首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ability of a rhizobacterium to protect tomato plants against naturally occurring diseases as well as to improve crop yield under field conditions was studied. The rhizobacterium was introduced to the plants through seed microbiolization. Treatments consisted of different frequencies of fungicide (Chlorothalonyl) sprayings (5, 10 or 20 applications) of tomato plants grown from either microbiolized or non‐microbiolized seeds over a 90‐day evaluation period. Treatment of non‐microbiolized seeds without fungicide application was included as a control. The progress of the following three naturally occurring diseases was evaluated in the field and quantified: early blight (Alternaria solani), late blight (Phytophthora infestans), and septoria leaf spot (Septoria lycopersici). All treatments resulted in reduced disease severity when compared with the control treatment. Highest final fruit yields were found after treatment of plants grown from non‐microbiolized seeds and sprayed with fungicide 20 times over 90 days, and for treatment of plants from microbiolized seeds that received 10 fungicide spray applications, although all treatments increased yield over that obtained in the control treatment. The results demonstrate that combined rhizobacterial and chemical treatments in the field may permit reducing fungicidal spraying frequency while at the same time increasing crop yields.  相似文献   

2.
Botrytis blight, caused by Botrytis cinerea (Bc), is an important disease on roses grown in plastic greenhouses in Brazil. Biocontrol with Clonostachys rosea (Cr) applied to leaves and crop debris to reduce pathogen sporulation can complement other control measures for disease management. Two experiments, each with a rose cultivar, were conducted in a plastic greenhouse. For ‘Red Success,’ four treatments were compared: (1) control; (2) fortnightly sprays of Cr; (3) weekly sprays of mancozeb; and (4) weekly sprays of either Cr or mancozeb to the lower third of the plants and the debris. For ‘Sonia,’ treatment 4 was not included. Samples were taken from debris (leaves and petals) at ten 15-day intervals and plated on PCA medium. Sporulation of fungi and incidence of Botrytis blight on buds were assessed. For both cultivars, C treatments significantly (P=0.05) reduced Bc sporulation. However, disease incidence was not consistently reduced, probably because the applications of C. rosea started when Botrytis blight epidemic was advanced and no sanitation practices were performed on nontreated plots. From the present and previous studies, continuous application of Cr on debris, associated with sanitation practices, has the potential to reduce Bc sporulation and disease incidence in the buds.  相似文献   

3.
Fungicides mancozeb and carbendazim caused 100% reduction in mycelial growth of Alternaria brassicae over control in vitro while 1% (w/v) aqueous bulb extract of Allium sativum and leaf extract of Acacia nilotica caused significant reductions. In dual culture, GR isolate of Trichoderma viride performed the best among the test isolates of Trichoderma, causing 81%, 82% reduction in mycelial growth of A. brassicae over control. Performance of isolates SI‐2, P and SI‐1 of T. viride were at par (P < 0.01) with that of GR isolate. Spraying of A. brassicae at different ages of the mustard host plant identified 75 days after sowing (d.a.s.) as the most critical age of the mustard plant for development of Alternaria blight severity on the crop with 45 d.a.s. being the next most important one. Mancozeb was the best among all the treatments, resulting in the lowest disease severity on leaves of mustard at both Sewar and Ludhavai as also the lowest A‐value (area under disease progress curve). Performance of bulb extract of A. sativum in checking the disease severity on leaves and pods was at par (P < 0.05) with mancozeb. The GR isolate of T. viride was at par with mancozeb in checking blight severity on mustard leaves at Sewar while performance of the bioagent was significantly (P < 0.05) inferior to the chemical fungicide at Ludhavai. Performance of the bioagent isolate GR of T. viride in checking the disease severity on pods was at par (P < 0.05) with mancozeb at both Sewar and Ludhavai, the treatment recording the lowest A‐value on pods. While application of bulb extract of A. sativum resulted in highest seed yield at Sewar in 2001–2002, the bioagent isolate GR of T. viride did so at Ludhavai, both the treatments being at par (P < 0.05) with mancozeb and significantly higher than control. Application of bulb extract of A. sativum at 45 and 75 d.a.s. resulted in lowest blight severity on leaves and pods as also in highest seed yield among the different single and combination of treatments. Although disease severity in the treatment was at par (P < 0.05) with that in mancozeb, application of the plant extract at the two stages of crop growth resulted in significantly higher seed yield compared with the two applications of the chemical fungicide. However, application of the treatments singly only at 75 d.a.s., GR isolate of T. viride at 45 and 75 d.a.s., A. sativum 45 d.a.s. + T. viride 75 d.a.s., and T. viride 45 d.a.s. + A. sativum 75 d.a.s. resulted in seed yield at par (P < 0.05) with application of bulb extract of A. sativum at 45 and 75 d.a.s.  相似文献   

