首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In asexual lineages, both synonymous and nonsynonymous sequence polymorphism may be reduced due to severe founder effects when asexual lineages originate. However, mildly deleterious (nonsynonymous) mutations may accumulate after asexual lineages are formed, because the efficiency of purifying selection is reduced even in the nonrecombining mitochondrial genome. Here we examine patterns of synonymous and nonsynonymous mitochondrial sequence polymorphism in asexual and sexual lineages of the freshwater snail Campeloma. Using clade-specific estimates, we found that synonymous sequence polymorphism was significantly reduced by 75% in asexuals relative to sexuals, whereas nonsynonymous sequence polymorphism did not differ significantly between sexuals and asexuals. Two asexual clades had high negative values for Tajima's D statistic. Coalescent simulations confirmed that various bottleneck scenarios can account for this result. We also used branch-specific estimates of the ratio of amino acid to silent substitutions, K(a)/K(s). Our study revealed that K(a)/K(s) ratios are six times higher in terminal branches of independent asexual lineages compared to sexuals. Coalescent-based reconstruction of gene networks for all sexual and asexual clades indicated that nonsynonymous mutations occurred at a higher frequency in recently derived asexual haplotypes. These findings suggest that patterns of synonymous and nonsynonymous nucleotide polymorphism in asexual snail lineages may be shaped by both severe founder effect and relaxed purifying selection.  相似文献   

2.
3.
Many aphid species exhibit geographical variation in the mode of reproduction that ranges from cyclical parthenogenesis with a sexual phase to obligate parthenogenesis (asexual reproduction). Theoretical studies predict that organisms reproducing asexually should maintain higher allelic diversity per locus but lower genotypic diversity than organisms reproducing sexually. To corroborate this hypothesis, we evaluated genotypic and allelic diversities in the sexual and asexual populations of the pea aphid, Acyrthosiphon pisum (Harris). Microsatellite analysis revealed that populations in central Japan are asexual, whereas populations in northern Japan are obligatorily sexual. No mixed populations were detected in our study sites. Phylogenetic analysis using microsatellite data and mitochondrial cytochrome oxidase subunit I (COI) gene sequences revealed a long history of asexuality in central Japan and negated the possibility of the recent origin of the asexual populations from the sexual populations. Asexual populations exhibited much lower genotypic diversity but higher allelic richness per locus than did sexual populations. Asexual populations consisted of a few predominant clones that were considerably differentiated from one another. Sexual populations on alfalfa, an exotic plant in Japan, were most closely related to asexual populations associated with Vicia sativa L. The alfalfa-associated sexual populations harboured one COI haplotype that was included in the haplotype clade of the asexual populations. Available evidence suggests that the sexuality of the alfalfa-associated populations has recently been restored through the northward migration and colonization of alfalfa by V. sativa- associated lineages. Therefore, our results support the theoretical predictions and provide a new perspective on the origin of sexual populations.  相似文献   

4.
Ecological adaptation within islands may have figured prominently in the insular radiation of black flies (subgenus Inseliellum) in the Society Islands, French Polynesia. To aid in understanding the sequence of ecological shifts in this group, we have constructed a phylogeny by using morphology, the cytochrome oxidase I (COI) gene, and the small ribosomal subunit (12S) gene. The strong influence of COI on the combined analysis tree was evident from its contribution to the partitioned Bremer support (62%). The net effect of including 12S was to reduce overall tree support. Different character sets resolved different portions of the combined analysis tree, with COI resolving recent lineages, 12S resolving basal relationships, and morphology supporting the monophyly of taxa having smaller larval feeding fans (oviceps group). The Partition Homogeneity and Kashino-Hasegawa tests indicated significant incongruence between morphological and mitochondrial data. The Templeton test revealed that morphology and the combined (COI + 12S) mitochondrial data were incongruent. This conflict stems primarily from disagreement over the monophyly of taxa having much smaller larval feeding fans. Either convergence in a subset of morphological characters, low phylogenetic signal among mitochondrial sequences, or lineage-sorting causing the mitochondrial data to track an incorrect evolutionary history may be responsible for these results.  相似文献   

