections for the electrostatic term by extrapolating the data to infinite ionic strength suggest that ascorbate can reduce cytochrome c peroxidase-bound cytochrome c faster than free cytochrome c. Reduction of cytochrome c peroxidase Compound II by dicyanobis(1,10-phenanthroline)iron(II) (Fe(phen)2(CN)2) is essentially unaffected by complex formation between the enzyme and ferricytochrome c at low ionic strength (pH 6) and 25 degrees C. However, reduction of Compound II by the negatively changed tetracyano-(1,10-phenanthroline)iron(II) (Fe(phen)(CN)4) is enhanced in the presence of ferricytochrome c. This enhancement is due to the more favorable electrostatic interactions between the reductant and cytochrome c-cytochrome c peroxidase Compound II complex then for Compound II itself. These studies indicate that complex formation between cytochrome c and cytochrome c peroxidase does not sterically block the electron-transfer pathways from these small nonphysiological reductants to the hemes in these two proteins.  相似文献   

3.
Characterization of the steady state kinetics of reduction of horse ferricytochrome c by purified beef ubiquinol-cytochrome c reductase, employing 2,3-dimethoxy-5-methyl-6-decylbenzoquinol as reductant, has shown that: 1) the dependence of the reaction on quinol and on ferricytochrome c concentration is consistent with a ping-pong mechanism; 2) the pH optimum of the reaction is near 8.0; 3) the effect of ionic strength on the apparent Km and the TNmax of the reaction for the native cytochrome c is small, and at higher cytochrome c concentrations substrate inhibition is observed; 4) the effect of ionic strength on the kinetic parameters for the reaction of 4-carboxy-2,6-dinitrophenyllysine 27 horse cytochrome c is much larger than for the native protein; and 5) competitive product inhibition is also observed with a Ki consistent with the binding affinity of ferrocytochrome c for Complex III, as determined by gel filtration. In addition, direct binding measurements demonstrated that ferricytochrome c binds more tightly than the reduced protein to Complex III under low ionic strength conditions and that under these conditions more than one molecule of cytochrome c is bound per molecule of Complex III. Exchange of Complex III into a nonionic detergent decreases this excess nonspecific binding. Measurement of the rates of dissociation of the oxidized and reduced 1:1 complexes of cytochrome c and Complex III by stopped flow was consistent with the disparity of binding affinities, the dissociation rate constant for ferrocytochrome c being about 5-fold higher than that for the ferric protein. A model which accounts for the properties of this system is described, assuming that cytochrome c bound to noncatalytic sites on the respiratory complex decreases the catalytic site binding constant for the substrate.  相似文献   

4.
Condensation reaction of 2,9-dicarboxaldehyde-1,10-phenanthroline with 2-aminoethanol followed by NaBH4 reduction yielded the polydentate Schiff base ligand 2,9-bis(ethanolamine)-1,10-phenanthroline in its reduced form. This ligand was characterized by elemental analysis, LC-MS, IR, UV-Vis and NMR spectroscopy. Reaction of the reduced Schiff base ligand with aqueous solution of cobalt(II) chloride affords 2,9-bis(ethanolamine)-1,10-phenanthrolinechlorocobalt(II) chloride in high yield. Single crystals of the cobalt(II) complex were obtained from the crystallization in ethanol and its structure was elucidated by X-ray structural analysis. The cobalt(II) complex ion was found to be seven-coordinated in a pentagonal bipyramidal geometry, whereby cobalt(II) ion is surrounded by the six donor atoms in the ligand molecule and a chloride ion.  相似文献   

5.
Kinetics measurements of the electron transfer between ferricytochrome c and liposomal ferrocytochrome c1 (with and without the hinge protein) were performed. The observed rate constants(kobs) of electron transfer between liposomal ferrocytochrome c1 and ferricytochrome c at different ionic strengths were measured in cacodylate buffer, pH 7.4, at 2 C. The effect of ionic strength on the rate constant(kobs) of electron transfer between liposomal cytochrome c1 and cytochrome c is far greater than that in the solution kinetics (Kim, C.H., Balny, C. and King, T.E. (1987) J. Biol. Chem. 262, 8103-8108). The result demonstrates that the membrane bound cytochrome c1 creates a polyelectrolytic microenvironment which appears to be involved in the control of electron transfer and can be modulated by the ionic strength. The involvement of electrostatic potentials in the electron transfer between the membrane bound cytochrome c1 and cytochrome c is discussed in accord with the experimental results and a polyelectrolyte theory.  相似文献   

