首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are relatively few reports on the leaf structure and in situ immunolocalization of carbon metabolism enzymes in crassulacean acid metabolism (CAM) plants, compared with reports on C4 plants. The leaf inner structure and the subcellular location of some key CAM enzymes for a phosphoenolpyruvate carboxykinase (PCK) CAM species, Ananas comosus, and three malic enzyme (ME) CAM species, Mesembryanthemum crystallinum, Kalanchoe daigremontiana, and K. pinnata, was investigated by immunogold labelling and electron microscopy in this study. The leaves of these species had few intercellular air spaces in the mesophyll. A large vacuole occupied the mesophyll cells, and many vesicles of various sizes occurred in the cytosol. Immunocytochemical study revealed that labelling was present for phosphoenolpyruvate carboxylase in the cytosol and for ribulose-1,5-bisphosphate carboxylase/oxygenase in the chloroplasts of the mesophyll cells in all species. No specific labelling for pyruvate orthophosphate dikinase (PPDK) was observed in the PCK-CAM species. In the ME-CAM species, the patterns of labelling for PPDK differed. In M. crystallinum labelling for PPDK was present only in the chloroplasts, whereas in the two Kalanchoe species it occurred in the cytosol as well as in the chloroplasts. These results suggest that the subcellular localization of PPDK varies with ME-CAM species, in contrast to the conventional belief that it is localized in the chloroplasts.Key words: Crassulacean acid metabolism, immunolocalization, leaf inner structure, phosphoenolpyruvate carboxylase, pyruvate orthophosphate dikinase.   相似文献   

2.
Ueno  O 《Journal of experimental botany》1998,49(327):1637-1646
Cellular localization of photosynthetic enzymes was investigated by immunogold electron microscopy for leaves of nine C4 grasses (three NADP-malic enzyme (NADP-ME)subtype species, three NAD-malic enzyme (NAD-ME) subtype species, and three phosphoenolpyruvate carboxykinase (PCK) subtype species), two C4 sedges (NADP-ME subtype species) and two C4 dicots (an NADP-ME and an NADP/NAD-ME subtype species). In leaves of all species, immunogold labelling was present for phosphoenolpyruvate carboxylase in the cytosol of the mesophyll cells (MC) and for ribulose-1,5-bisphosphate carboxylase/oxygenase in the chloroplasts of the bundle sheath cells (BSC). However, considerable specific variation was found in the intercellular patterns of labelling for pyruvate orthophosphate dikinase (PPDK). In the NADP-ME grasses, two NAD-ME grasses, and the dicots, significant labelling for PPDK was present in the both the BSC and the MC chloroplasts. In the other NAD-ME grass, the PCK grasses, and the sedges, labelling for PPDK was present almost exclusively in the chloroplasts of the MC. These patterns were observed in the leaves of both young seedlings and mature plants. These results indicate that the accumulation of PPDK in leaves of C4 plants is not necessarily restricted to the MC, although the chloroplasts of the MC accumulate more than those of the BSC.Key words: C4 plants, immunolocalization, phosphoenolpyruvate carboxylase, pyruvate orthophosphate dikinase, ribulose-1,5-bisphosphate carboxylase/oxygenase.   相似文献   

3.
The intracellular localization of phosphoenolpyruvate (PEP) carboxylase in plants belonging to the C4, Crassulacean acid metabolism (CAM) and C3 types was invetigated using an immunocytochemical method with an immune serum raised against the sorghum leaf enzyme. The plants studied were sorghum, maize (C4 type), kalanchoe (CAM type), french bean, and spinach (C3 type). In the green leaves of C4 plants, it was shown that the carboxylase was located in the mesophyll and stomatic cells, being largely cytosolic in the mesophyll cells. Similarly, in CAM plants, the enzyme was found mainly outside the chloroplasts. In contrast, in C3 plants, the PEP carboxylase appeared to be distributed between the cytosol and the chloroplasts of foliar parenchyma. Examination of sections from etiolated leaves showed fluorescence emission from etioplasts and cytosol for the parenchyma of french bean as well as for the bundle sheath and mesophyll of sorghum leaves. This data indicated that during the greening process photoregulation and evolution of PEP carboxylase is dependent on the tissue and on the metabolic type of the plant considered.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate  相似文献   

