首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We elucidated the cytoprotective effects of hyperoside (quercetin-3-O-galactoside) against hydrogen peroxide (H2O2)-induced cell damage. We found that hyperoside scavenged the intracellular reactive oxygen species (ROS) detected by fluorescence spectrometry, flow cytometry, and confocal microscopy. In addition, we found that hyperoside scavenged the hydroxyl radicals generated by the Fenton reaction (FeSO4)+H2O2) in a cell-free system, which was detected by electron spin resonance (ESR) spectrometry. Hyperoside was found to inhibit H2O2-induced apoptosis in Chinese hamster lung fibroblast (V79-4) cells, as shown by decreased apoptotic nuclear fragmentation, decreased sub-G(1) cell population, and decreased DNA fragmentation. In addition, hyperoside pretreatment inhibited the H2O2-induced activation of caspase-3 measured in terms of levels of cleaved caspase-3. Hyperoside prevented H2O2-induced lipid peroxidation as well as protein carbonyl. In addition, hyperoside prevented the H2O2-induced cellular DNA damage, which was established by comet tail, and phospho histone H2A.X expression. Furthermore, hyperoside increased the catalase and glutathione peroxidase activities. Conversely, the catalase inhibitor abolished the cytoprotective effect of hyperoside from H2O2-induced cell damage. In conclusion, hyperoside was shown to possess cytoprotective properties against oxidative stress by scavenging intracellular ROS and enhancing antioxidant enzyme activity.  相似文献   

2.
Exposure of Chinese hamster V79 fibroblasts to mild and repetitive H2O2 doses in culture for 15 weeks produced no change in lipid peroxidation status, GSH/GSSG ratio and glutathione peroxidase activity of these cells (VST cells). In contrast, in VST cells catalase levels underwent a prominent increase which could be significantly inhibited and brought down to control levels after treatment with the catalase inhibitor 3-aminotriazole (3-AT). When control (VC) cells were exposed to UV radiation (UVC 5 J/m2) or H2O2 (7.5mM, 15 min), intracellular reactive oxygen species (ROS) levels rose prominently with significant activation of caspase-3. Marked nuclear fragmentation and lower cell viability were also noted in these cells. In contrast, VST cells demonstrated a significantly lower ROS level, an absence of nuclear fragmentation and an unchanged caspase-3 activity after exposure to UVC or H2O2. Cell viability was also significantly better preserved in VST cells than VC cells after UV or H2O2 exposures. Following 3-AT treatment of VST cells, UVC radiation or H2O2 brought about significantly higher elevations in intracellular ROS, increases in caspase-3 activity, significantly lowered cell viability and marked nuclear fragmentation, indicating the involvement of high catalase levels in the cytoprotective effects of repetitive stress. Therefore, upregulation of the antioxidant defense after repetitive oxidative stress imparted a superior ability to cope with subsequent acute stress and escape apoptotic death and loss of viability.  相似文献   