6.
We have studied the binding of 1,10-phenanthroline to specifically active-site cobalt(II)-substituted horse-liver alcohol dehydrogenase [Co(II)-LADH]. The dissociation constant is a factor of 6500 smaller than in the native enzyme. Spectral evidence is given which shows that 1,10-phenanthroline does not remove the catalytic Co(II) ion and that binding of 1,10-phenanthroline renders the catalytic metal ion pentacoordinate. The maximum limiting rate constant for the association of 1,10-phenanthroline to Co(II)-LADH is about 60 s-1. This is about a third of the value (169 s-1) determined for native horse-liver alcohol dehydrogenase, Zn(II)LADH [Frolich et al. (1978) Arch. Biochem. Biophys. 189, 471-480]. For cadmium(II)-substituted horse-liver alcohol dehydrogenase, [Cd(II)LADH] the maximum limiting rate constant for association of 1,10-phenanthroline increased to 590 s-1. These findings demonstrate that the rate-limiting step is strongly dependent on the chemical nature of the catalytic metal ion and its immediate environment. 1,10-Phenanthroline is shown to bind to the Co(II)-LADH.NAD+ complex in the open conformation. The maximum limiting rate constant remains unchanged in the presence of NAD+. The data have been used to derive a kinetic scheme for the formation of ternary complexes including NAD+ that involves a slow intermediary step.  相似文献   

7.
The interaction of DNA with Tris(1,10-phenanthroline) cobalt(III) was studied by means of atomic force microscopy. Changes in the morphologies of DNA complex in the presence of ethanol may well indicate the crucial role of electrostatic force in causing DNA condensation. With the increase of the concentration of ethanol, electrostatic interaction is enhanced corresponding to a lower dielectric constant. Counterions condense along the sugar phosphate backbone of DNA when epsilon is lowered and the phosphate charge density can thus be neutralized to the level of DNA condensation. Electroanalytical measurement of DNA condensed with Co(phen)(3)(3+) in ethanol solution indicated that intercalating reaction remains existing. According to both the microscopic and spectroscopic results, it can be found that no secondary structure transition occurs upon DNA condensing. B-A conformation transition takes place at more than 60% ethanol solution.  相似文献   

8.
The kinetics of oxidation of eight different singly substituted 4-carboxy-2,6-dinitrophenyl (CDNP) horse ferrocytochromes c, modified at lysine 7, 13, 25, 27, 60, 72, 86, or 87, and of one trinitrophenyl horse ferrocytochrome c, modified at lysine 13, by the 3- and 3+ inorganic complexes hexacyanoferrate(III) (Fe(CN)6(3-) ) and tris(1,10-phenanthroline)cobalt(III) (Co(phen)3(3+) ) have been characterized. The influence of the modified residues on the bimolecular rate constants for these reactions define the protein molecular surface involved. The site of electron exchange for both oxidants appears to be the solvent accessible edge of the heme prosthetic group or a closely related structure on the "front" surface of the molecule. The reaction with Fe(CN)6(3-) is most strongly influenced by modification of lysine 72, a residue to the left of the exposed heme edge. (CDNP lysine 72 cytochrome c yields a 3.6-fold decrease in the bimolecular rate constant, as compared to that for the native protein.) However, it is the region around lysine 27, to the right of the heme edge, that is most influential in the reaction with Co(phen)3(3+). (CDNP-lysine 27 cytochrome c exhibits a 7.3-fold increase in the rate constant, as compared to that for the native protein.) The kinetics of reaction of the CDNP-lysine 13, 60, 72, and 87 modified cytochromes c with Fe(CN)5(4-aminopyridine)2- as oxidant and Fe(CN)5(4-aminopyridine)3- and Fe(CN)5-(imidazole)3- as reductants have also been determined and further illustrate the influence of electrostatics on the kinetics of such protein-small molecule electron exchanges.  相似文献   