4.
C4 species of the genus Aristida (Poaceae) have 3 distinct types of photosynthetic cells in their leaves, the mesophyll (M) cells, the outer bundle sheath (BS) cells, and the inner BS cells, and exhibit a unique Kranz-type leaf anatomy. The cellular localization of C3 and C4 photosynthetic enzymes was investigated in leaves of Aristida latifolia Domin by the protein A-gold immunocytochemical technique. The outer BS cells contained centripetally located small chloroplasts, which were structurally similar to those of the M cells. The inner BS cells contained centrifugally located large chloroplasts, which lacked well-developed grana and exhibited rudimentary grana for the most part. The leaves contained high levels of NADP-malic enzyme (EC 1.1.1.40) activity, and the plant was classified as being of the NADP-malic enzyme type. The immunocytochemical study revealed that labeling of ribulose 1,5-bisphos-phate carboxylase/oxygenase (EC 4.1.1.39) was present in the chloroplasts of the outer and inner BS cells, but was undetectable in the M cells. Labeling of phoshoen-olpyruvate carboxylase (EC 4.1.1.31) was observed in the cytosol of M cells, but not in that of BS cells. By contrast, labeling of pyruvate, Pi dikinase (PPDK, EC 2.7.9.1) was evident not only in the chloroplasts of M cells but also in those of outer BS cells, but was absent from the inner BS cells. The density of labeling in the chloroplasts of M cells was higher than that in chloroplasts of outer BS cells. These results indicate that the two carboxylating enzymes are differentially distributed between the M cells and the two types of BS cells, whereas PPDK shows a more complex distribution pattern. The locations of these enzymes are discussed in relation to C4 photosynthesis.  相似文献   

5.
Kondo A  Nose A  Yuasa H  Ueno O 《Planta》2000,210(4):611-621
In malic enzyme-dependent crassulacean-acid-metabolism (ME-CAM) plants, malic acid is decarboxylated by NADP-ME and NAD-ME and generates pyruvate with CO2. Pyruvate is phosphorylated to phosphoenolpyruvate by pyruvate, Pi dikinase (PPDK) and is then conserved in gluconeogenesis. Although PPDK was considered to be located in chloroplasts (e.g., Mesembryanthemum crystallinum), it has recently been found to accumulate in both the chloroplasts and the cytosol in two Kalancho? species. In this study, the intracellular localization of PPDK was investigated in 22 ME-CAM species in 13 genera of 5 families by immunogold labeling and electron microscopy. This revealed that the pattern of intracellular localization of PPDK varies among the ME-CAM plants and is divided into three types: Chlt, in which PPDK accumulates only in the chloroplasts; Cyt-Chlt, in which PPDK accumulates in both chloroplasts and cytosol; and Cyt, in which PPDK accumulates predominantly in the cytosol. Members of a particular genus tend to have a common PPDK-localization type. In the Cactaceae, all species from seven genera were classified as Cyt. The photosynthetic tissues of all ME-CAM species, including the Cyt type, had substantial PPDK activity, suggesting that PPDK in the cytosol is active and probably plays a functional role. In the Chlt species, NADP-ME activity was relatively greater than NAD-ME activity. In the Cyt-Chlt and Cyt species, however, either the activity of NAD-ME was higher than that of NADP-ME or they were approximately the same. The species variation in the intracellular localization of PPDK is discussed in relation to CAM function and to molecular and phylogenetic aspects.  相似文献   

