首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The membrane bound coupling factor of photophosphorylation is studied after pretreatment of broken chloroplasts with the bifunctional N,N-orthophenyldimaleimide under energization of the thylakoid membrane by mild flashing light. The proton conduction of the membrane is monitored both via the electrochromic absorption changes and via selective pH-indicating dyes. It is found that the coupling factor, after interaction with N,N-orthophenyldimaleimide during the preillumination period, shortcircuits one of the two protons pumped inside after excitation of chloroplasts with one short flash of light. In contrast to the low proton conductivity of the unperturbed thylakoid membrane (relaxation time for a proton gradient greater than 5s), this extra proton channel leads to a partial relaxation of a proton gradient within a few ms. Although limited to only one proton per electron, this extra proton conducting pathway is not otherwise specific. It operates with protons resulting from both Photosystem I and Photosystem II activity. In addition it operates with protons already present in the internal phase before firing of the exciting light flash. These effects are prevented by the presence of ATP (but not GTP) during the preillumination period. It is suggested that the modified coupling factor is gated open by the light induced electric field across the thylakoid membrane while self closing after passage of one proton per activated coupling factor.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
The role of thyroid hormones on lipolysis in human subcutaneous adipose tissue was investigated. Incubation of subcutaneous fat pads with thyroxine (0.1--10 000 nM) augmented the subsequent isoproterenol stimulation of lipolysis, measured by glycerol release. The basal lipolysis could not by stimulated by thyroxine. The theophylline- and dibutyryl-cyclic AMP stimulated lipolysis also could not be increased by thyroxine at these concentrations. In separate studies, the effect of thyroxine (0.01 pM--1 microM) and triiodothyronine (0.01 pM--1 microM) on cyclic AMP accumulation was examined. No effect of thyroid hormones on cyclic AMP accumulation was seen in non-isoproterenol stimulated tissue. Fat pads stimulated by isoproterenol and then treated with thyroid hormones showed marked increases in accumulation of cyclic AMP as compared to control tissue in the presence of isoproterenol alone.  相似文献   

12.
The extent to which a fall in cellular cyclic AMP could account for the antilipolytic action in rat epididymal adipocytes incubated with adrenocorticotrophic hormone was studied. The antilipolytic effect, measured by suppression of glycerol release, was always associated with a decrease in cyclic AMP, but the magnitude of the fall was modified by several factors. For example, it was greater when the cAMP level was high, as when it is at its peak after hormone stimulation, or when cell concentrations are low. Glucose did not modify appreciably the insulin effect on the nucleotide level. The inhibitory effects of insulin on corticotrophin-stimulated lipolysis and cyclic AMP levels were detectable at the concentrations of 1 microU/ml and were biphasic, with maximal effects at 10-100 microU/ml. Protein kinase activity ratio was similarly affected. Activity of cyclic-AMP-dependent protein kinase conformed closely to the level of cyclic AMP. There was no indication that insulin modified the sensitivity of the kinase to cyclic AMP. Insulin did not alter the relationship of cellular cyclic AMP levels to glycerol when adipocytes were incubated with various concentrations of corticotrophin. This was true, irrespective of whether measurements were made when cyclic AMP was on the upward rise after hormone stimulation, or on the decline. The curves obtained with and without insulin were superimposable. It is concluded that the inhibitory action of insulin on lipolysis in fat cells can be fully accounted for by a decrease in cyclic AMP.  相似文献   

13.
The addition of the divalent cation ionophore A23187, carbachol, norepinephrine or insulin to rat fat cells elevated cyclic GMP. The increase in cyclic GMP due to these agents was greater at 4 than at 2 minutes after their addition. Cyclic GMP accumulation was also elevated by the addition of 0.1 to 0.5 mM sodium oleate in the presence of 0.1% albumin and by albumin containing added palmitate with an FFA/albumin molar ratio of 6.7. The rise in cyclic GMP due to all agents was markedly reduced in calcium-free buffer. The effects of the various agents on cyclic GMP accumulation in rat fat cells had little correlation with lipolysis. Insulin was an effective anti-lipolytic agent in both the presence and absence of calcium while neither A23187 nor carbachol had any effect on fat cell lipolysis.  相似文献   

14.
15.
16.
The addition of physiological concentrations of either cAMP or cGMP stimulated the release of RNA from isolated prelabeled rat liver nuclei to a fortified cytosol in a cell-free system. The released RNA was shown to be primarily mRNA by its binding to oligo(dT)-cellulose and its sedimentation profile. Treatment of rats with cAMP or cGMP 30 min prior to the preparation of cyclic nucleotides on the cell-free system. Cyclic nucleotides stimulation of RNA release occurred in systems prepared from resting rat liver, Novikoff hepatoma, and Morris hepatoma 5123D, but not the 18-h regenerating liver. The response of the cell-free system to added cyclic nucleotides reflected the in vivo concentration of these substances in the tissues from which the system was prepared. Those with high in vivo levels were not stimulated while those with lower levels did respond to added cyclic nucleotides. Neither cAMP nor cGMP had an appreciable effect on rRNA release.  相似文献   

17.
18.
19.
20.
In fat cells isolated from the parametrial adipose tissue of rats, the addition of purified adenosine deaminase increased lipolysis and cyclic adenosine 3':5'-monophosphate (cyclic AMP) accumulation. Adenosine deaminase markedly potentiated cyclic AMP accumulation due to norepinephrine. The increase in cyclic AMP due to adenosine deaminase was as rapid as that of theophylline with near maximal effects seen after only a 20-sec incubation. The increases in cyclic AMP due to crystalline adenosine deaminase from intestinal mucosa were seen at concentrations as low as 0.05 mug per ml. Further purification of the crystalline enzyme preparation by Sephadex G-100 chromatography increased both adenosine deaminase activity and cyclic AMP accumulation by fat cells. The effects of adenosine deaminase on fat cell metabolism were reversed by the addition of low concentrations of N6-(phenylisopropyl)adenosine, an analog of adenosine which is not deaminated. The effects of adenosine deaminase on cyclic AMP accumulation were blocked by coformycin which is a potent inhibitor of the enzyme. These findings suggest that deamination of adenosine is responsible for the observed effects of adenosine deaminase preparations. Protein kinase activity of fat cell homogenates was unaffected by adenosine or N6-(phenylisopropyl)adenosine. Norepinephrine-activated adenylate cyclase activity of fat cell ghosts was not inhibited by N6-(phenylisopropyl)adenosine. Adenosine deaminase did not alter basal or norepinephrine-activated adenylate cyclase activity. Cyclic AMP phosphodiesterase activity of fat cell ghosts was also unaffected by adenosine deaminase. Basal and insulin-stimulated glucose oxidation were little affected by adenosine deaminase. However, the addition of adenosine deaminase to fat cells incubated with 1.5 muM norepinephrine abolished the antilipolytic action of insulin and markedly reduced the increase in glucose oxidation due to insulin. These effects were reversed by N6-(phenylisopropyl)adenosine. Phenylisopropyl adenosine did not affect insulin action during a 1-hour incubation. If fat cells were incubated for 2 hours with phenylisopropyl adenosine prior to the addition of insulin for 1 hour there was a marked potentiation of insulin action. The potentiation of insulin action by prior incubation with phenylisopropyl adenosine was not unique as prostaglandin E1, and nicotinic acid had similar effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号