9.
Citrate and other polyanion binding to ferricytochrome c partially blocks reduction by ascorbate, but at constant ionic strength the citrate-cytochrome c complex remains reducible; reduction by TMPD is unaffected. At a constant high ionic strength citrate inhibits the cytochrome c oxidase reaction competitively with respect to cytochrome c, indicating that ferrocytochrome c also binds citrate, and that the citrate-ferrocytochrome c complex is rejected by the binding site at high ionic strength. At lower ionic strengths, citrate and other polyanions change the kinetic pattern of ferrocytochrome c oxidation from first-order towards zero-order, indicating preferential binding of the ferric species, followed by its exclusion from the binding site. The turnover at low cytochrome c concentrations is diminished by citrate but not the Km (apparent non-competitive inhibition) or the rate of cytochrome a reduction by bound cytochrome c. Small effects of anions are seen in direct measurements of binding to the primary site on the enzyme, and larger effects upon secondary site binding. It is concluded that anion-cytochrome c complexes may be catalytically competent but that the redox potentials and/or intramolecular behaviour of such complexes may be affected when enzyme-bound. Increasing ionic strength diminishes cytochrome c binding not only by decreasing the 'association' rate but also by increasing the 'dissociation' rate for bound cytochrome c converting the 'primary' (T) site at high salt concentrations into a site similar kinetically to the 'secondary' (L) site at low ionic strength. A finite Km of 170 microM at very high ionic strength indicates a ratio of K infinity m/K 0 M of about 5000. It is proposed that anions either modify the E10 of cytochrome C bound at the primary (T) site of that they perturb an equilibrium between two forms of bound c in favour of a less active form.  相似文献   

10.
The apparent bimolecular rate constant for the oxidation of dicyano-bis(1,10 phenanthroline) iron(II) by compound II of cytochrome c peroxidase (ferrocytochrome c; hydrogen-peroxide oxidoreductase EC 1.11.1.5) has been measured over the pH range 2.5-11.0 at 0.1 M ionic strength, 25 degrees C, by the stopped-flow technique. An ionizable group in the enzyme, with a pKa of 4.5, strongly influences the electron transfer rate between the ferrous complex and the oxidized site in the enzyme. The electron transfer is fastest when the group is protonated, with a rate constant of 2.9 - 10-5 M--1 - s-1. The rate constantdecreases over three orders of magnitude when the proton dissociates. The apparent bimolecular rate constant for the oxidation of the ferrous complex by compound I of cytochrome c peroxidase was determined between pH 3.5 and 6. Under all conditions where this rate constant could be measured it was about three times larger than that for the oxidation by compound II.  相似文献   

11.
A conformational change in the DNA plasmid ColE1 appears to occur upon specific binding of the restriction endonuclease EcoRI. Enzyme association alters the chiral discrimination found in binding metallointercalators to DNA sites. The complexes tris(1,10-phenanthroline)ruthenium(II), Ru(phen)3(2+), tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II), Ru(DIP)3(2+), and tris(4,7-diphenyl-1,10-phenanthroline)cobalt(III), Co(DIP)3(3+), in general, bind stereoselectively to DNA helices, with enantiomers possessing the delta configuration bound preferentially by right-handed B-DNA. In the presence of EcoRI, however, this enantioselectivity is altered. The chiral intercalators, at micromolar concentrations, inhibit the reaction of EcoRI, but for each enantiomeric pair it is the lambda enantiomer, which binds only poorly to a B-DNA helix, that inhibits EcoRI preferentially. Kinetic studies in the presence of lambda-Ru(DIP)3(2+) indicate that the enzyme inhibition occurs as a result of the lambda enantiomer binding to the enzyme-DNA complex as well as to the free enzyme. Furthermore, photolytic strand cleavage experiments using Co(DIP)3(3+) indicate that the metal complex interacts directly at the protein-bound DNA site. Increasing concentrations of bound EcoRI stimulate photoactivated cleavage of the DNA helix by lambda-Co(DIP)3(3+), until a protein concentration is reached where specific DNA recognition sites are saturated with enzyme. Thus, although lambda-Co(DIP)3(3+) does not bind closely to the DNA in the absence of enzyme, specific binding of EcoRI appears to alter the DNA structure so as to permit the close association of the lambda isomer to the DNA helix. Mapping experiments demonstrate that this association leads to photocleavage of DNA by the cobalt complex at or very close to the EcoRI recognition site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
R Timkovich 《Biochemistry》1986,25(5):1089-1093
Mixtures of the dissimilatory nitrite reductase cytochrome cd1 from Pseudomonas aeruginosa and potential electron-donating proteins were prepared in both fully oxidized and fully reduced states and examined by 1H NMR spectroscopy. The relatively narrower lines of the donor proteins enabled them to be clearly observed in spectra in the presence of significant amounts of the high molecular weight cd1. Mixtures of the physiological donor (Pseudomonas ferrocytochrome c-551) and ferrocytochrome cd1 showed specific line-broadening effects on the resonances of c-551 that depended on the mole ratio of c-551 to cd1. The experimental broadening fit a model in which c-551 is in intermediate or fast exchange between free solution and a complex with cd1, with an association constant for the complex in excess of 10(4) M-1. The model yields a minimum estimate for the forward bimolecular rate constant of 5 X 10(7) M-1 s-1 and suggests that the actual value may be much larger. The complexation was independent of pH in the range of 6-8, was independent of ionic strength over a salt concentration range of 20-1000 mM, and possessed a low thermal activation barrier. Mixtures of ferricytochrome c-551 and ferricytochrome cd1 showed no observable NMR perturbations, indicating that any hypothetical complex involving the oxidized forms must follow different dynamical and/or equilibrium conditions. No observable NMR perturbations existed in spectra of mixtures of cd1 and mammalian cytochrome c or Pseudomonas azurin in either oxidation state.  相似文献   