5.
Summary We have detected sequence heterogeneity in the cytochrome c oxidase subunit I (COI) gene of a freshwater planarian, Dugesia japonica, collected in one locality. A part of the COI gene was amplified via the polymerase chain reaction (PCR) using template DNA prepared from a mixture of 500 individuals or from each of 18 individuals. Analyses of DNA sequences by standard strategies for cloning and sequencing or by direct sequencing clearly show that (1) considerable sequence heterogeneity exists in DNA prepared from the mixed individuals, (2) 11 individuals have almost identical sequences (type A), and (3) 7 individuals have sequences different from one another (Seq-D 1 to SeqD7; collectively called type D). Each of the Seq-D1-D7 sequences except for Seq-D5 shows some heterogeneity even in a single individual (heteroplasmy). A possible cause of the sequence heterogeneities is discussed.Offprint requests to: Y. Bessho  相似文献   

6.
We studied sequence variation in the mitochondrial gene cytochrome c oxidase subunit I (COI) for 135 individuals from eight Mediterranean populations of the colonial ascidian Pycnoclavella communis across most of its presently known range of distribution in the Mediterranean. Three haplotypes from Atlantic locations were also included in the study. Phylogenetic, phylogeographic and population genetic analyses were used to unravel the genetic variability within and between populations. The study revealed 32 haplotypes for COI, 29 of them grouped within two Mediterranean lineages of P. communis (mean nucleotide divergence between lineages was 8.55%). Phylogenetic and network analyses suggest the possible existence of cryptic species corresponding to these two lineages. Population genetic analyses were restricted to the five populations belonging to the main genetic lineage, and for these localities we compared the information gleaned from COI sequence data and from eight microsatellite loci. A high genetic divergence between populations was substantiated using both kinds of markers (COI, global Fst=0.343; microsatellite loci, global Fst=0.362). There were high numbers of private haplotypes (COI) and alleles (microsatellites) in the populations studied. Restricted gene flow and inbreeding occur in the present range of distribution of the species. Microsatellite loci showed a strong incidence of failed amplifications, which we attribute to the marked intraspecies variability that hampered the application of these highly specific markers. Our results show important genetic variability at all levels studied, from within populations to between basins, possibly coupled to speciation processes. This variability is attributable to restricted gene flow among populations due to short-distance dispersal of the larvae.  相似文献   

7.
Planarians of the genus Dugesia have a worldwide distribution with high species diversity in the Mediterranean area. In this area, populations with a triploid karyotype that reproduce by fissiparity are exceptionally frequent, outnumbering the sexual populations. This situation poses interesting questions, such as the age of these asexual lineages, whether they all belong to the same species or whether the triploidization event is recurrent, and what factors (climatic, geographical, historical...) explain the prevalence of these asexual forms. However, asexual populations cannot be assigned to a species due to the lack of copulatory apparatus – the main structure used in species identification. In this study, we have developed a DNA barcoding method, based on COI and ITS-1 sequences, which allows the assignment of the fissiparous forms to sexual species. At the same time, phylogenetic analysis from species of the western Mediterranean have unveiled the presence of species with highly differentiated populations alongside species with a wide distribution and almost no genetic variation. The roles of habitat instability, dispersal capacity and human activities are briefly discussed.  相似文献   

8.
Mitochondrial DNA, cytochrome oxidase-1 gene sequences were analyzed for species identification and phylogenetic relationship among the very high food value and commercially important Indian carangid fish species. Sequence analysis of COI gene very clearly indicated that all the 28 fish species fell into five distinct groups, which are genetically distant from each other and exhibited identical phylogenetic reservation. All the COI gene sequences from 28 fishes provide sufficient phylogenetic information and evolutionary relationship to distinguish the carangid species unambiguously. This study proves the utility of mtDNA COI gene sequence based approach in identifying fish species at a faster pace.  相似文献   

9.
A dual cytogenetic and molecular analysis was performed in four species of Cyclocepala (Coleoptera: Scarabaeidae: Dynastinae) from Lesser Antilles (Martinique, Dominica and Guadeloupe). Two species/sub-species, C. mafaffa grandis and C. insulicola, are endemic to Guadeloupe. They have their own non-polymorphic karyotype and a fairly homogeneous haplotype of the COI gene. C. melanocephala rubiginosa has a distinct karyotype. Its COI haplotype is homogeneous in Guadeloupe and heterogeneous in Martinique. Finally, C. tridentata has highly different karyotypes and haplotypes in the three islands. In Martinique, its karyotype, composed of metacentrics, is monomorphic while its haplotype is fairly heterogeneous. Both are close to those of other Cyclocephala and Dynastinae species, thus fairly ancestral. In Guadeloupe, its karyotype is highly polymorphic, with many acrocentrics, and its haplotype fairly homogeneous. Both are highly derived. In Dominica, both the karyotype and the haplotype represent intermediate stages between those of Martinique and Guadeloupe. We conclude that several independent colonization episodes have occurred, which excludes that C. insulicola is a vicariant form of C. tridentata in Guadeloupe. Both chromosome and COI gene polymorphisms clearly indicate a recent colonization with a northward direction for C. tridentata.  相似文献   