3.
Steroid hormones have been reported to activate various signal transducers that trigger a variety of cellular responses. Among these hormones, testosterone has been identified as an antioxidant that protects against cellular damage. Therefore, using mouse embryonic stem (ES) cells as a model system, this study evaluated the effects of dihydrotestosterone (DHT), a biologically active testosterone metabolite, on H2O2-induced apoptosis. H2O2 increased the release of lactate dehydrogenase (LDH) and DNA fragmentation but reduced the cell viability in a time-dependent manner (> or =8 h). Moreover, H2O2 decreased the level of DNA synthesis and the levels of the cell cycle regulatory proteins [cyclin D1, cyclin E, cyclin-dependent kinase (CDK) 2, and CDK 4]. These effects of H2O2 were inhibited by a pretreatment with DHT. However, a treatment with flutamide (androgen receptor inhibitor, 10(-3) M) abolished the protective effects of DHT. This result was supported by the presence of the androgen receptor in mouse ES cells. The activity of the antioxidant enzyme, catalase, was increased by the DHT treatment but not by a co-treatment with DHT and flutamide. Using CM-H(2)DCFDA (DCF-DA) for the detection of intracellular H2O2, DHT decreased the intracellular H2O2 levels but flutamide blocked this effect. H2O2 also increased the level of p38 MAPK, JNK/SAPK, and NF-kappaB phosphorylation, which were inhibited by the DHT pretreatment. Catalase inhibited the effect of H2O2 on MAPKs and NF-kappaB. However, the flutamide treatment abolished the inhibitory effects of DHT on the H2O2-induced increase in the levels of p38 MAPK, JNK/SAPK, and NF-kappaB phosphorylation. DHT inhibited the H2O2-induced increase in caspase-3 expression and decreased the level of Bcl-2 and the cellular inhibitor of apoptosis protein (cIAP)-2. These effects were abolished by the flutamide treatment. In conclusion, DHT prevents the H2O2-induced apoptotic cell death of mouse ES cells through the activation of catalase and the downregulation of p38 MAPK, JNK/SAPK, and NF-kappaB via the androgen receptor.  相似文献   

4.
The kinetic effects of hydrogen peroxide (H2O2) on cultured endothelial cells isolated from bovine carotid artery were studied. The cytoprotective effects of glutathione (GSH) on H2O2-induced cell injury were also investigated. H2O2-induced a dose- and time-dependent cell injury in cultured endothelial cells. H2O2-induced cell injury was blocked by simultaneous treatment by catalase, but not by superoxide dismutase. H2O2 also induced endogenous PGI2 biosynthesis, and the maximum PGI2 production was reached after 1 h treatment. Stimulation of PGI2 production was parallel with arachidonate release from H2O2-treated cells. However the prostaglandin biosynthesis enzyme activity in cells was inhibited by H2O2 treatment. When the cells were treated with GSH, the intracellular GSH reached a plateau after 3 h treatment. Both H2O2-induced cell injury and PGI2 production were significantly inhibited by the 3 h pretreatment with GSH. The cytoprotective effect of GSH was completely inhibited by buthionine sulfoximine which is a specific inhibitor of gamma-glutamylcysteine synthetase. The results indicate that the cytoprotective effect of GSH on H2O2-induced cell injury in cultured bovine carotid artery endothelial cells depends on the increase in intracellular GSH content.  相似文献   

5.
The antioxidant property of butin was investigated for cytoprotective effect against H(2)O(2)-induced cell damage. This compound showed intracellular reactive oxygen species (ROS) scavenging, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, inhibition of lipid peroxidation, and DNA damage. This radical scavenging activity of butin protected cell damage exposed to H(2)O(2). Also, butin reduced the apoptotic cells induced by H(2)O(2), as demonstrated by the decreased DNA fragmentation, apoptotic body formation, and caspase 3 activity. In addition, butin restored the activity and protein expression of cellular antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT) in H(2)O(2)-treated cells. Taken together, these findings suggest that butin protected cells against H(2)O(2)-induced cell damage via antioxidant property.  相似文献   

6.
Nitric oxide negatively modulates wound signaling in tomato plants   总被引:24,自引:0,他引:24  
Synthesis of proteinase inhibitor I protein in response to wounding in leaves of excised tomato (Lycopersicon esculentum) plants was inhibited by NO donors sodium nitroprusside and S-nitroso-N-acetyl-penicillamine. The inhibition was reversed by supplying the plants with the NO scavenger 2-(4-carboxiphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. NO also blocked the hydrogen peroxide (H(2)O(2)) production and proteinase inhibitor synthesis that was induced by systemin, oligouronides, and jasmonic acid (JA). However, H(2)O(2) generated by glucose oxidase and glucose was not blocked by NO, nor was H(2)O(2)-induced proteinase inhibitor synthesis. Although the expression of proteinase inhibitor genes in response to JA was inhibited by NO, the expression of wound signaling-associated genes was not. The inhibition of wound-inducible H(2)O(2) generation and proteinase inhibitor gene expression by NO was not due to an increase in salicylic acid, which is known to inhibit the octadecanoid pathway. Instead, NO appears to be interacting directly with the signaling pathway downstream from JA synthesis, upstream of H(2)O(2) synthesis. The results suggest that NO may have a role in down-regulating the expression of wound-inducible defense genes during pathogenesis.  相似文献   