13.
The reactions of ferrocytochrome c with Br2-, (SCN)2-, N3 and OH radicals were followed by measuring the change in the optical spectra of cytochrome c on gamma-irradiation as well as the rate of change of absorbance upon pulse irradiation. Ferrocytochrome c is oxidized to ferricytochrome c by Br2-, (SCN)2- or N3 radical with an efficiency of about 100% through a second-order process in which no intermediates were observed. The rate constants in neutral solutions at I = 0.073 are 9.7 . 10(8) M-1 . s-1, 7.9 . 10(8) M-1, 1.3 . 10(9) M-1 . s-1 for the oxidation by Br2-, (SCN)2- and N3 radicals, respectively. The rate constants do not vary appreciably in alkaline solutions (pH 8.9). The ionic strength dependence was observed for the rate constants of the oxidation by br2- and (SCN)2-. Those rate constants estimated on the assumption that the radicals react only with the amino acid residues with the characteristic steric correction factors were less than one-tenth of the observed ones. These results suggest that the partially exposed region of the heme is the probable site of electron transfer from ferrocytochrome c to the radical. Hydroxyl radicals also oxidize ferrocytochrome c with a high rate constant (k greater than 1 . 10(10) M-1 . s-1), but with a very small efficiency (5%).  相似文献   

14.
Cytochrome c1 from a photosynthetic bacterium Rhodobacter sphaeroides R-26 has been purified to homogeneity. The purified protein contains 30 nmol heme per mg protein, has an isoelectric point of 5.7, and is soluble in aqueous solution in the absence of detergents. The apparent molecular weight of this protein is about 150,000, determined by Bio Gel A-0.5 m column chromatography; a minimum molecular weight of 30,000 is obtained by sodium dodecylsulfate polyacrylamide gel electrophoresis. The absorption spectrum of this cytochrome is similar to that of mammalian cytochrome c1, but the amino acid composition and circular dichroism spectral characteristics are different. The heme moiety of cytochrome c1 is more exposed than is that of mammalian cytochrome c1, but less exposed than that of cytochrome c2. Ferricytochrome c1 undergoes photoreduction upon illumination with light under anaerobic conditions. Such photoreduction is completely abolished when p-chloromercuriphenylsulfonate is added to ferricytochrome c1, suggesting that the sulfhydryl groups of cytochrome c1 are the electron donors for photoreduction. Purified cytochrome c1 contains 3 +/- 0.1 mol of the p-chloromercuriphenylsulfonate titratable sulfhydryl groups per mol of protein. In contrast to mammalian cytochrome c1, the bacterial protein does not form a stable complex with cytochrome c2 or with mammalian cytochrome c at low ionic strength. Electron transfer between bacterial ferrocytochrome c1 and bacterial ferricytochrome c2, and between bacterial ferrocytochrome c1 and mammalian ferricytochrome c proceeds rapidly with equilibrium constants of 49 and 3.5, respectively. The midpoint potential of purified cytochrome c1 is calculated to be 228 mV, which is identical to that of mammalian cytochrome c1.  相似文献   

15.
《Inorganica chimica acta》1988,154(2):221-224
Polynuclear sulfur bridged complexes where the neutral complex tris(2-aminoethanethiolato)cobalt(III) acts as a tridentate ligand to rhodium(III), iridium(III) and osmium(III) have been prepared. These complexes have been characterized by electronic spectroscopy, vibrational spectroscopy and nuclear magnetic resonance spectroscopy. Along with the previously prepared complexes of iron(III), ruthenium(III) and cobalt(III), these complexes form two series of complexes with the group 8 and group 9 elements from all three transition series.  相似文献   

