首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The vaccinia virus (VV) A10L gene codes for a major core protein, P4a. This polypeptide is synthesized at late times during viral infection and is proteolytically cleaved during virion assembly. To investigate the role of P4a in the virus life cycle and morphogenesis, we have generated an inducer-dependent conditional mutant (VVindA10L) in which expression of the A10L gene is under the control of the Escherichia coli lacI operator/repressor system. Repression of the A10L gene severely impairs virus growth, as observed by both the inability of the virus to form plaques and the 2-log reduction of viral yields. This defect can be partially overcome by addition of the inducer isopropyl-beta-D-thiogalactopyranoside (IPTG). Synthesis of viral proteins other than P4a occurred, although early shutoff of host protein synthesis and expression of viral late polypeptides are clearly delayed, both in the absence and in the presence of IPTG, compared with cells infected with the parental virus. Viral DNA replication and concatemer resolution appeared to proceed normally in the absence of the A10L gene product. In cells infected with VVindA10L in the absence of the inducer virion assembly is blocked, as defined by electron microscopy. Numerous spherical immature viral particles that appear devoid of dense viroplasmic material together with highly electron-dense regular structures are abundant in VVindA10L-infected cells. These regularly spaced structures can be specifically labeled with anti-DNA antibodies as well as with a DNase-gold conjugate, indicating that they contain DNA. Some images suggest that these DNA structures enter into spherical immature viral particles. In this regard, although it has not been firmly established, it has been suggested that DNA uptake occurs after formation of spherical immature particles. Overall, our results showed that P4a and/or its cleaved products are essential for the correct assembly of the nucleoprotein complex within immature viral particles.  相似文献   

2.
Four low-molecular-weight polypeptides migrating like H2a, H2b, H3, and H4 calf liver histones were detected by sodium dodecyl sulfate-acrylamide gel electrophoresis of highly purified preparations of bovine papillomavirus (BPV) and human papillomavirus (HPV). Complexes of these polypeptides and viral DNA were isolated by agarose-gel filtration of the alkaline disruption products of both viruses. When observed under the electron microscope, these complexes appeared as circular structures composed of nucleosomes with a diameter of about 8.0 nm interconnected by a naked DNA filament. The maximal frequency of nucleosomes per molecule was 30 for both viruses, corresponding to a condensation ratio of the viral DNA of 2.5.  相似文献   

3.
An electrophoretic analysis of radioactively labeled, purified, "empty" and DNA-containing infectious bovine rhinotracheitis virions revealed the presence of 25 to 33 structural (virion) polypeptides. A total of 11 of these polypeptides could be labeled with [3H]glucosamine and were identified as glycoproteins. In addition to the 25 structural polypeptides, infectious bovine rhinotracheitis virus infected cells also contained at least 15 nonstructural (nonvirion) polypeptides that were not present in purified virions. Expression of the viral polypeptides in infected cells was controlled temporally. Thus, most viral polypeptides could be categorized as "alpha" (immediate early), "beta" (early), or "gamma" (late) on the basis of their order of appearance in infected cells and whether their syntheses were dependent upon prior viral protein or DNA synthesis. None of the glycoproteins belongs to the alpha class, although at least one (GVP11) was synthesized in the absence of viral DNA synthesis. Serum from a cow in which infectious bovine rhinotracheitis virus lesions were reactivated by dexamethasone precipitated both structural and nonstructural polypeptides.  相似文献   

4.
The immunogenicity of a plasmid DNA expression vector encoding both Gag and envelope (Env), which produced human immunodeficiency virus (HIV) type 1 virus-like particles (VLP), was compared to vectors expressing Gag and Env individually, which presented the same gene products as polypeptides. Vaccination with plasmids that generated VLP showed cellular immunity comparable to that of Gag and cell-mediated or humoral responses similar to those of Env as immunization with separate vectors. These data suggest that DNA vaccines encoding separated HIV polypeptides generate immune responses similar to those generated by viral particles.  相似文献   

5.
Polypeptide 4a, a major vaccinia structural polypeptide which was previously shown to form from a high-molecular-weight precursor is made after the period of viral deoxyribonucleic acid (DNA) synthesis. Pulse-chase experiments demonstrated that a period of 1 to 2 hr is required for a 50% conversion of precursor to product. The rates of incorporation of polypeptides into virus particles were examined. The kinetics of incorporation of labeled 4a and other major structural polypeptides into virus particles were similar, despite the additional time required for the formation of 4a from its precursor. Furthermore, 4a was present exclusively in a particulate form at all times examined. Both observations suggested that cleavage of the precursor occurs after, or immediately prior to, association with developing virus particles. Polypeptide P4a was previously identified as the probable precursor of 4a and is not ordinarily found in detectable amounts in virus particles. Under conditions in which breakdown of P4a was inhibited by adding rifampin or amino acid analogues after the period of viral DNA synthesis, isolated virus particles contained significant amounts of this polypeptide. Further analysis showed that P4a was localized within the virus core, which is also the site of 4a. Synchronization of virus assembly after the removal of rifampin was shown to be useful for studying the integration of polypeptides into a particulate fraction of the cytoplasm.  相似文献   