4.
Control of tomato late blight (LB) in Brazil is heavily based on chemicals. However, reduction in fungicide usage is required in both conventional and organic production systems. Assuming that biological control is an alternative for LB management, 208 epiphytic microorganisms and 23 rhizobacteria (RB) were isolated from conventional and organically grown tomato plants and tested for antagonistic activity against Phytophthora infestans. Based on in vitro inhibition of sporangia germination and detached leaflet bioassays, four EP microorganisms (Aspergillus sp., Cellulomonas flavigena, Candida sp., and Cryptococcus sp.) were selected. These microorganisms were applied either singly or combined on tomato plants treated or not with the RB Bacillus cereus. On control plants, LB progress rate (r), area under disease progress curve, and final disease severity were high. Lowest values of final severity were recorded on plants colonized by B. cereus and treated with C. flavigena, Candida sp. and Cryptococcus sp. There was no reduction on disease severity in plants treated only with RB. Biological control of LB resulted in low values of r and final severity. Integration of biological control with fungicides, cultural practices, and other measures can contribute to manage LB on tomato production systems.  相似文献   

5.
Late blight of potato is considered to be the most devastating problem causing severe yield losses in potato worldwide. Among the different management strategies, the use of resistant cultivars is the most viable option, but the non‐availability of enough quantity of quality seed materials of resistant cultivars forces the farmers to grow susceptible cultivars with proper fungicide scheduling. Therefore, in the present study, chemical control using fungicide has been attempted with newer molecules in the susceptible cultivar along with a resistant cultivar as a positive control. All the tested fungicides were found safe, and no phytotoxicity was observed with any chemical at the applied rate. In resistant cultivar, no late blight was appeared in both the years, whereas maximum AUDPC was observed in the untreated control (276.3) and minimum (41.7) in mancozeb‐cymoxanil + mancozeb based scheduling which was found on par with chlorothalonil‐famoxadone + cymoxanil (51.3) and chlorothalonil‐ametoctradin + dimethomorph (53.5) based scheduling. Among the treatments, resistant cultivar, Kufri Girdhari followed by chlorothalonil‐ametoctradin + dimethomorph and mancozeb‐cymoxanil + mancozeb based fungicidal scheduling were proven as the best treatments for both the crop seasons resulting in the highest yield parameters. The disease severity showed a strong negative correlation with the tuber yield of potatoes in both the years. Based on overall observations including BC ratio, it can be concluded that, wherever seed material of resistant cultivar is available farmers should grow the same or else with susceptible cultivars the fungicidal scheduling based on mancozeb‐cymoxanil + mancozeb or chlorothalonil‐ametoctradin + dimethomorph can be followed to obtain the maximum returns with effective management of late blight at the southern hills of India.  相似文献   