7.
The effect of N-methyl-D-aspartate (NMDA) receptor antagonists on cell viability was studied in rat primary cortical cells. NMDA antagonists [MK-801 and 2-amino-5-phosphonovalerate (APV)] induced cell shrinkage, nuclear condensation or fragmentation, and internucleosomal DNA fragmentation. Treatment of cells with MK-801 (an NMDA antagonist) for 1-2 days induced apoptotic cell death in a dose-dependent manner (1 nM to 10 microM). NMDA (25 microM), however, inhibited the MK-801 (0.1 microM)-induced apoptotic cell death. MK-801 and APV decreased the concentration of intracellular calcium ion. Activation of caspase-3 was accompanied by MK-801-induced cell death in a dose-dependent manner, and an inhibitor of caspase-3 reduced the cell death. Further, cycloheximide (0.2 microg/ml) completely protected the cells from MK-801-induced apoptotic cell death and caspase-3 activation. Insulin-like growth factor I completely attenuated MK-801-induced apoptotic cell death and caspase-3 activation. These results demonstrated that the moderate NMDA receptor activation is probably involved in the survival signal of the neuron.  相似文献   

8.
Smac/DIABLO was recently identified as a protein released from mitochondria in response to apoptotic stimuli which promotes apoptosis by antagonizing inhibitors of apoptosis proteins. Furthermore, Smac/DIABLO plays an important regulatory role in the sensitization of cancer cells to both immune-and drug-induced apoptosis. However, little is known about the role of Smac/DIABLO in hydrogen peroxide (H(2)O(2))-induced apoptosis of C2C12 myogenic cells. In this study, Hoechst 33258 staining was used to examine cell morphological changes and to quantitate apoptotic nuclei. DNA fragmentation was observed by agarose gel electrophoresis. Intracellular translocation of Smac/DIABLO from mitochondria to the cytoplasm was observed by Western blotting. Activities of caspase-3 and caspase-9 were assayed by colorimetry and Western blotting. Full-length Smac/DIABLO cDNA and antisense phosphorothioate oligonucleotides against Smac/DIABLO were transiently transfected into C2C12 myogenic cells and Smac/DIABLO protein levels were analyzed by Western blotting. The results showed that: (1) H(2)O(2) (0.5 mmol/L) resulted in a marked release of Smac/DIABLO from mitochondria to cytoplasm 1 h after treatment, activation of caspase-3 and caspase-9 4 h after treatment, and specific morphological changes of apoptosis 24 h after treatment; (2) overexpression of Smac/DIABLO in C2C12 cells significantly enhanced H(2)O(2)-induced apoptosis and the activation of caspase-3 and caspase-9 (P<0.05). (3) Antisense phosphorothioate oligonucleotides against Smac/DIABLO markedly inhibited de novo synthesis of Smac/DIABLO and this effect was accompanied by decreased apoptosis and activation of caspase-3 and caspase-9 induced by H(2)O(2) (P<0.05). These data demonstrate that H(2)O(2) could result in apoptosis of C2C12 myogenic cells, and that release of Smac/DIABLO from mitochondria to cytoplasm and the subsequent activation of caspase-9 and caspase-3 played important roles in H(2)O(2)-induced apoptosis in C2C12 myogenic cells.  相似文献   