6.
The leaf of the NADP-malic enzyme type C(4) grass, Arundinella hirta, has not only mesophyll cells (MCs) and bundle sheath cells (BSCs, usual Kranz cells) but also another type of Kranz cells (distinctive cells; DCs) that are not associated with vascular bundles. We investigated photosynthetic enzyme accumulation along the base-to-tip maturation gradient of developing leaves by immunogold electron microscopy. In mature leaves, phosphoenolpyruvate carboxylase (PEPC) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) were detected in the MC cytosol and in the BSC and DC chloroplasts, respectively. Pyruvate, P(i) dikinase (PPDK) was present in the chloroplasts of all photosynthetic cells but with higher levels in the MCs. Rubisco was first detected in the basal region of emerging leaf blades where the BSCs and DCs became discernable. Subsequently, the accumulation of PEPC and PPDK was initiated in the region where the granal proliferation in the chloroplasts was conspicuous; and, suberized lamellae were formed in the cell walls of the Kranz cells. There was no difference in the patterns of cellular development and enzyme accumulation between the BSCs and DCs or between the MCs adjacent to each type of Kranz cells. These results demonstrate that, although the DCs are not associated with veins, they behaved like BSCs with respect to enzyme induction and cellular differentiation.  相似文献   

7.
The protein content of seeds determines their nutritive value, downstream processing properties and market value. Up to 95% of seed protein is derived from amino acids that are exported to the seed after degradation of existing protein in leaves, but the pathways responsible for this nitrogen metabolism are poorly defined. The enzyme pyruvate,orthophosphate dikinase (PPDK) interconverts pyruvate and phosphoenolpyruvate, and is found in both plastids and the cytosol in plants. PPDK plays a cardinal role in C4 photosynthesis, but its role in the leaves of C3 species has remained unclear. We demonstrate that both the cytosolic and chloroplastic isoforms of PPDK are up‐regulated in naturally senescing leaves. Cytosolic PPDK accumulates preferentially in the veins, while chloroplastic PPDK also accumulates in mesophyll cells. Analysis of microarrays and labelling patterns after feeding 13C‐labelled pyruvate indicated that PPDK functions in a pathway that generates the transport amino acid glutamine, which is then loaded into the phloem. In Arabidopsis thaliana, over‐expression of PPDK during senescence can significantly accelerate nitrogen remobilization from leaves, and thereby increase rosette growth rate and the weight and nitrogen content of seeds. This indicates an important role for cytosolic PPDK in the leaves of C3 plants, and allows us to propose a metabolic pathway that is responsible for production of transport amino acids during natural leaf senescence. Given that increased seed size and nitrogen content are desirable agronomic traits, and that efficient remobilization of nitrogen within the plant reduces the demand for fertiliser applications, PPDK and the pathway in which it operates are targets for crop improvement.  相似文献   

8.
Osamu Ueno 《Planta》1996,199(3):394-403
Eleocharis vivipara link, an amphibious leafless sedge, develops traits of C4 photosynthesis and Kranz anatomy in the terrestrial form but develops C3-like traits with non-Kranz anatomy when submerged. The cellular localization of C3 and C4 enzymes in the photosynthetic cells of the two forms was investigated by immunogold labeling and electron microscopy. The terrestrial form has mesophyll cells and three kinds of bundle sheath cell, namely, parenchyma sheath cells, non-chlorophyllous mestome sheath cells, and Kranz cells. Phosphoenol-pyruvate carboxylase (PEPCase) was present in the cytosol of both the mesophyll cells and the parenchyma sheath cells, with higher-density labeling in the latter, but not in the Kranz cells. Pyruvate, Pi dikinase (PPDK) was found at high levels in the chloroplasts of both the mesophyll cells and the parenchyma sheath cells with some-what stronger labeling in the latter. This enzyme was also absent from the Kranz cells. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was found in the chloroplasts of all types of photosynthetic cell, but labeling was significantly less intense in the parenchyma sheath cells than in other types of cell. The submerged form also has three types of photosynthetic cell, as well as non-chlorophyllous mestome sheath cells, but it lacks the traits of Kranz anatomy as a consequence of modification of the cells. Rubisco was densely distributed in the chloroplasts of all the photosynthetic cells. However, PEPCase and PPDK were found in both the mesophyll cells and the parenchyma sheath cells but at lower levels than in the terrestrial form. These data reveal that the terrestrial form has a unique pattern of cellular localization of C3 and C4 enzymes, and they suggest that this pattern and the changes in the extent of accumulation of the various enzymes are the main factors responsible for the difference in photosynthetic traits between the two forms.Abbreviations CAM crassulacean acid metabolism - MC meso phyll cell - PSC parenchyma sheath cell - KC Kranz cell - PEP-Case phosphoenolpyruvate carboxylase - PPDK pyruvate, Pi dikinase - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - LS large subunit - RuBP ribulose-1,5-bisphosphate This study was supported by Grants-in-Aid from the Ministry of Agriculture, Forestry and Fisheries of Japan (Integrated Research Program for the Use of Biotechnological Procedures for Plant Breeding) and from the Science and Technology Agency of Japan (Enhancement of Center-of-Excellence, the Special Coordination Funds for Promoting Science and Technology). The author is grateful to Drs M. Matsuoka and S. Muto for providing the antisera and Dr. M. Samejima for his advice at the early stages of this study.  相似文献   