10.
A DNA-based barcode identification system that is applicable to all animal species will provide a simple, universal tool for the identification of fish species. The barcode system is based on sequence diversity in subunit 1 cytochrome c oxidase (COI) gene. Identification and characterization of fish species based on morphological characters are sometimes found to be erroneous and environmentally affected. There are no studies on the genus Ompok in India at molecular level and species identification of the Ompok is usually carried out through morphological features. A total of 106 samples from three species Ompok pabda, O. pabo and O. bimaculatus were collected from eight sampling sites of seven Indian rivers. One hundred and six sequences were generated from COI region of three Ompok species and 21 haplotypes were observed. The sequence analysis of COI gene revealed three genetically distinct Ompok species and exhibited identical phylogenetic resolution among them. The partial COI gene sequence can be used as a diagnostic molecular marker for identification and resolution of taxonomic ambiguity of Ompok species.  相似文献   

11.
This work is a prospective study to estimate the potential species diversity of terrestrial planarians in the Iberian Peninsula. Live specimens were collected from several Iberian localities and assigned to different morphotypes on the basis of their external morphological characteristics. From the same specimens, sequences from the mitochondrial Cytochrome Oxidasa subunit I (COI) and from the nuclear ribosomal gene 18S rRNA were obtained. Sequences from GenBank of the families Dendrocoelidae, Planariidae, Bipaliidae, Geoplanidae and Rhynchodemidae have been used as outgroups in the phylogenetic analysis. The results showed that terrestrial planarians have a wide distribution in the Peninsula, with all individuals found belonging to the Rhynchodemidae family. Morphological observations indicated the presence of 10 morphospecies confirmed by the molecular analyses. At the same time, COI sequences were successfully used as a molecular marker for species identification in the barcoding mode, which is of great use in groups like this with few external morphological characteristics. The combined data strongly suggest the presence of at least 15 species in the Iberian Peninsula, a number that nearly doubles previous estimates, indicating that terrestrial planarians are more diverse than expected in the region and, as proposed, may be a good biodiversity indicator and model for biogeographical studies.  相似文献   

12.
A 1230-bp region of the cytochrome c oxidase subunit I (COI) gene of mitochondrial DNA of each of 16 brachiopod species, representing all five living orders, was amplified by polymerase chain reaction and sequenced. Pairwise comparisons of sequence differences plotted against divergence times estimated from the brachiopod fossil record revealed that, although there are considerable variations in the expected substitution rate among different lineages, amino acid substitutions of the COI sequences may largely become saturated in 100 Ma, due mostly to multiple substitutions at the same site. Coinciding with this result, phylogenetic analysis indicated low bootstrap values for nodes corresponding to divergence events that occurred before 100 Ma, suggesting that COI sequences are suitable only for inference of phylogenetic events subsequent to the Mesozoic. Examination of brachiopod codons corresponding to invariant amino acids in the COI of various other animals suggest the nonuniversal codon relationships UGA = Trp, AUA = Met, AAA/G = Lys, and AGA/G = Ser. These are identical to those in mollusks, annelids, and arthropods, consistent with the conclusion that brachiopods are protostomes, as indicated by previous molecular analyses.  相似文献   

13.
The effects of natural methylmercury compounds on regeneration of photoreceptor organs were studied in three freshwater planarians: Polycelis tenuis, Dugesia lugubris, and D. tigrina. Accumulation of methyl mercury in the planarian body suppressed regeneration of P. tenuis with numerous photoreceptor organs to a greater extent than in two other planarians that have only two eyes. High methyl mercury concentrations inhibited the restoration of photoreceptor organs in asexual and sexual D. tigrina races.  相似文献   

