首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fluorescence induction and other fluorescence properties of spinach chloroplasts at room temperature were probed utilizing two 30-ps wide laser pulses (530 nm) spaced Δt (s) apart in time (Δt = 5–110 ns). The energy of the first pulse (P1) was varied (1012–1016 photons · cm−2), while the energy of the second (probe) pulse (P2) was held constant (5 · 1013 photons · cm−2). A gated (10 ns) optical multichannel analyzer-spectrograph system allowed for the detection of the fluorescence generated either by P1 alone, or by P2 alone (preceded by P1). The dominant effect observed for the fluorescence yield generated by P1 alone is the usual singlet-singlet exciton annihilation which gives rise to a decrease in the yield at high energies. However, when the fluorescence yield of dark-adapted chloroplasts is measured utilizing P2 (preceded by pulse P1) an increase in this yield is observed. The magnitude of this increase depends on Δt, and is characterized by a time constant of 28 ± 4 ns. This rise in the fluorescence yield is attributed to a reduction of the oxidized (by P1) reaction center P-680+ by a primary donor. At high pulse energies (P1 = 4 · 1014 photons · cm−2) the magnitude of this fluorescence induction is diminished by another quenching effect which is attributed to triplet excited states generated by intense P1 pulses. Assuming that the P1 pulse energy dependence of the fluorescence yield rise reflects the closing of the reaction centers, it is estimated that about 3–4 photon hits per reaction center are required to close completely the reaction centers, and that there are 185–210 chlorophyll molecules per Photosystem II reaction center.  相似文献   

2.
The fluorescence decay time of spinach chloroplasts at 77 degrees K was determined at 735 nm (corresponding to the photosystem I emission) using a train of 10-ps laser pulses spaced 10 ns apart. The fluorescence lifetime is constant at congruent to 1.5 ns for up to the fourth pulse, but then decreases with increasing pulse number within the pulse train. This quenching is attributed to triplet excited states, and it is concluded that triplet excitons exhibit a time lag of about 50 ns in diffusing from light harvesting antenna pigments to photosystem I pigments. The diffusion coefficient of triplet excitons is a least 300--400 times slower than the diffusion coefficient of singlet excitons in chloroplast membranes.  相似文献   

3.
Competence is a transiently differentiated state that certain bacterial cells reach when faced with a stressful environment. Entrance into competence can be attributed to the excitability of the dynamics governing the genetic circuit that regulates this cellular behavior. Like many biological behaviors, entrance into competence is a stochastic event. In this case cellular noise is responsible for driving the cell from a vegetative state into competence and back. In this work we present a novel numerical method for the analysis of stochastic biochemical events and use it to study the excitable dynamics responsible for competence in Bacillus subtilis. Starting with a Finite State Projection (FSP) solution of the chemical master equation (CME), we develop efficient numerical tools for accurately computing competence probability. Additionally, we propose a new approach for the sensitivity analysis of stochastic events and utilize it to elucidate the robustness properties of the competence regulatory genetic circuit. We also propose and implement a numerical method to calculate the expected time it takes a cell to return from competence. Although this study is focused on an example of cell-differentiation in Bacillus subtilis, our approach can be applied to a wide range of stochastic phenomena in biological systems.  相似文献   

4.
A master equation theory is formulated to describe the dependence of the fluorescence yield (phi) in photosynthetic systems on the number of photons (Y) absorbed per photosynthetic unit (or domain). This theory is applied to the calculation of the dependence of the fluorescence yield on Y in (a) fluorescence induction, and (b) singlet exciton-triplet excited-state quenching experiments. In both cases, the fluorescence yield depends on the number of previously absorbed photons per domain, and thus evolves in a nonlinear manner with increasing Y. In case a, excitons transform the photosynthetic reaction centers from a quenching state to a nonquenching state, or a lower efficiency of quenching state; subsequently, absorbed photons have a higher probability of decaying by radiative pathways and phi increases as Y increases. In case b, ground-state carotenoid molecules are converted to long-lived triplet excited-state quenchers, and phi decreases as Y increases. It is shown that both types of processes are formally described by the same theoretical equations that relate phi to Y. The calculated phi (Y) curves depend on two parameters m and R, where m is the number of reaction centers (or ground-state carotenoid molecules that can be converted to triplets), and R is the ratio phi (Y leads to infinity)/(Y leads to 0). The finiteness of the photosynthetic units is thus taken into account. The m = 1 case corresponds to the "puddle" model, and m leads to infinity to the "lake," or matrix, model. It is shown that the experimental phi (Y) curves for both fluorescence induction and singlet-triplet exciton quenching experiments are better described by the m leads to infinity cases than the m = 1 case.  相似文献   

5.
We previously showed using a fluorescent analogue of cholesterol (NBD-cholesterol, or 25-[N-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-methyl]amino]-27-norcholesterol), that cholesterol may exhibit local organization at low concentrations in membranes by the formation of transbilayer tail-to-tail dimers of cholesterol (Rukmini, R., Rawat, S.S., Biswas, S.C., Chattopadhyay, A., 2001. Biophys. J. 81, 2122-2134). In this report, we have monitored the microenvironmental features of cholesterol monomers and dimers utilizing wavelength-selective fluorescence spectroscopy. Our results utilizing red edge excitation shift (REES) and wavelength-dependent change in fluorescence anisotropy show that the microenvironment around the NBD moieties in the dimer form is more rigid possibly due to steric constraints imposed by the dimer conformation. These results provide new information and are relevant in understanding the organization of cholesterol in membranes at low concentrations.  相似文献   