6.
We report on the isolation and characterization of a virus that is formed in modified zoidangia of the marine brown alga Feldmannia simplex (Crouan) Hamel (Ectocarpales, Phaeophyceae). Isolated virus particles had a buoyant density of about 1.35 g·mL?1 in CsCl equilibrium gradients. They contained one major polypeptide (MW = 55,000) and at least six additional polypeptides (MW = 15,000–120,000). Four of these proteins were glycosylated. The viral genome consisted of double-stranded DNA and formed two freely migrating fractions in pulsed-field-gel electrophoresis, namely linear DNA with a size of 220 kilobase pairs, and fragments of 10–60 kilobase pairs. However, electron microscopic examination revealed that a substantial fraction of the viral DNA occurred as closed circles. We suggest that the viral DNA in native particles is circular but tends to break at random sites during the preparation.  相似文献   

7.
At least 10 distinct early virus-induced polypeptides were synthesized within 0 to 6 h after infection of permissive cells with cytomegalovirus. These virus-induced polypeptides were synthesized before and independently of viral DNA replication. A majority of these early virus-induced polypeptides were also synthesized in nonpermissive cells, which do not permit viral DNA replication. The virus-induced polypeptides synthesized before viral DNA replication were hypothesized to be nonstructural proteins coded for by the cytomegalovirus genome. Their synthesis was found to be a sequential process, since three proteins preceded the synthesis of the others. Synthesis of all early cytomegalovirus-induced proteins was a transient process; the proteins reached their highest molar ratios before the onset of viral DNA replication. Late viral proteins were synthesized at the time of the onset of viral DNA replication, which was approximately 15 h after infection. Their synthesis was continuous and increased in molar ratios with the accumulation of newly synthesized viral DNA in the cells. The presence of the amino acid analog canavanine or azetadine during the early stage of infection suppressed viral DNA replication. The amount of viral DNA synthesis was directly correlated to the relative amount of late viral protein synthesis. Because synthesis of late viral proteins depended upon viral DNA replication, the proteins were not detected in permissive cells treated with an inhibitor of viral DNA synthesis or in nonpermissive cells that are restrictive for cytomegalovirus DNA replication.  相似文献   

8.
Simian virus 40 (SV40) can be disassembled under mild conditions by reducing disulfide bonds in the capsid and removing calcium ions. The nucleoprotein complexes formed, analyzed by electron microscopy, were circular and made up of 59 +/- 4 subunits, each with a diameter of about 10 nm. The complexes contained the viral DNA, histones, and the viral capsid proteins. The complexes had much-reduced infectivities compared with intact SV40. Addition of calcium ions to the disrupted virus caused the nucleoprotein complexes to refold into virus-like structures which sedimented at the same rate as intact SV40 and regained infectivity. Treatment of the disrupted SV40 with a high concentration of salt dissociated the viral proteins from the DNA. Lowering stepwise the salt concentration, removing the reducing agent, and adding calcium ions allowed structures to be reformed, and these structures sedimented, like SV40, at 240S and were infectious. The plaque-forming ability of the reconstituted particles was between that of the dissociated components and that of intact SV40. The addition of purified DNA of polyomavirus to the dissociated SV40 before the lowering of the salt concentration showed that virus-like structures could be formed from SV40 proteins and a foreign DNA.  相似文献   

9.
10.
POLYPEPTIDES from different sources can be compared conveniently by digesting them with proteolytic enzymes and fingerprinting the resulting smaller peptides. If peptides with identical electrophoretic and chromatographic properties are obtained, the implication is very strong that the sequences of the original polypeptides were, at least in part, the same. The need for such comparisons arises in studies of in vitro polypeptides synthesized in coupled systems directed by viral DNAs. The material synthesized in vitro must be compared with authentic virus-coded material to verify that the system is transcribing DNA to RNA and translating RNA to protein with fidelity. For viruses such as SV40 and polyoma, which can be grown in tissue culture, the virus particles grown in the presence of 35S-methionine are a convenient source of virus-coded proteins. Proteolytic digests of these particles can be compared with digests of 35S-methionine labelled material synthesized in vitro. Preliminary results have shown that, in the case of polyoma virus, matching peptides are obtained from virus particles and polypeptides synthesized in vitro1.  相似文献   