14.
We investigated the biogeography of Asian Corbicula using mitochondrial gene sequence variation for Corbicula members sampled from 24 localities of eight Asian regions. A total of 210 individuals were genetically characterized by examining sequence variations of a 614 bp fragment of the mitochondrial cytochrome oxidase I (COI) gene. Phylogenetic analyses of the COI dataset revealed that Corbicula members are subdivided into two well-supported clades: estuarine and freshwater. A robust dichotomy between the Japanese/Korean (Corbicula japonica) and Chinese (Corbicula fluminalis) estuarine forms was evident, suggesting that these two regional populations represent a deep phylogeographic split. Our mitochondrial gene tree showed that among the freshwater members, two Corbicula mitochondrial lineages are the most common, having attained extensive geographic distribution in the Asian freshwater environment. While the present study provides significant biogeographic information on Asian Corbicula, a comprehensive phylogenetic study by cross-referencing the mitochondrial-based Corbicula phylogeny with nuclear gene data is required to fully understand the evolutionary origin(s) of triploidy/clonality in this genus.  相似文献   

15.
Because of the difficulties of constructing a robust phylogeny for Charadriiform birds using morphological characters, recent studies have turned to DNA sequences to resolve the systematic uncertainties of family-level relationships in this group. However, trees constructed using nuclear genes or the mitochondrial Cytochrome b gene suggest deep-level relationships of shorebirds that differ from previous studies based on morphology or DNA-DNA hybridization distances. To test phylogenetic hypotheses based on nuclear genes (RAG-1, myoglobin intron-2) and single mitochondrial genes (Cytochrome b), approximately 13,000 bp of mitochondrial sequence was collected for one exemplar species of 17 families of Charadriiformes plus potential outgroups. Maximum likelihood and Bayesian analyses show that trees constructed from long mitochondrial sequences are congruent with the nuclear gene topologies [Chardrii (Lari, Scolopaci)]. Unlike short mitochondrial sequences (such as Cytochrome b alone), longer sequences yield a well-supported phylogeny for shorebirds across various taxonomic levels. Examination of substitution patterns among mitochondrial genes reveals specific genes (especially ND5, ND4, ND2, and COI) that are better suited for phylogenetic analyses among shorebird families because of their relatively homogeneous nucleotide composition among lineages, slower accumulation of substitutions at third codon positions, and phylogenetic utility in both closely and distantly related lineages. For systematic studies of birds in which family and generic levels are examined simultaneously, we recommend the use of both nuclear and mitochondrial sequences as the best strategy to recover relationships that most likely reflect the phylogenetic history of these lineages.  相似文献   

16.
The population genetics and phylogeography of Trema dielsiana in Taiwan were inferred from genetic diversity at the nonsymbiotic hemoglobin gene and the trnL-trnF intergenic spacer of cpDNA. Reduced genetic variation was detected in these two unlinked genes. The gene genealogy of the hemoglobin locus recovered two lineages corresponding to the western and eastern regions of Taiwan. This pattern is compatible with a past fragmentation event revealed by phylogeographical analyses. To distinguish between selective departures from neutrality (i.e., heterogeneous processes) and demographic (homogeneous) processes, Hahn et al.'s heterogeneity test was conducted on the hemoglobin gene. Lack of significant differences in Tajima's D statistics between synonymous and nonsynonymous mutations indicates that homogeneous processes may have played a key role in governing the evolution of the functional locus. Significantly negative Tajima's D estimates for both overall exons and introns of the hemoglobin gene as well as for the cpDNA intergenic spacer support a phylogeographical hypothesis of range expansion after genetic bottlenecks. High level of genetic variation and a negative Tajima's D statistic suggests a possible northern refugium that may have harbored populations during the glacial maximum.  相似文献   