6.
The function of membrane receptors in the nervous system depends on physicochemical characteristics of neuronal membranes such as membrane order and phase. In this work, we have monitored the changes in hippocampal membrane order and related parameters by cholesterol and protein content utilizing a Nile Red-based phase-sensitive fluorescent membrane probe NR12S. Since alteration of membrane cholesterol is often associated with membrane phase change, the phase-sensitive nature of NR12S fluorescence becomes useful in these experiments. Our results show that fluorescence spectroscopic parameters such as emission maximum, anisotropy, and lifetime of NR12S display characteristic dependence on membrane cholesterol content. Interestingly, cholesterol-dependent red edge excitation shift is displayed by NR12S under these conditions. Hippocampal membranes exhibited reduction in liquid-ordered phase upon cholesterol depletion. These results provide insight into changes in hippocampal membrane order in the overall context of cholesterol and protein modulation.  相似文献   

7.
Energy transfer in photosynthetic membranes involves the migration of excitons from light‐harvesting antenna chlorophyll‐protein complexes to the reaction center complexes. Recent efforts have focused on determining the time of arrival of excitons (trapping times) at the reaction centers following excitation with a single picosecond laser pulse. Three different approaches have been utilized: (1) determination of appearance of separated charges within the reaction centers by differential absorbtion spectroscopy, (2) determination of appearance of separated charges by fast photoemf measurements, and (3) kinetics of decay of fluorescence. The first two methods provide more direct information on exciton trapping by reaction centers than fluorescence methods, but are experimentally difficult to realize. Therefore, much activity has centered around the accurate measurement and analysis of fluorescence‐decay profiles by single‐photon counting methods. In green plants, about three different components with lifetimes of about 100 psec, 200 to 500 psec, and >1 nsec, have been reported. The first two components are believed to be related to trapping rates by reaction centers, while the third component is attributed to a charge recombination (Klimov) mechanism. Results from photoemf and exciton‐exciton annihilation experiments are consistent with the interpretation that the first decay component reflects exciton‐trapping rates. A critical analysis and discussion of these fast energy‐transfer phenomena in photosynthetic membranes of green plants are offered in this review.  相似文献   

8.
9.
In this paper we show how alamethicin (a small cyclic peptide of molecular weight 1691) can produce voltage oscillations in black lipid membranes and how a nonactin-alamethicin oscillator can be constructed. Alamethicin alone induces oscillations only with an applied bias current, but with nonactin and appropriate salt solutions oscillations occur with no bias current. Both kinds of oscillations can be quantitatively understood in terms of the known properties of alamethicin and nonactin and both depend on the statistical nature of the formation opores in the membrane by alamethicin.  相似文献   

10.
《BBA》1985,806(1):81-92
Fluorescence enhancement phenomena and quenching by exciton-exciton annihilation on subnanosecond and nanosecond time-scales were investigated in spinach chloroplasts utilizing picosecond laser pulse pairs (530 nm, 30 ps wide) of equal intensity, spaced apart in time by variable delays of Δt = 0−6 ns. This new method was devised to study the effect of pulse energies (1·1010–2·1015 photons per cm2) on the overall fluorescence yield in order to deduce the degree of correlation between the two pulses as a function of Δt. In the case of open reaction centers (F0 state) in Photosystem II (PS II), it is shown that the quenching effect of excitons generated by the first pulse on the fluorescence yield of the second pulse diminishes with increasing Δt with a characteristic decorrelation time of 140 ± 60 ps. This effect is attributed to either (1) the decay of mobile excitons in the light-harvesting antenna pigment bed as these excitons migrate towards the PS II reaction centers and the associated smaller core antenna pigment pools, or (2) the decay of a quenching state of the reaction center (and/or core antenna) which appears following a rapid (less than 140 ps) trapping of the excitons initially created in the antenna pigment bed. The absence of a significant decay component of exciton quenchers with a lifetime comparable to the 300–600 ps intermediate phase of fluorescence decay kinetics suggests that this phase, although contributing to more than half of the integrated fluorescence emission signal, is not caused by freely mobile exitons migrating in a lake of pigments, but originates instead from smaller pigment pools to which the excitons have migrated. It is proposed that bimolecular exciton-exciton annihilation in these smaller domains dominates annihilation in the larger antenna pigment bed. In the case of closed reaction centers (Fmax state), the decorrelation time between the two pulses is increased to 400 ± 100 ps, which is also attributed to either a mobile exciton component or to the decay of a quenching state of the reaction center. At low pulse intensities (below approx. 2 · 1012 photons per cm2) anomalous fluorescence enhancement effects are noted, which are clearly linked to the existence of initially open PS II reaction centers. These enhancement effects are different from the well-known fluorescence induction phenomena which occur on longer time-scales, and are tentatively attributed to variations in the quenching efficiencies of transitory photochemical states of PS II reaction centers.  相似文献   