6.
Simulator predictions for the effect of oxadixyl and oxadixyl mixtures on the control of late blight in potato crops inoculated with Phytophthora infestans and the buildup of fungal resistance to oxadixyl were compared with data obtained in field experiments. The simulator, which considered fungus, fungicides and crop variables, predicted accurately the effect of fungicide sprays (oxadixyl, oxadixyl mixed with mancozeb, and oxadixyl mixed with mancozeb and cymoxanil) on blight development. The model predicted accurately both resistance buildup and infection in non-treated crops and in crops treated with oxadixyl alone or in a mixture with mancozeb (SAN 518F), but overestimated the control efficacy of the three-way mixture Pulsan.  相似文献   

7.
Fungicide application is an effective management option to control late blight of potato (caused by Phytophthora infestans). Field experiments were conducted to evaluate the efficacy of recently introduced and previously used fungicides on late blight management and potato yields in the western plains of Nepal in 2015 and 2016 crop seasons. Fungicides and a non-treated control (NTC) were replicated three times in a randomized block design planted with late blight susceptible cultivar Cardinal. Chlorothalonil, copper oxychloride, dimethomorph, fenamidone + mancozeb, mancozeb and metalaxyl were sprayed in 2015. In 2016, carbendazim was used instead of chlorothalonil. The area under disease progress curve (AUDPC) was consistently reduced in years by dimethomorph (90% and 65% in 2015 and 2016, respectively), fenamidone + mancozeb (68% and 62%) and mancozeb (40% and 47%) compared with the NTC. Similarly, tuber yield was increased with the application of dimethomorph (266% and 146% in 2015 and 2016, respectively), fenamidone + mancozeb (211% and 155%) and mancozeb (136% and 116%) compared with the NTC. Chlorothalonil reduced AUDPC by 43% and increased tuber yield by 170% in 2015. Other fungicides either had inconsistent results or did not reduce late blight severity and consequent effects on potato yield. The overall benefit–cost ratio was highest for dimethomorph in both years. These results show efficacy of dimethomorph, fenamidone + mancozeb and mancozeb in reducing late blight severity and increasing potato tuber yield in the plains of Nepal.  相似文献   

8.
Of eleven tomato cultivars ‘Baby’ was the most susceptible to Phytophthora infestans. The sporangium concentration of the fungus and the methods of fungicide application had a significant effect on the efficacy of oxadixyl, mancozeb and cymoxanil when tested singly or in mixture against sensitive and phenylamide resistant strains of P. infestans on tomato. Mancozeb was the least effective fungicide, its activity decreased significantly with increasing numbers of sporangia used for inoculation (increasing disease pressure) and its efficacy was dependent on the method of application. Oxadixyl and cymoxanil showed much stronger antifungal activities (except oxadixyl against resistant strains) which did not depend on the number of sporangia or method of fungicide application. The mixture of oxadixyl, mancozeb and cymoxanil was equally active and was independent of application type, sporangium concentration and level of sensitivity of the fungus. Mixtures of the single components showed synergistic interactions up to levels of 20, depending on the activity of the individual fungicide and the different disease intensities. Three-way mixtures containing oxadixyl, mancozeb, and cymoxanil represent therefore promising possibilities in practice for strong disease pressure, even when resistance problems are expected.  相似文献   

