首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Responsiveness to abscisic acid (ABA) during vegetative growth plays an important role in regulating adaptive responses to various environmental conditions, including activation of a number of ABA-responsive genes. However, the relationship between gene expression and responsiveness to ABA at the seedling stage has not been well studied in wheat. In the present study, quantitative trait locus (QTL) analysis for ABA responsiveness at the seedling stage was performed using recombinant inbred lines derived from a cross between common wheat cultivars showing different ABA responsiveness. Five QTLs were found to be significant, located on chromosomes 1B, 2A, 3A, 6D and 7B. The QTL with the greatest effect was located on chromosome 6D and explained 11.12% of the variance in ABA responsiveness. The other QTLs each accounted for approximately 5–8% of the phenotypic variation. Expression analyses of three ABA-responsive Cor/Lea genes, Wdhn13, Wrab15 and Wrab17, showed that allelic differences in QTLs on chromosomes 2A, 6D and 7B influenced expression of these genes in seedlings treated with ABA. The 3A QTL appeared to be involved in the regulatory system of Wdhn13 and Wrab15, but not Wrab17. The effects of the 2A and 6D QTLs on gene expression were relatively large. The combination of alleles at the QTLs resulted in an additive or synergistic effect on Cor/Lea expression. These results indicate that the QTLs influencing ABA responsiveness are associated with ABA-regulated gene expression and suggest that the QTL on chromosome 6D with the largest effect acts as a key regulator of ABA responses including seedling growth arrest and gene expression during the vegetative stage.  相似文献   

6.
 Low-temperature (LT) induced genes of the Wcs120 family in wheat (Triticum aestivum) were mapped to specific chromosome arms using Western and Southern blot analysis on the ditelocentric series in the cultivar Chinese Spring (CS). Identified genes were located on the long arms of the homoeologous group 6 chromosomes of all 3 genomes (A, B, and D) of hexaploid wheat. Related species carrying either the A, D, or AB genomes were also examined using Southern and Western analysis with the Wcs120 probe and the WCS120 antibody. All closely related species carrying one or more of the genomes of hexaploid wheat produced a 50 kDa protein that was identified by the antibody, and a Wcs120 homoeologue was detected by Southern analysis in all species. In the absence of chromosome arm 6DL in hexaploid CS wheat no 50 kDa protein was produced and the high-intensity Wcs120 band was missing, indicating 6DL as the location of Wcs120 but suggesting silencing of the Wcs120 homoeologue in the A genome. Levels of proteins that cross-reacted with the Wcs120 antibody and degrees of cold tolerance were also investigated in the Chinese Spring/Cheyenne (CS/CNN) chromosome substitution series. CNN chromosome 5A increased the cold tolerance of CS wheat. Densitometry scanning of Western blots to determine protein levels showed that the group 5 chromosome 5A had a regulatory effect on the expression of the Wcs120 gene family located on the group 6 chromosomes of all three hexaploid wheat genomes. Received: 10 July 1996 / Accepted: 30 September 1996  相似文献   

7.
8.
9.
以枸杞为材料,采用PCR及RACE方法,克隆了枸杞WRKY转录因子基因cDNA序列,命名为Lb WRKY3,GenBank登录号为KX196192。在生物信息学分析的基础上,进行亚细胞定位、基因表达分析。结果显示:(1)Lb WRKY3开放阅读框ORF长度为1 068bp,编码356个氨基酸。(2)生物信息学分析显示,Lb WRKY3编码蛋白具有一个WRKY结构域,二级结构中不规则卷曲结构所占比例最大(58.67%),延伸链结构次之(18.88%),α螺旋比例为15.82%,β转角最少,仅为6.63%;Lb WRKY3蛋白与案头菊WRKY蛋白、黄花蒿WRKY蛋白相似性较高。(3)亚细胞定位显示,Lb WRKY3蛋白定位于细胞核。(4)实时定量PCR分析表明,Lb WRKY3在根中表达量最高,在花中表达量最低;在枸杞果实发育过程中Lb WRKY3均有表达,表达量随果实成熟逐渐升高,并于35d达到峰值;Lb WRKY3基因在果实中的表达具有组织特异性表达特性(果肉果皮种子)。研究表明,Lb WRKY3基因参与了枸杞果实生长发育调控。  相似文献   

10.
11.
该研究从旱生灌木中间锦鸡儿中克隆得到1个CiWRKY75基因。序列分析显示,CiWRKY75开放阅读框长570bp,编码189个氨基酸,含有1个WRKYGQK基序和1个C2H2型锌指结构,属于第二类WRKY转录因子。亚细胞定位显示,CiWRKY75定位于细胞核。实时荧光定量PCR检测表明,CiWRKY75基因的表达受盐胁迫和ABA诱导。在拟南芥中过量表达CiWRKY75后,与野生型拟南芥相比,转基因株系种子的萌发率在盐胁迫下降低,并且对盐胁迫的耐受能力明显减弱;ABA处理下,2个转基因株系的种子萌发率(10.3%、9.6%)较野生型(25.9%)明显降低。研究表明,CiWRKY75是中间锦鸡儿对盐和ABA响应的重要调控因子。  相似文献   