11.
A temperature-sensitive, fiber-minus mutant of type 5 adenovirus, H5ts142, was biochemically and genetically characterized. Genetic studies revealed that H5ts142 was a member of one of the three apparent fiber complementation groups which were detected owing to intracistronic complementation. Recombination analyses showed that it occupied a unique locus at the right end of the adenovirus genetic map. At the nonpermissive temperature, the mutant made stable polypeptides, but they were not glycosylated like wild-type fiber polypeptides. Sedimentation studies of extracts of H5ts142-infected cells cultured and labeled at 39.5°C indicated that a limited number of the fiber polypeptides made at the nonpermissive temperature could assemble into a form having a sedimentation value of 6S (i.e., similar to the trimeric wild-type fiber), but that this 6S structure was not immunologically reactive. When H5ts142-infected cells were shifted to the permissive temperature, 32°C, fiber polypeptides synthesized at 39.5°C were as capable of being assembled into virions as fibers synthesized in wild type-infected cells; de novo protein synthesis was not required to allow this virion assembly. In H5ts142-infected cells incubated at 39.5°C, viral proteins accumulated and aggregated into particles having physical characteristics of empty capsids. These particles did not contain DNA or its associated core proteins. However, when the infected culture was shifted to 32°C, DNA appeared to enter the empty particles and complete virions developed. The intermediate particles obtained had the morphology of adenoviruses, but they contained less than unit-length viral genomes as measured by their buoyant density in a CsCl density gradient and the size of their DNA as determined in both neutral and alkaline sucrose gradients. The reduced size of the intermediate particle DNA was demonstrated to be the result of incompletely packaged DNA molecules being fragmented during the preparative procedures. Hybridization of labeled DNA extracted from the intermediate particles to filters containing restriction fragments of the adenovirus genome indicated that the molecular left end of the viral genome preferentially entered these particles.  相似文献   

12.
A rapidly frozen vitrified aqueous suspension of influenza A virus was observed by high resolution electron cryomicroscopy. The influenza particles were grouped into small (diameter < 150 nm) spherical particles with well organized interiors, large spherical ones with less internal organization, and filamentous ones. Envelopes of most of the large virus particles were phospholipid bilayers, and the chromatography fraction containing these large particles was largely devoid of viral activity. The envelopes of most of the filamentous and small spherical virus particles, on the other hand, gave a strange contrast which could be ascribed to a combination of a thin outer lipid monolayer and a 7.2 nm thick protein-containing inner layer. These latter particles represented most of the viral activity in the preparation. Densitometric traces of the near in-focus images confirmed these structural differences. Some viral envelope structures apparently intermediate between these two distinct types of membrane were also detected. A structural model of intact biologically active influenza virus particles was formulated from these results, together with computer simulations.  相似文献   

13.
To get insights into the role played by each of the influenza A virus polypeptides in morphogenesis and virus particle assembly, the generation of virus-like particles (VLPs) has been examined in COS-1 cell cultures expressing, from recombinant plasmids, different combinations of the viral structural proteins. The presence of VLPs was examined biochemically, following centrifugation of the supernatants collected from transfected cells through sucrose cushions and immunoblotting, and by electron-microscopic analysis. It is demonstrated that the matrix (M1) protein is the only viral component which is essential for VLP formation and that the viral ribonucleoproteins are not required for virus particle formation. It is also shown that the M1 protein, when expressed alone, assembles into virus-like budding particles, which are released in the culture medium, and that the recombinant M1 protein accumulates intracellularly, forming tubular structures. All these results are discussed with regard to the roles played by the virus polypeptides during virus assembly.  相似文献   

14.
The polypeptide, antigenic, and morphological structure of the mouse mammary tumor virus was studied following protease digestion of intact virions. Intact, untreated virions (rho = 1.17 g/ml) had characteristic envelope spikes, five major polypeptides, and were precipitated by antisera against gp52. Two of the major polypeptides, with molecular weights of 52,000 (gp52) and 36,000 (gp36), had carbohydrate moieties. Protease treatment resulted in spikeless, "bald" particles (rho = 1.14 g/ml), which had altered surface antigenicity and which contained neither gp52 nor gp36. These data indicated that gp52 and gp36 were on the viral envelope. Bald particles retained a 28,000 dalton polypeptide (p28) which was proposed as the major internal polypeptide.  相似文献   