9.
The long-term effectiveness of soil solarization integrated with (integration of pest management [IPM]) a biological control agent (Trichoderma virens), chemical fungicide (pentachloronitrobenzene [PCNB]), organic amendment (chicken litter) or physical method (black agriplastic mulch) to reduce southern blight (Sclerotium rolfsii) and southern root-knot diseases (Meloidogyne incognita) were evaluated on vegetable production. Results showed that the long-term effectiveness of IPM plus soil solarization reduced soilborne diseases of vegetables more than two years following the termination of solarization. These disease management strategies in 1991 and 1992, following soil solarization in 1990, reduced the numbers of sclerotia in the soil, and the number of plants killed by southern blight and root-knot of tomatoes, compared to nonsolarized bare soil treatment. The integration of a reduced dosage level of PCNB or T. virens in field plots, reduced southern blight of tomatoes by 100% and 71%, respectively, in solarized soil, compared to nonsolarized bare soil two years following soil solarization. PCNB effectively controlled southern blight in nonsolarized bare soil both years. All solarized treatments, except PCNB plus solarized soil increased tomato yields compared to nonsolarized bare soil plots. In the second study (1992) following soil solarization in 1991, the effectiveness of solarized bare soil, and nonsolarized bare soil mulched with black agriplastic film, with or without Reemay spunbounded polyester row cover, were effective in reducing root-knot of tomatoes as indicated by the root-knot gall index. Following a one year fallow period in 1994 three years following soil solarization, the root-knot gall index for severity of tomato roots grown in solarized bare soil, nonsolarized bare soil, black agriplastic mulched bare nonsolarized soil and black agriplastic mulched solarized bare soil, were 1.0, 3.0, 3.0 and 2.0, respectively, on a 0–5 scale, where 0=0% and 5=100% root-knot galled. In the third study 1992 and 1993, different dosage levels of chicken litter were used to amend soil artificially infested with sclerotia of S. rolfsii at different depths following solarization, decreased the number of viable sclerotia by 85–100%. All solarized treatments and nonsolarized bare soil amended with 18.8 MT/ha of chicken litter, were effective in controlling southern root-knot damage, and postharvest storage root rots of sweetpotato storage roots (Fusarium root rot [Fusarium solani] and Java black rot [Diplodia tubericola]). Our study showed that all soil solarization treatments, and soils amended with chicken litter, stimulated a shift in the soil microbial population dynamics. Rhizobacteria of Bacillus spp. and fluorescent pseudomonads increased significantly in the rhizosphere, rhizoplane, and interior root tissues of tomatoes and sweetpoatoes, grown in solarized soil compared to nonsolarized soil. These microorganisms may have contributed to the increased growth response of vegetables and some were probably suppressive to soilborne diseases  相似文献   

10.
Late blight caused by Phytophthora infestans is a major constraint to potato production. Inadequate control of the disease has often resulted in potato yield losses. We assessed the efficacy of fungicides, phosphoric acid and stinging nettle extract combinations for late blight control at two locations in Kenya. Disease severity, relative area under disease progress curves (RAUDPC), pathogen lesions and tuber yield were quantified during the 2008 and 2009 cropping cycles. The application of metalaxyl alternated with phosphate resulted in the greatest suppressive effects on late blight. The average late blight severity ranged from 3.5 to 34% in 2008 and 4.7 to 50% in 2009 at Tigoni location. RAUDPC for the same location ranged from 5 to 40% and 5 to 50% in 2008 and 2009, respectively. Similar levels of late blight severity were recorded at Marimba location in both years. Lesion growth and pathogen lesion numbers on potato plants differed significantly (p < 0.05) among treatments. Fungicides, phosphoric acid and stinging nettle extract varied in late blight control. Potato tuber yield varied among treatments. Phosphoric acid treatment had significantly (p < 0.05) greater tuber yield compared to metalaxyl at both locations. Field plots treated with plant extracts from stinging nettle resulted in the lowest tuber yield compared to other treatments with the exception of the untreated control. Fungicides, phosphoric acid, stinging nettle extract and their combinations can be readily effective in the suppression of late blight severity and pathogen lesions with moderate increases in tuber yield.  相似文献   