16.
The three-dimensional conformation of ferricytochrome c results from specific folding of the polypeptide chain around the covalently bound heme so that His-18 and Met-80 are axially coordinated to the Fe(III). The Fe(III)-free, porphyrin protein has an intrinsic viscosity, sedimentation coefficient, and circular dichroism indicative of a compact, globular protein conformation comparable to the holoprotein. Both the porphyrin protein and ferricytochrome c are reversibly denatured by guanidinium chloride. Refolding of the porphyrin protein occurs in essentially a single, exceptionally rapid kinetic phase (tau = 14 ms, 0.75 M guanidinium chloride, pH 6.5, 25 degrees C); whereas refolding of ferricytochrome c occurs in two slower kinetic phases (TAU 1 = 0.10 S, TAU 2 = 20 S) UNDER COMPARABLE CONDITIONS. The presence of Fe(III) in the metalloporphyrin of ferricytochrome c thus has a major effect on the protein folding kinetics. The slow kinetic phase is evidently due to this effect of Fe(III) and not to the slow cis-trans isomerism of the peptide bond of proline residues as has been suggested.  相似文献   

17.
A new series of pendant-type polymer-cobalt(III) complexes, [Co(LL)2(BPEI)Cl]2+, (where BPEI?=?branched polyethyleneimine, LL?=?dipyrido[3,2-a:2′,3′-c](6,7,8,9-tetrahydro)phenazine (dpqc), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq) and imidazo[4,5-f]1,10-phenanthroline (ip)) each with three different degrees of coordination have been synthesized and characterized. Studies to know the mode and strength of interaction between these polymer–metal complexes and calf thymus DNA have been performed by UV–Visible absorption and emission techniques. Among these series, each polymer metal complex having higher binding strength with DNA has been selected to test against human cancer/normal cell lines. On the basis of these spectral studies, it is proposed that our polymer–metal complexes bind with DNA mainly through intercalation along with some electrostatic binding. The order of binding strength for the complexes with ligand, dpqc?>?dpq?>?ip. The analysis of the results suggests that polymer–cobalt(III) complexes with higher degree of coordination effectively binds with DNA due to the presence of large number of positively charged cobalt(III) chelates in the polymer chain which cooperatively act to increase the overall binding strength. These polymer–cobalt(III) complexes with hydrophobic ligands around the cobalt(III) metal centre favour the base stacking interactions via intercalation. All the complexes show very good anticancer activities and increasing of binding strength results in higher inhibition value. The polymer–cobalt(III) complex with dpqc ligand possess two fold increased anticancer activity when compared to complexes with other ligands against MCF-7 cells. Besides, the complexes were insensitive towards the growth of normal cells (HEK-293) at the IC50 concentration.  相似文献   

18.
The binding of horse heart cytochrome c to yeast cytochrome c peroxidase in which the heme group was replaced by protoporphyrin IX was determined by a fluorescence quenching technique. The association between ferricytochrome c and cytochrome c peroxidase was investigated at pH 6.0 in cacodylate/KNO3 buffers. Ionic strength was varied between 3.5 mM and 1.0 M. No binding occurs at 1.0 M ionic strength although there was a substantial decrease in fluorescence intensity due to the inner filter effect. After correcting for the inner filter effect, significant quenching of porphyrin cytochrome c peroxidase fluorescence by ferricytochrome c was observed at 0.1 M ionic strength and below. The quenching could be described by 1:1 complex formation between the two proteins. Values of the equilibrium dissociation constant determined from the fluorescence quenching data are in excellent agreement with those determined previously for the native enzyme-ferricytochrome c complex at pH 6.0 by difference spectrophotometry (J. E. Erman and L. B. Vitello (1980) J. Biol. Chem. 225, 6224-6227). The binding of both ferri- and ferrocytochrome c to cytochrome c peroxidase was investigated at pH 7.5 as functions of ionic strength in phosphate/KNO3 buffers using the fluorescence quenching technique. The binding in independent of the redox state of cytochrome c between 10 and 20 mM ionic strength, but ferricytochrome c binds with greater affinity at 30 mM ionic strength and above.  相似文献   