9.
To clarify the molecular basis of the cytoprotective properties of immunophilin ligands (IPLs), the anti-apoptotic effects of IPLs were determined in human glioma U251 cells. GPI1046 and V10367, non-immunosuppressive IPLs (NI-IPLs), as well as FK506, an immunosuppressive IPL (I-IPL), had cytoprotective effects against hydrogen peroxide (H20O)-induced apoptotic cell death in U251 cells. H2O2 increased both the ratio of bax/bcl-2 and the p53 mRNA expression. However, pre-treatment with FK506 and V10367 significantly prevented any increase in this ratio or p53 mRNA expression. GPI1046 also reduced the ratio of bax/bcl-2 to the normal level. In addition, H2O2 significantly increased activities of all three caspases, caspase-3, caspase-8, and caspase-9, in comparison with non-H2O2 controls. However, FK506 prevented the increase of these caspase activities. On the other hand, it is well-known that glutathione (GSH) and neurotrophic factor (NTF) is related to the induction of apoptosis in neuronal cells. In U251 cells, FK506, GPI1046 and V10367 had GSH-activating and NTF-activating effects. Thus, the immunosuppressive effect is not essential for the cytoprotective properties of IPLs, and IPLs have multiple beneficial properties such as the anti-apoptotic effect, GSH-activating effect, and NTF-activating effect, although the anti-apoptotic effect of NI-IPLs is independent of the regulation of apoptotic activators such as caspase-3.  相似文献   

10.
Cadmium (Cd2+) is a potent toxic metal for both plants and animals. Chronic exposure to low doses of Cd2+ results in damage to several organs. We have previously reported that Cd2+ induces apoptosis in anterior pituitary cells by a caspase- and oxidative stress-dependent mechanism. Nitric oxide (NO) synthesis is affected by Cd2+ in several systems. NO has been shown to be either cytoprotective or cytotoxic in many systems. The aim of this study was to evaluate the possible participation of NO in the cytotoxic effect of Cd2+ on rat anterior pituitary cells. Cell viability was evaluated by mitochondrial dehydrogenase activity assay and confirmed by microscopy, studying nuclear morphology. Here we show that DETA NONOate ((Z)-1-[2 (2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate), a long-term NO donor, at concentrations below 0.5 mM, reduces nuclear condensation and fragmentation and reverses the decrease in cellular activity induced by Cd2+. Cd2+, by itself, induced NO synthesis, and inhibition of this synthesis enhanced Cd2+ cytotoxicity. NO also prevented caspase-3 activation and lipidic peroxidation induced by Cd2+. The NO/cGMP pathway does not seem to be involved in the cytoprotective effect of NO. These results indicate that NO has a cytoprotective role in Cd2+ -induced apoptosis, suggesting that endogenous NO could have a physiological role in protecting anterior pituitary cells.  相似文献   

11.
The present study was aimed to find out whether an increase of cytosolic free calcium level induces egg apoptosis through mitochondria-caspase mediated pathway. To increase cytosolic free calcium level and morphological apoptotic changes, ovulated eggs were cultured in Ca2+/Mg2+ free media-199 with or without various concentrations of calcium ionophore (0.5, 1, 2, 3, 4 μM) for 3 h in vitro. The morphological apoptotic changes, cytosolic free calcium level, hydrogen peroxide (H2O2) concentration, catalase activity, cytochrome c concentration, caspase-9 and caspase-3 activities and DNA fragmentation were analyzed. Calcium ionophore induced morphological apoptotic features in a concentration-dependent manner followed by degeneration at higher concentrations (3 and 4 μM). Calcium ionophore increased cytosolic free calcium level, induced generation of hydrogen peroxide (H2O2) and inhibited catalase activity in treated eggs. The increased H2O2 concentration was associated with increased cytochrome c concentration, caspase-9 and caspase-3 activities that resulted in the induction of morphological features characteristic of egg apoptosis. The increased caspase-3 activity finally induced DNA fragmentation as evidenced by TUNEL positive staining in calcium ionophore-treated eggs. These findings suggest that high cytosolic free calcium level induces generation of H2O2 that leads to egg apoptosis through mitochondria-caspase mediated pathway.  相似文献   