11.
We have monitored the membrane-bound channel and nonchannel conformations of gramicidin utilizing red-edge excitation shift (REES), and related fluorescence parameters. In particular, we have used fluorescence lifetime, polarization, quenching, chemical modification, and membrane penetration depth analysis in addition to REES measurements to distinguish these two conformations. Our results show that REES of gramicidin tryptophans can be effectively used to distinguish conformations of membrane-bound gramicidin. The interfacially localized tryptophans in the channel conformation display REES of 7 nm whereas the tryptophans in the nonchannel conformation exhibit REES of 2 nm which highlights the difference in their average environments in terms of localization in the membrane. This is supported by tryptophan penetration depth measurements using the parallax method and fluorescence lifetime and polarization measurements. Further differences in the average tryptophan microenvironments in the two conformations are brought out by fluorescence quenching experiments using acrylamide and chemical modification of the tryptophans by N-bromosuccinimide. In summary, we report novel fluorescence-based approaches to monitor conformations of this important ion channel peptide. Our results offer vital information on the organization and dynamics of the functionally important tryptophan residues in gramicidin.  相似文献   

12.
The degree of fluoresence polarization, P, of unoriented and magnetically oriented spinach chloroplasts as a function of excitation (400–680 nm) and emission wavelengths (675–750 nm) is reported. For unoriented chloroplasts P can be divided into two contributions, PIN and PAN. The latter arises from the optical anisotropy of the membranes which is due to the orientation with respect to the membrane plane of pigment molecules in vivo. The intrinsic polarization PIN, which reflects the energy transfer between different pigment molecules and their degree of mutual orientation, can be measured unambiguously only if (1) oriented membranes are used and the fluorescence is viewed along a direction normal to the membrane planes, and (2) the excitation is confined to the Qy (≈ 660−680 nm) absorption band of chlorophyll in vivo. With 670–680 nm excitation, values of P using unoriented chloroplasts can be as high as +14%, mostly reflecting the orientational anisotropy of the pigments. Using oriented chloroplasts, PIN is shown to be +5±1%. The excitation wavelength dependence studies of PIN indicate that the carotenoid and chlorophyll Qy transition moments tend to be partially oriented with respect to each other on a local level (within a given photosynthetic unit or its immediate neighbors).  相似文献   

13.
In this paper we show how alamethicin (a small cyclic peptide of molecular weight 1691) can produce voltage oscillations in black lipid membranes and how a nonactin-alamethicin oscillator can be constructed. Alamethicin alone induces oscillations only with an applied bias current, but with nonactin and appropriate salt solutions oscillations occur with no bias current. Both kinds of oscillations can be quantitatively understood in terms of the known properties of alamethicin and nonactin and both depend on the statistical nature of the formation of pores in the membrane by alamethicin.  相似文献   

14.
15.
16.
In the past few years, there has been remarkable progress in knowledge of the structures and organization of the protein complexes of photosynthetic membranes. However, static structures do not tell the whole story. Photosynthetic membranes, like other biological membranes, are dynamic systems. Recent technological advances are making it increasingly easy to probe the dynamics of photosynthetic membranes using fluorescence recovery after photobleaching. Here we explain the potential and the limitations of the technique.  相似文献   

17.
Melittin is a cationic hemolytic peptide isolated from the European honey bee, Apis mellifera. The organization of membrane-bound melittin has earlier been shown to be dependent on the physical state and composition of membranes. In this study, we covalently labeled the N-terminal (Gly-1) and Lys-7 of melittin with an environment-sensitive fluorescent probe, the NBD group, to monitor the influence of negatively charged lipids and cholesterol on the organization and dynamics of membrane-bound melittin. Our results show that the NBD group of melittin labeled at its N-terminal end does not exhibit red edge excitation shift in DOPC and DOPC/DOPG membranes, whereas the NBD group of melittin labeled at Lys-7 exhibits REES of approximately 8 nm. This could be attributed to difference in membrane microenvironment experienced by the NBD groups in these analogs. Interestingly, the membrane environment of the NBD groups is sensitive to the presence of cholesterol, which is supported by time-resolved fluorescence measurements. Importantly, the orientation of melittin is found to be parallel to the membrane surface as determined by membrane penetration depth analysis using the parallax method in all cases. Our results constitute the first report to our knowledge describing the orientation of melittin in cholesterol-containing membranes. These results assume significance in the overall context of the role of membrane lipids in the orientation and function of membrane proteins and peptides.  相似文献   

18.
19.
20.
Fusion of the single-walled liposomes of egg phosphatidylcholine as induced by the polyisoprenoids such as solanesol, trans-ethyl decaprenoate (EDP), coenzyme Q10, and dolichol has been investigated adopting the fluorescence quenching method. Relative efficiency of the polyisoprenoids employed on the induced fusion of liposomes was a sequence of solanesol less than or equal to EDP much less than CoQ10, dolichol, which was consistent with the result previously obtained by the dye-release method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号