19.
Trace elements such as copper and cobalt have been associated with virus-host interactions. However, studies to show the effect of conjugation of copper(II) or cobalt(III) metal centers to thiosemicarbazone ligand(s) derived from either food additives or mosquito repellent such as 2-acetylethiazole or citral, respectively, on Zika virus (ZIKV) or dengue virus (serotype 2; DENV2) infections have not been explored. In this study, we show that four compounds comprising of thiosemicarbazone ligand derived from 2-acetylethiazole viz., (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide (acetylethTSC) (compound 1), a copper(II) complex with acetylethTSC as a ligand (compound 2), a thiosemicarbazone ligand-derived from citral (compound 3) and a cobalt(III) complex with a citral-thiosemicarbazone ligand (compound 4) increased DENV2 and ZIKV replication in both mosquito C6/36 cells and human keratinocytes (HaCaT cells). Treatment of both cell lines with compounds 2 or 4 showed increased dengue viral titers at all three tested doses. Enhanced dengue viral plaque formation was also noted at the tested dose of 100 μM, suggesting higher production of infectious viral particles. Treatment with the compounds 2 or 4 enhanced ZIKV and DENV2 RNA levels in HeLa cell line and primary cultures of mouse bone marrow derived dendritic cells. Also, pre- or post treatments with conjugated compounds 2 or 4 showed higher loads of ZIKV or DENV2 envelope (E) protein in HaCaT cells. No changes in loads of E-protein were found in ZIKV-infected C6/36 cells, when compounds were treated after infection. In addition, we tested bis(1,10-phenanthroline)copper(II) chloride ([Cu(phen)2]Cl2, (compound 5) and tris(1,10-phenanthroline)cobalt(III) chloride ([Co(phen)3]Cl3, (compound 6) that also showed enhanced DENV2 loads. Also, we found that copper(II) chloride dehydrate (CuCl2·2H2O) or cobalt(II) chloride hexahydrate (CoCl2·6H2O) alone had no effects as “free” cations. Taken together, these findings suggest that use of Cu(II) or Co(III) conjugation to organic compounds, in insect repellents and/or food additives could enhance DENV2/ZIKV loads in human cells and perhaps induce pathogenesis in infected individuals or individuals pre-exposed to such conjugated complexes.

Importance

Mosquito-borne diseases are of great concern to the mankind. Use of chemicals/repellents against mosquito bites and transmission of microbes has been the topic of interest for many years. Here, we show that thiosemicarbazone ligand(s) derived from 2-acetylethiazole or citral or 1,10-phenanthroline upon conjugation with copper(II) or cobalt(III) metal centers enhances dengue virus (serotype 2; DENV2) and/or Zika virus (ZIKV) infections in mosquito, mouse and human cells. Enhanced ZIKV/DENV2 capsid mRNA or envelope protein loads were evident in mosquito cells and human keratinocytes, when treated with compounds before/after infections. Also, treatment with copper(II) or cobalt(III) conjugated compounds increased viral titers and number of plaque formations. These studies suggest that conjugation of compounds in repellents/essential oils/natural products/food additives with copper(II) or cobalt(III) metal centers may not be safe, especially in tropical and subtropical places, where several dengue infection cases and deaths are reported annually or in places with increased ZIKV caused microcephaly.  相似文献   

20.
The interaction of ferricytochrome c with negatively charged heteropolytungstates was studied by resonance Raman spectroscopy. In analogy to previous findings on ferricytochrome c bound to other types of charged interface (Hildebrandt, P. and Stockburger, M. (1989) Biochemistry 28, 6710-6721, 6722-6728), it was shown that in these complexes the conformational states I and II are stabilized. While in state I, the structure is the same as is in the uncomplexed heme protein, in state II three different coordination configurations coexist, i.e., a six-coordinated low-spin, a five-coordinated high-spin and a six-coordinated high-spin form. These configurations constitute thermal coordination equilibria whose thermodynamic properties were determined. The detailed analysis of the low-frequency resonance Raman spectra reveals that in state II the heme pocket assumes an open structure leading to a significantly higher flexibility of the heme group compared to the native ferricytochrome c. It is concluded that these structural changes are the result of Coulombic attractions between the polyanions and the lysine residues around the exposed heme edge which destabilize the heme crevice. Modifications of these interactions upon variation of the ionic strength, the pH or the type of the polytungstate are sensitively reflected by changes of the coordination equilibria in state II as well as of the conformational equilibrium of state I and state II. The conformational changes in state II significantly differ from those associated with the alkaline transition of ferricytochrome c. However, there are some structural similarities between the acid form of the heme protein stable below pH 2.5 in aqueous solution and the six-coordinated high-spin configuration of the bound ferricytochrome c at neutral pH (state II). This suggests that electrostatic interactions with the heteropolytungstates perturb the ionic equilibria of those amino acid side chains which are involved in the acid-induced transition leading to a significant upshift of the apparent pKa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号