12.
We investigated the cytoprotective effect of phloroglucinol, which was isolated from Ecklonia cava (brown alga), against oxidative stress induced cell damage in Chinese hamster lung fibroblast (V79-4) cells. Phloroglucinol was found to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydrogen peroxide (H(2)O(2)), hydroxy radical, intracellular reactive oxygen species (ROS), and thus prevented lipid peroxidation. As a result, phloroglucinol reduced H(2)O(2) induced apoptotic cells formation in V79-4 cells. In addition, phloroglucinol inhibited cell damage induced by serum starvation and radiation through scavenging ROS. Phloroglucinol increased the catalase activity and its protein expression. In addition, catalase inhibitor abolished the protective effect of phloroglucinol from H(2)O(2) induced cell damage. Furthermore, phloroglucinol increased phosphorylation of extracellular signal regulated kinase (ERK). Taken together, the results suggest that phloroglucinol protects V79-4 cells against oxidative damage by enhancing the cellular catalase activity and modulating ERK signal pathway.  相似文献   

13.
We investigated through which mechanisms ceramide increased oxidative damage to induce leukemia HL-60 cell apoptosis. When 5 microm N-acetylsphingosine (C(2)-ceramide) or 20 microm H(2)O(2) alone induced little increase of reactive oxygen species (ROS) generation as judged by the 2'-7'-dichlorofluorescin diacetate method, 20 microm H(2)O(2) enhanced oxidative damage as judged by ROS accumulation, and thiobarbituric acid-reactive substance production after pretreatment with 5 microm C(2)-ceramide at least for 12 h. The treatment with a catalase inhibitor, 3-amino-1h-1,2,4-triazole, increased oxidative damage and apoptosis induced by H(2)O(2), and in contrast, purified catalase inhibited the enhancement of oxidative damage by H(2)O(2) in ceramide-pretreated cells, suggesting that the oxidative effect of ceramide is involved in catalase regulation. Indeed, C(2)-ceramide inhibited the activity of immunoprecipitated catalase and decreased the levels of catalase protein in a time-dependent manner. Moreover, acetyl-Asp-Met-Gln-Asp-aldehyde, which dominantly inhibited caspase-3 and blocked the increase of oxidative damage and apoptosis due to C(2)-ceramide-induced catalase depletion at protein and activity levels. In vitro, active and purified caspase-3, but not caspase-6, -8, and -9, inhibited catalase activity and induced the proteolysis of catalase protein whereas these in vitro effects of caspase-3 were blocked by acetyl-Asp-Met-Gln-Asp-aldehyde. Taken together, it is suggested that H(2)O(2) enhances apoptosis in ceramide-pretreated cells, because ceramide increases oxidative damage by inhibition of ROS scavenging ability through caspase-3-dependent proteolysis of catalase.  相似文献   

14.
Exposure of neurons to H(2)O(2) results in both necrosis and apoptosis. Caspases play a pivotal role in apoptosis, but exactly how they are involved in H(2)O(2)-mediated cell death is unknown. We examined H(2)O(2)-induced toxicity in neuronal PC12 cells and the effects of inducible overexpression of the H(2)O(2)-scavenging enzyme catalase on this process. H(2)O(2) caused cell death in a time- and concentration-dependent manner. Cell death induced by H(2)O(2) was found to be mediated in part through an apoptotic pathway as H(2)O(2)-treated cells exhibited cell shrinkage, nuclear condensation and marked DNA fragmentation. H(2)O(2) also triggered activation of caspase 3. Genetic up-regulation of catalase not only significantly reduced cell death but also suppressed caspase 3 activity and DNA fragmentation. While the caspase 3 inhibitor DEVD inhibited both caspase 3 activity and DNA fragmentation induced by H(2)O(2) it did not prevent cell death. Treatment with the general caspase inhibitor ZVAD, however, resulted in complete attenuation of H(2)O(2)-mediated cellular toxicity. These results suggest that DNA fragmentation induced by H(2)O(2) is attributable to caspase 3 activation and that H(2)O(2) may be critical for signaling leading to apoptosis. However, unlike inducibly increased catalase expression and general caspase inhibition both of which protect cells from cytotoxicity, caspase 3 inhibition alone did not improve cell survival suggesting that prevention of DNA fragmentation is insufficient to prevent H(2)O(2)-mediated cell death.  相似文献   