15.
Structure and composition of the adenovirus type 2 core.   总被引:42,自引:24,他引:18  
The structure and composition of the core of adenovirus type 2 were analyzed by electron microscopy and biochemical techniques after differential degradation of the virion by heat, by pyridine, or by sarcosyl treatment. In negatively stained preparations purified sarcosyl cores reveal spherical subunits of 21.6-nm diameter in the electron microscope. It is suggested that these subunits are organized as an icosahedron which has its axes of symmetry coincident with those of the viral capsid. The subunits are connected by the viral DNA molecule. The sarcosyl cores contain the viral DNA and predominantly the arginine/alanine-rich core polypeptide VII. When sarcosyl cores are spread on a protein film, tightly coiled particles are observed which gradually unfold giving rise to a rosette-like pattern due to the uncoiling DNA molecule. Completely unfolded DNA molecules are circular. Pyridine cores consist of the viral DNA and polypeptides V and VII. In negatively stained preparations of pyridine cores the subunit arrangement apparent in the sarcosyl cores is masked by an additional shell which is probably formed by polypeptide V. In freeze-cleaved preparations of the adenovirion two fracture planes can be recognized. One fracture plane probably passes between the outer capsid of the virion and polypeptide V exposing a subviral particle which corresponds to the pyridine core. The second fracture plane observed could be located between polypeptide V and the polypeptide VII-DNA complex, thus uncovering a subviral structure which corresponds to the sarcosyl core. In the sarcosyl core polypeptide VII is tightly bound to the viral DNA which is susceptible to digestion with DNase. The restriction endonuclease EcoRI cleaves the viral DNA in the sarcosyl cores into the six specific fragments. These fragments can be resolved on polyacrylamide-agarose gels provided the sarcosyl cores are treated with pronase after incubation with the restriction endonuclease. When pronase digestion is omitted, a complex of the terminal EcoRI fragments adenovirus DNA and protein can be isolated. From this complex the terminal DNA fragments can be liberated after pronase treatment. The complex described is presumably responsible for the circularization of the viral DNA inside the virion. The nature of the protein(s) involved in circle formation has not yet been elucidated.  相似文献   

16.
We have cloned in Escherichia coli both the complete core gene of hepatitis B virus and a truncated version of it, leading to the synthesis of high levels of a core-antigen-equivalent polypeptide (r-p22) and of an e-antigen-equivalent polypeptide (r-p16), respectively. We then compared the structural and antigenic properties of the two polypeptides, as well as their ability to bind viral nucleic acids. r-p16 was found to self-assemble into capsid-like particles that appeared similar, when observed under the electron microscope, to those formed by r-p22. In r-p16 particles, disulfide bonds linked the truncated polypeptides in dimers, assembled in the particle by noncovalent interactions. In r-p22 capsids, further disulfide bonds, conceivably involving the carboxy-terminal cysteines of r-p22 polypeptides, joined the dimers together, converting the structure into a covalently closed lattice. The protamine-like domain was at least partly exposed on the surface of r-p22 particles, since it was accessible to selective proteolysis. Finally, r-p22, but not r-p16, was shown to bind native and denatured DNA as well as RNA. Taken together, these results suggest that the protamine-like domain in core polypeptides is a nucleic acid-binding domain and is dispensable for the correct folding and assembly of amino-terminal and central regions.  相似文献   

17.
18.
By following up the chance detection in the electron microscope of a DNA replication intermediate within a preparation of bovine papillomavirus (BPV-1) DNA isolated from purified virus particles, information was obtained about the mechanism of BPV-1 genome replication during the final stages of virus multiplication in naturally infected bovine wart tissue. The structure of viral replication intermediates was investigated by electron microscopic analysis of viral DNA linearized by digestion with restriction endonucleases which cleave the circular BPV-1 chromosome at defined sites. Both Cairns and rolling circle-type molecules were identified. Furthermore, replication eyes were widely distributed within the viral genome, indicating that vegetative BPV-1 DNA replication origins are largely uncoupled from previously described plasmid maintenance sequence elements.  相似文献   

19.
Electron and confocal microscopy were used to observe the entry and the movement of polyomavirus virions and artificial virus-like particles (VP1 pseudocapsids) in mouse fibroblasts and epithelial cells. No visible differences in adsorption and internalization of virions and VP1 pseudocapsids ("empty" or containing DNA) were observed. Viral particles entered cells internalized in smooth monopinocytic vesicles, often in the proximity of larger, caveola-like invaginations. Both "empty" vesicles derived from caveolae and vesicles containing viral particles were stained with the anti-caveolin-1 antibody, and the two types of vesicles often fused in the cytoplasm. Colocalization of VP1 with caveolin-1 was observed during viral particle movement from the plasma membrane throughout the cytoplasm to the perinuclear area. Empty vesicles and vesicles with viral particles moved predominantly along microfilaments. Particle movement was accompanied by transient disorganization of actin stress fibers. Microfilaments decorated by the VP1 immunofluorescent signal could be seen as concentric curves, apparently along membrane structures that probably represent endoplasmic reticulum. Colocalization of VP1 with tubulin was mostly observed in areas close to the cell nuclei and on mitotic tubulin structures. By 3 h postinfection, a strong signal of the VP1 (but no viral particles) had accumulated in the proximity of nuclei, around the outer nuclear membrane. However, the vast majority of VP1 pseudocapsids did not enter the nuclei.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号