17.
Parthenogenetic lineages within non-marine ostracods can occur either in mixed (with sexual and asexual females) or exclusively asexual taxa. The former mode of reproduction is associated with a high intraspecific diversity at all levels (genetic, morphological, ecological) and, at least in the Cypridoidea, with geographical parthenogenesis. Obligate asexuality is restricted to the Darwinuloidea, the strongest candidate for an ancient asexual animal group after the bdelloid rotifers, and is characterized by low diversity. We have compared rates of molecular evolution for the nuclear ITS1 region and the mitochondrial COI gene amongst the three major lineages of non-marine ostracods with sexual, mixed and asexual reproduction. Absolute rates of molecular evolution are low for both regions in the darwinulids. The slow-down of evolution in ITS1 that has been observed for Darwinula stevensoni (Brady & Robertson) apparently does not occur in other darwinulid species. ITS1 evolves more slowly than COI within non-marine ostracod families, including the darwinulids, but not between superfamilies. The ancient asexuals might have a higher relative substitution rate in ITS1, as would be expected from hypotheses that predict the accumulation of mutations in asexuals. However, the speed-up of ITS could also be ancient, for example through the stochastic loss of most lineages within the superfamily after the Permian–Triassic mass extinction. In this case, the difference in rate would have occurred independently from any effects of asexual reproduction.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 79 , 93–100.  相似文献   

18.
Hemlock woolly adelgid, Adelges tsugae, is an invasive pest of hemlock trees (Tsuga) in eastern North America. We used 14 microsatellites and mitochondrial COI sequences to assess its worldwide genetic structure and reconstruct its colonization history. The resulting information about its life cycle, biogeography and host specialization could help predict invasion by insect herbivores. We identified eight endemic lineages of hemlock adelgids in central China, western China, Ulleung Island (South Korea), western North America, and two each in Taiwan and Japan, with the Japanese lineages specializing on different Tsuga species. Adelgid life cycles varied at local and continental scales with different sexual, obligately asexual and facultatively asexual lineages. Adelgids in western North America exhibited very high microsatellite heterozygosity, which suggests ancient asexuality. The earliest lineages diverged in Asia during Pleistocene glacial periods, as estimated using approximate Bayesian computation. Colonization of western North America was estimated to have occurred prior to the last glacial period by adelgids directly ancestral to those in southern Japan, perhaps carried by birds. The modern invasion from southern Japan to eastern North America caused an extreme genetic bottleneck with just two closely related clones detected throughout the introduced range. Both colonization events to North America involved host shifts to unrelated hemlock species. These results suggest that genetic diversity, host specialization and host phylogeny are not predictive of adelgid invasion. Monitoring non‐native sentinel host trees and focusing on invasion pathways might be more effective methods of preventing invasion than making predictions using species traits or evolutionary history.  相似文献   

19.
C. W. Birky-Jr. 《Genetics》1996,144(1):427-437
Little attention has been paid to the consequences of long-term asexual reproduction for sequence evolution in diploid or polyploid eukaryotic organisms. Some elementary theory shows that the amount of neutral sequence divergence between two alleles of a protein-coding gene in an asexual individual will be greater than that in a sexual species by a factor of 2tu, where t is the number of generations since sexual reproduction was lost and u is the mutation rate per generation in the asexual lineage. Phylogenetic trees based on only one allele from each of two or more species will show incorrect divergence times and, more often than not, incorrect topologies. This allele sequence divergence can be stopped temporarily by mitotic gene conversion, mitotic crossing-over, or ploidy reduction. If these convergence events are rare, ancient asexual lineages can be recognized by their high allele sequence divergence. At intermediate frequencies of convergence events, it will be impossible to reconstruct the correct phylogeny of an asexual clade from the sequences of protein coding genes. Convergence may be limited by allele sequence divergence and heterozygous chromosomal rearrangements which reduce the homology needed for recombination and result in aneuploidy after crossing-over or ploidy cycles.  相似文献   

20.
The genetic identity of Ixodes granulatus ticks was determined for the first time in Taiwan. The phylogenetic relationships were analyzed by comparing the sequences of mitochondrial 16S ribosomal DNA gene obtained from 19 strains of ticks representing seven species of Ixodes and two outgroup species (Rhipicephalus sanguineus and Haemaphysalis inermis). Four major clades could be easily distinguished by neighbour-joining analysis and were congruent by maximum-parsimony method. All these I. granulatus ticks of Taiwan were genetically affiliated to a monophyletic group with highly homogeneous sequences (92.2–99.3% similarity), and can be discriminated from other Ixodes species and other genera of ticks with a sequence divergence ranging from 11.7 to 30.8%. Moreover, intraspecific analysis revealed that two distinct lineages are evident between the same species of I. granulatus ticks collected from Taiwan and Malaysia. Our results demonstrate that all these I. granulatus ticks of Taiwan represent a unique lineage distinct from the common vector ticks (I. ricinus complex) for Borrelia burgdorferi spirochetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号