15.
Moriya R  Uehara T  Nomura Y 《FEBS letters》2000,484(3):253-260
We have attempted to elucidate the precise mechanism of nitric oxide (NO)-induced apoptotic neuronal cell death. Enzymatic cleavages of DEVD-AFC, VDVAD-AFC, and LEHD-AFC (specific substrates for caspase-3-like protease (caspase-3 and -7), caspase-2, and caspase-9, respectively) were observed by treatment with NO. Western blot analysis showed that pro-forms of caspase-2, -3, -6, and -7 are decreased during apoptosis. Interestingly, Ac-DEVD-CHO, a caspase-3-like protease inhibitor, blocked not only the decreases in caspase-2 and -7, but also the formation of p17 from p20 in caspase-3 induced by NO, suggesting that caspase-3 exists upstream of caspase-2 and -7. Bongkrekic acid, a potent inhibitor of mitochondrial permeability transition, specifically blocked both the loss of mitochondrial membrane potential and subsequent DNA fragmentation in response to NO. Thus, NO results in neuronal apoptosis through the sequential loss of mitochondrial membrane potential, caspase activation, and degradation of inhibitor of caspase-activated DNase (CAD) (CAD activation).  相似文献   

16.
We have elucidated the cytoprotective effect of annphenone (2,4-dihyroxy-6-methoxy-acetophenone 4-O-beta-d-glucopyranoside) against oxidative stress-induced apoptosis. Annphenone scavenged intracellular reactive oxygen species (ROS) and increased antioxidant enzyme activities. It thereby prevented lipid peroxidation and DNA damage, which was demonstrated by the inhibition of the formation of thiobarbituric acid reactive substance (TBARS), inhibition of the comet tail and decreased phospho-H2A.X expression. Annphenone protected Chinese hamster lung fibroblast (V79-4) cells from cell death via the inhibition of apoptosis induced by hydrogen peroxide (H(2)O(2)), as shown by decreased apoptotic nuclear fragmentation, decreased sub-G(1) cell population and inhibited mitochondrial membrane potential (Deltapsi) loss. Taken together, these findings suggest that annphenone exhibits antioxidant properties by inhibiting ROS generation and thus protecting cells from H(2)O(2)-induced cell damage.  相似文献   

17.
As a traditional Chinese medicine, the sea buckthorn (Hippophae rhamnoides L.) has a long history in the treatment of ischemic heart disease and circulatory disorders. However, the active compounds responsible for and the underlying mechanisms of these effects are not fully understood. In this article, isorhamnetin pretreatment counteracted H(2)O(2)-induced apoptotic damage in H9c2 cardiomyocytes. Isorhamnetin did not inhibit the death receptor-dependent or extrinsic apoptotic pathways, as characterized by its absence in both caspase-8 inactivation and tBid downregulation along with unchanged Fas and TNFR1 mRNA levels. Instead, isorhamnetin specifically suppressed the mitochondria-dependent or intrinsic apoptotic pathways, as characterized by inactivation of caspase-9 and -3, maintenance of the mitochondrial membrane potential (ΔΨm), and regulation of a series of Bcl-2 family genes upstream of ΔΨm. The anti-apoptotic effects of isorhamnetin were linked to decreased ROS generation. H(2)O(2) activated ERK and p53, whereas isorhamnetin inhibited their activation. ERK overexpression overrode the isorhamnetin-induced inhibition of the intrinsic apoptotic pathway in H9c2 cardiomyocytes, which indicated that an ERK-dependent pathway was involved. Furthermore, N-acetyl cysteine (a potent ROS scavenger) could attenuate the H(2)O(2)-induced apoptosis. However, PD98059 (an ERK-specific inhibitor) could not effectively antagonize ROS generation, which indicates that ROS may be an upstream inducer of ERK. In conclusion, isorhamnetin inhibits the H(2)O(2)-induced activation of the intrinsic apoptotic pathway via ROS scavenging and ERK inactivation. Therefore, isorhamnetin is a promising reagent for the treatment of ROS-induced cardiomyopathy.  相似文献   