11.
This study was carried out to evaluate the antifungal potential of water and ethanol extracts from aerial parts of five wild medicinal plants collected from Sinai Peninsula, Egypt, and the extracts were tested in vitro and in vivo against Phytophthora infestans, the causal agent of late blight disease of tomato. The five wild medicinal plants used for the study were Asclepias sinaica, Farsetia aegyptia, Hypericum sinaicum, Phagnalon sinaicum and Salvia aegyptiaca. Ethanol extracts were more effective on the pathogen than water extracts at all concentrations used. Water and ethanol extracts of all plants tested reduced mycelial growth and inhibited spore germination of the pathogen with varying degrees. Water and ethanolic extracts also reduced the disease infection with pathogen comparing with control in detached leaves technique. In all experiments, extracts of A. sinaica and F. aegyptia were most effective on the pathogen than other plant extracts. In plot experiment, the water and ethanolic extracts of A. sinaica and F. aegyptia gave the most reduction of late blight disease severity comparing with control. Also, data indicated that after the application of plant extracts, there was an increase in fruit yield of tomato corresponding with the reduction of disease severity . Scanning electron microscopy revealed a negative alteration of pathogen hyphae treated with A. sinaica extract at 20%. This concentration of the same plant extract also reflected in dramatic changes in the cyto-morphology of pathogen hyphae as observed by transmission electron microscopy. These changes resulted in an increase in vacuolisation and lipid contents with consequent reduction of cytoplasm with alteration of cell wall and plasmalemma. The overall results suggested that the use of these Egyptian wild medicinal plant extracts was promising, effective and environment-friendly management measure against Phytophthora blight of tomato and thus, may be used in the production of organically grown vegetables.  相似文献   

12.
Bacillus licheniformis N1, which has previously exhibited potential as a biological control agent, was investigated to develop a biofungicide to control the gray mold of tomato caused by Botrytis cinerea. Various formulations of B. licheniformis N1 were developed using fermentation cultures of the bacteria in Biji medium, and their ability to control gray mold on tomato plants was evaluated. The results of pot experiments led to the selection of the wettable powder formulation N1E, based on corn starch and olive oil, for evaluation of the disease control activity of this bacterium after both artificial infection of the pathogen and natural disease occurrence under production conditions. In plastic-house artificial infection experiments, a 100-fold diluted N1E treatment was found to be the optimum biofungicide spray formulation. This treatment resulted in the significant reduction of symptom development when N1E was applied before Bo. cinerea infection, but not after the infection. Both artificial infection experiments in a plastic house and natural infection experiments under production conditions revealed that the N1E significantly reduced disease severity on tomato plants and flowers. The disease control value of N1E on tomato plants was 90.5% under production conditions, as compared to the 77% conferred by a chemical fungicide, the mixture of carbendazim and diethofencarb (1:1). The prevention of flower infection by N1E resulted in increased numbers of tomato fruits on each plant. N1E treatment also had growth promotion activity, which showed the increased number of tomato fruits compared to fungicide treatment and non-treated control and the increased fruit size compared the non-treated control under production conditions. This study suggests that the corn starch-based formulation of B. licheniformis developed using liquid fermentation will be an effective tool in the biological control of tomato gray mold.  相似文献   

13.
Basil is an economically important herb in the United States and in the world. Recent epidemics of basil downy mildew, caused by Peronospora belbahrii, have significantly affected basil production in the United States. ProPhyt (potassium phosphite), Actigard (acibenzolar‐S‐methyl) and Organocide (sesame oil) were evaluated in the greenhouse in the presence or absence of red light for their effects on the severity of downy mildew and sporangial production by P. belbahrii. Red light at intensity of 12 μmol photons/m2/s significantly (< 0.05) reduced severity of downy mildew in basil. ProPhyt‐treated basil plants had the lowest disease severity irrespective of red light exposure. Basil plants treated with Actigard and Organocide under red light had significantly lower disease severity compared to plants under dark conditions with the same fungicide treatments 14 and 13 days after inoculation (DAI) in experiments 1 and 2, respectively. Red light significantly reduced AUDPC in the treatments of Actigard and Organocide in both experiments. Basil plants treated with Actigard and Organocide under red light had significantly reduced number of P. belbahrii sporangia than those under dark conditions receiving the same fungicide treatments. This is the first report demonstrating red light in combination with Actigard and Organocide for improved management of downy mildew in greenhouse‐grown basil.  相似文献   