12.
玉米纹枯病是影响玉米产量和品质的重要病害之一。转录因子WRKY家族部分成员能够调控水杨酸和茉莉酸甲酯信号传递方式来激发防卫反应基因的表达。在NCBI上检索玉米中WRKY家族成员及拟南芥中抗病相关的WRKY家族成员,利用CLUSTAL X和MEGA5.05构建系统进化树,发现转录因子WRKY76可能参与玉米抗纹枯病的调控途径。该研究以玉米抗纹枯病材料R15和感病材料Ye478为对象,在玉米拔节期接种立枯丝核菌AG1-IA,首先分别于接菌前(对照)和接菌后1、2、4、6、12、24 h取叶鞘;然后分别进行水杨酸和茉莉酸甲酯胁迫处理,分别于处理前(对照)和处理后1、2、4、6、12 h取叶鞘,提取RNA,实时荧光定量PCR分析WRKY76转录因子基因在玉米叶鞘组织中不同胁迫条件下的差异表达。结果表明:在立枯丝核菌AG1-IA胁迫下,WRKY76转录因子基因在胁迫后1 h表达量达最大值,抗病材料R15的相对表达量高于感病材料Ye478且差异显著(P≤0.05);经水杨酸(Salicylic Acid,SA)处理,WRKY76在抗感材料中表达趋势相似,在感病材料掖478中,WRKY76被诱导而显著地上调表达,在抗病材料中,相对表达量峰值出现在胁迫后4 h,且相对表达量低于感病材料掖478。经茉莉酸甲酯(Methyl jasmine,Me JA)处理,WRKY76基因在感病材料中呈现下调表达趋势。WRKY76基因在1 h表达量为对照的0.6倍,其他调查时间点基本都在0.1~0.3之间。在抗病材料R15中,WRKY76基因表达呈现上升趋势,变化趋势不明显。这表明WRKY76转录因子基因能够被病原物、SA、Me JA诱导表达,可能参与植物抗纹枯病调控途径。  相似文献   

13.
14.
15.
16.
17.
为了揭示辣椒WRKY基因功能,以辣椒PI201234为实验材料,克隆得到WRKY基因全长1 647bp的cDNA序列,命名为CaWRKY8。生物信息学分析表明,该基因含有一个1 647bp完整开放阅读框(ORF),编码548个氨基酸残基。氨基酸序列分析显示,CaWRKY8编码的蛋白含有2个WRKY结构域,属于Group I。氨基酸序列比对结果表明,CaWRKY8与辣椒WRKY25、马铃薯WRKY、番茄基因组中预测的WRKY26、烟草基因组中预测的WRKY33和猕猴桃WRKY的氨基酸序列之间均具有高度的保守性。实时荧光定量分析表明,CaWRKY8受盐、高温、干旱和辣椒疫霉菌诱导表达;其中CaWRKY8的表达量在盐和干旱处理下3h达到峰值,分别是对照的2.38倍和121.10倍,在高温和疫霉菌处理下12h达到峰值,分别是对照的6.12和6.81倍。以上研究结果表明,CaWRKY8基因在辣椒响应胁迫进程中发挥着重要作用。  相似文献   

18.
The Wcs120 gene encodes a highly abundant protein which appears to play an important role during cold acclimation of wheat. To understand the regulatory mechanism controlling its expression at low temperature, the promoter region has been characterized. Electrophoretic mobility shift assays using short promoter fragments revealed the presence in nuclear extracts from non-acclimated (NA) plants of multiple DNA-binding proteins which interact with several elements. In contrast, no DNA-binding activity was observed in the nuclear extracts from cold-acclimated (CA) plants. In vitro dephosphorylation of these CA nuclear extracts with alkaline phosphatase restored the binding activity. Moreover, okadaic acid (a potent phosphatase inhibitor) markedly stimulated the in vivo accumulation of the WCS120 family of proteins. This suggests that protein phosphatases PP1 and/or PP2A negatively regulate the expression of the Wcs120 gene. In addition, both Ca2+-dependent and Ca2+-independent kinase activities were found to be significantly higher in the CA nuclear extracts. Western analysis using antibodies directed against protein kinase C (PKC) isoforms showed that a PKCγ homolog (84 kDa) is selectively translocated into the nucleus in response to low temperature. Taken together, our results suggest that, in vivo, the expression of the Wcs120 gene may be regulated by nuclear factors whose binding activity is modulated by a phosphorylation/dephosphorylation mechanism. Received: 9 June 1997 / Accepted: 18 August 1997  相似文献   

19.
Low-temperature (LT) induced genes of the Wcs120 family in wheat (Triticum aestivum) were mapped to specific chromosome arms using Western and Southern blot analysis on the ditelocentric series in the cultivar Chinese Spring (CS). Identified genes were located on the long arms of the homoeologous group 6 chromosomes of all 3 genomes (A, B, and D) of hexaploid wheat. Related species carrying either the A, D, or AB genomes were also examined using Southern and Western analysis with the Wcs120 probe and the WCS120 antibody. All closely related species carrying one or more of the genomes of hexaploid wheat produced a 50 kDa protein that was identified by the antibody, and a Wcs120 homoeologue was detected by Southern analysis in all species. In the absence of chromosome arm 6DL in hexaploid CS wheat no 50 kDa protein was produced and the high-intensity Wcs120 band was missing, indicating 6DL as the location of Wcs120 but suggesting silencing of the Wcs120 homoeologue in the A genome. Levels of proteins that cross-reacted with the Wcs120 antibody and degrees of cold tolerance were also investigated in the Chinese Spring/Cheyenne (CS/CNN) chromosome substitution series. CNN chromosome 5A increased the cold tolerance of CS wheat. Densitometry scanning of Western blots to determine protein levels showed that the group 5 chromosome 5A had a regulatory effect on the expression of the Wcs120 gene family located on the group 6 chromosomes of all three hexaploid wheat genomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号