18.
Reactive molecules O(-)(2), H(2)O(2), and nitrogen monoxide (NO) are produced from macrophages following exposure to lipopolysaccharide (LPS) and involved in cellular signaling for gene expression. Experiments were carried out to determine whether these molecules regulate inducible nitric oxide synthase (iNOS) gene expression in RAW264.7 macrophages exposed to LPS. NO production was inhibited by the antioxidative enzymes catalase, horseradish peroxidase, and myeloperoxidase but not by superoxide dismutase (SOD). In contrast, the NO-producing activity of LPS-stimulated RAW264.7 cells was enhanced by the NO scavengers hemoglobin (Hb) and myoglobin. The antioxidant enzymes decreased levels of iNOS mRNA and protein in LPS-stimulated RAW264.7 cells, whereas the NOS inhibitor N(G)-monomethyl-L-arginine as well as Hb increased the level of iNOS protein but not mRNA, indicating that NO inhibits iNOS protein expression. NF-kappa B was activated in LPS-stimulated RAW264.7 cells and the activation was significantly inhibited by antioxidant enzymes, but not by Hb. Similar results were obtained using LPS-stimulated rodent peritoneal macrophages. Extracellular O(-)(2) generation by LPS-stimulated macrophages was suppressed by SOD, but not by antioxidative enzymes, while accumulation of intracellular reactive oxygen species was inhibited by antioxidative enzymes, but not by SOD. Exogenous H(2)O(2) induced NF-kappa B activation in macrophages, which was inhibited by catalase and pyrroline dithiocarbamate (PDTC). H(2)O(2) enhanced iNOS expression and NO production in peritoneal macrophages when added with interferon-gamma, and the effect of H(2)O(2) was inhibited by catalase and PDTC. These findings suggest that H(2)O(2) production from LPS-stimulated macrophages participates in the upregulation of iNOS expression via NF-kappa B activation and that NO is a negative feedback inhibitor of iNOS protein expression.  相似文献   

19.
20.
Tetrahydrobiopterin (BH4), which is an essential cofactor for nitric oxide synthase (NOS), is generally accepted as an important molecular target for oxidative stress. This study examined whether hydrogen peroxide (H(2)O(2)), one of the reactive oxygen species (ROS), affects the BH4 level in vascular endothelial cells (ECs). Interestingly, the addition of H(2)O(2) to ECs markedly increased the BH4 level, but not its oxidized forms. The H(2)O(2)-induced increase in the BH4 level was blocked by the inhibitor of GTP-cyclohydrolase I (GTPCH), which is the rate-limiting enzyme of BH4 synthesis. Moreover, H(2)O(2) induced the expression of GTPCH mRNA, and the inhibitors of protein synthesis blocked the H(2)O(2)-induced increase in the BH4 level. The expression of the inducible isoform of NOS (iNOS) was slightly induced by the treatment with H(2)O(2). Additionally, the L-citrulline formation from L-arginine, which is the marker for NO synthesis, was stimulated by the treatment with H(2)O(2), and the H(2)O(2)-induced L-citrulline formation was strongly attenuated by NOS or GTPCH inhibitor. These results suggest that H(2)O(2) induces BH4 synthesis via the induction of GTPCH, and the increased BH4 is coupled with NO production by coinduced iNOS. H(2)O(2) appears to be one of the important signaling molecules to regulate the BH4-NOS system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号