14.
The in vitro antifungal properties of chitosan and its role in protection of tomato from early blight disease were evaluated. Chitosan inhibited the radial and submerged growth of Alternaria solani at 1 mg/ml, and controls tomato plants from blight pathogen. Chitosan induces the level of chitinase activity and new isoforms of chitinase resulting in the reduction of early blight disease severity in tomato leaves. These results suggested the role of chitosan in activation of defence responses as well as protecting tomato plants from A. solani infection.  相似文献   

15.
The in vitro antifungal properties of chitosan and its role in protection of tomato from early blight disease were evaluated. Chitosan inhibited the radial and submerged growth of Alternaria solani at 1?mg/ml and control tomato plants from blight pathogen. Chitosan was able to induce the level of chitinase activity and new isoforms of chitinase, resulting in the reduction of early blight disease severity in tomato leaves. These results suggested the role of chitosan in activation of defence responses as well as protecting tomato plants from A. solani infection.  相似文献   

16.
Controlled glasshouse experiments were conducted to investigate the temporal progress of powdery mildew and its effects on host dynamics of tomato, without and with one fungicide application. Healthy tomato transplants (5‐ to 6‐week old) were artificially inoculated with powdery mildew, and disease progress as well as host growth were monitored in both fungicide sprayed and unsprayed treatments and compared with non‐inoculated plants. Actual disease severity on a plant basis increased in unsprayed plants reaching maximum severity in the proportionate range of 0.53–0.83. One fungicide spray significantly reduced the maximum disease severity by two‐ to fourfolds. Despite adjustments for defoliation, declines in the proportion of disease severity between successive assessments were evident. Whereas the estimated growth rates of diseased plants were significantly lower than that of healthy plants, no significant differences were observed in the maximum leaf area formed of inoculated and non‐inoculated plants. A considerable effect of the powdery mildew epidemics was manifested through hastened shrivelling and defoliation of diseased leaves within the tomato canopy. An average of 18–29% and 40–52% of leaves had abscised from the plant canopy at the last date of assessment in sprayed and non‐sprayed plants, respectively. Accordingly, defoliation accounted for 14–33.3% and 58.3–63.1% losses in leaf area of sprayed and non‐sprayed plants, respectively. Duration of healthy leaf area and yield of inoculated plants were also significantly reduced by powdery mildew epidemics.  相似文献   

17.
Symptoms of circular leaf spot of persimmon (CLSP), caused by Mycosphaerella nawae, consisted of necrotic spots on leaves, chlorosis and premature defoliation. Although CLSP is a foliar disease, early fruit maturation and abscission are frequently associated with the presence of lesions on leaves and defoliation, resulting in severe economic losses. Despite their importance for the design of efficient disease management programmes, quantitative relationships between CLSP incidence and yield loss are unknown. Therefore, fungicide efficacy trials were conducted during two consecutive years in Spain to induce different levels of disease severity, defoliation and yield loss. The effects of fungicide treatments on CLSP severity were analysed by ordinal logistic regression models. Relative yield loss values were regressed against the percentage of affected leaves or defoliated obtained at different evaluation dates. The disease had high negative impact and complete yield loss was observed in the absence of effective fungicide treatments. Preventive applications of pyraclostrobin, trifloxy‐strobin and mancozeb provided the best disease control and highest yields, up to 95.77 kg tree?1. An exponential relationship of CLSP incidence and defoliation with yield loss was found. In general, model fit and predictive ability was superior when defoliation, rather than incidence, was used as explanatory variable. The impact of defoliation on yield loss was higher in earliest evaluation dates, suggesting that early leaf abscission may be the main factor contributing to premature fruit drop and subsequent yield loss. Substantial yield losses were observed even with relatively low levels of CLSP incidence and defoliation. Therefore, it was not possible to define a critical action threshold for CLSP management based on foliar symptoms.  相似文献   

18.
The established microplants, mycorrhized and non-mycorrhized controls, were planted in the field and unsprayed (controls), sprayed with a conventional fungicide (Ridomil), with Ridomil alternating with N,O-carboxymethyl chitosan (NOCC — a soluble chitosan) or sprayed only with NOCC. The effects of the treatments on late blight progression in the crop were monitored throughout the season and yield measured. In a preliminary study on the inoculation of detached leaves from unsprayed plants and plants sprayed with Ridomil and NOCC, respectively, NOCC was shown to delay disease development. In the field, late blight development was most rapid in the unsprayed controls, delayed in the Ridomil-treated plants and disease progression was slowed in the other treatments (AMF-inoculation, AMF-NOCC sprayed, NOCC-sprayed and Ridomil-NOCC sprayed). It was shown that plant chitinase activity increased in the AMF, AMF-NOCC and NOCC treatments. At harvest, yields for the Ridomil-NOCC, NOCC and AMF-NOCC treatments were significantly higher than the un-sprayed, non-mycorrhizal control and were not significantly different to the Ridomil-sprayed control. The results are discussed in relation to the production of seed potatoes for organic (ecological) growers.  相似文献   

19.
The efficacy of six locally available plants extract was evaluated for their phytobiocidal effect on Alternaria solani the causal agent of early blight (EB) disease of tomato and was compared with commercial fungicide mancozeb under in vitro and in vivo conditions. Under in vitro conditions, Eucalyptus globus and Datura alba were found to be ineffective, while the remaining plants extract (Allium sativum, Curcuma longa, Melia azedarach, Zingiber officinale) significantly reduced A. solani growth on PDA. Increasing concentrations of A. sativum (0–25%) were found negatively correlated with growth of A. solani on PDA. Among the tested plants, A. sativum extract at 20% concentration was found most effective against A. solani witnessed by both in vitro and in vivo experiments result. It reduced EB disease up to 75.11% over positive control. Similarly, among the different plants extract, maximum plant height (76.25 cm), fruit size (57.50 cm3) and yield (511.30 g) were observed in A. sativum sprayed treatments (20%), beside mancozeb and negative control. Upon phytochemical analysis of these extracts, flavonoids, alkaloids, saponins, tannins, terpenoids, glycosides and steroids were detected. Present study showed that 20% concentration of garlic extract has the potential to reduce EB disease severity, while having no noticeable phytotoxicity.  相似文献   

20.
Observations on the vapour phase activity of some foliage fungicides   总被引:1,自引:0,他引:1  
By means of a Botrytis fabae/Vicia faba bio-assay technique it has been demonstrated that phenyl mercury chloride, maneb, mancozeb, dichlo-fluanid and oxythioquinox protect areas of leaf beyond the visible limits of the fungicide deposits. The evidence suggests that the extended areas of protection are due to the release of fungicidal vapours. For a given dose of mancozeb the area of protection was related to the number of conidia of B. fabae dusted on to the leaves and for a given inoculum density it extended with increasing fungicide dose applied in standard drop sizes. When the same dose of fungicide was applied in increasing volumes of water, producing widening areas of deposit, the area of protection also increased. Fungicide deposits aged on leaves for up to 4 weeks continued to release toxic vapours. Contact between the fungicides and leaves or between fungicides and spores was not necessary for the demonstration of the phenomenon since vapours diffused from deposits on glass and inhibited the germination of spores in water droplets placed at a distance from the fungicide source. For a given distance separating the fungicide and the spores inhibition increased with increasing fungicide dose. For a standard fungicide dose, inhibition decreased with increasing distances between the fungicide and the spores. The fungicidal vapours inhibited the germination of spores of test fungi other than B. fabae. The practical implications of these observations are examined in the light of evidence that vapour phase protection can occur on leaves incubated in large cabinets; on leaves pre-incubated at unsaturated humidities; and on leaves incubated in a moving stream of air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号