9.
Subcellular localization of glucose-6-phosphate dehydrogenase (EC 1.1.1.49.) isoenzymes was determined in mesophyll protoplasts prepared from Nicotiana tabacum L. cv. Samsun. Intact chloroplasts and soluble cytosolic proteins were obtained by means of differential centrifugation. The 1000 g pellet contained 97 % of chloroplasts and 16.8 ± 2.1 % of the total activity of glucose-6-phosphate dehydrogenase. The rest of the enzyme was localized in the cytosol which also contained 91 % of the total activity of phosphoenolpyruvate carboxylase.  相似文献   

10.
Immunoelectron microscopy and a quantitative analysis of immunogold labeling of a glutamine synthetase (GS; EC 6.3.1.2) revealed that, in mesophyll cells of mature leaves of Azolla filiculoides, almost all GS was present in chloroplasts. By contrast, in hair cells, abundant labeling of GS was observed both in chloroplasts and in the cytoplasm. In hair cells of cyanobiont-free plants, the labeling of GS of both chloroplasts and cytoplasm was very weak compared to that of cyanobiont-containing plants. The findings suggest that hair cells play an important role in the assimilation of ammonia released by the cyanobiont.  相似文献   

11.
12.
13.
Photosystem II (PS II) activity and the localization of ribulose-l,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39) were studied in primary leaves of young maize plants ( Zea mays L. cv. Fronica) by tetra-nitro-blue-tetrazoliumchloride reduction and immunolocalization, respectively. In tissue of 3-day-old plants all chloroplasts were structurally identical. From day 4 they developed into their typical appearance of mesophyll and bundle sheath chloroplasts. First PS II-activity was present in both types of chloroplasts. From day 4 it disappeared in bundle sheath chloroplasts concomitant with the loss of grana. RuBP carboxylase on the other hand was only present in bundle sheath chloroplasts at all stages of development. Thus, the control of the development of the photosystems and the Calvin cycle enzymes seem to differ.  相似文献   

14.
15.
Cysteine (Cys) synthase [O-acetyl-L-Ser(thiol)-lyase, EC 4.2.99.8; CSase] is responsible for the final step in biosynthesis of Cys. Transgenic tobacco (Nicotiana tabacum; F(1)) plants with enhanced CSase activities in the cytosol and in the chloroplasts were generated by cross-fertilization of two transformants expressing cytosolic CSase or chloroplastic CSase. The F(1) transgenic plants were highly tolerant to toxic sulfur dioxide and sulfite. Upon fumigation with 0.1 microL L(-1) sulfur dioxide, the Cys and glutathione contents in leaves of F(1) plants were increased significantly, but not in leaves of non-transformed control plants. Furthermore, the leaves of F(1) plants exhibited the increased resistance to paraquat, a herbicide generating active oxygen species.  相似文献   

16.
The chloroplastic and cytosolic isoenzymes of phosphoglycerate kinase (PGK; EC 2.7.2.3) of leaves from 18 of a broad range of 21 vascular plant species were separated by either standard or modified anion-exchange Chromatographic procedures. Immunoprecipitation of the isoenzymes with antisera raised against barley chloroplastic and cytosolic PGK isoenzymes showed that the chloroplastic isoenzymes resemble the chloroplastic isoenzymes of other species more closely than the cytosolic isoenzyme of the same species and vice versa for the cytosolic isoenzymes. Each of the two cyanobacterial species tested, yielded only a single PGK fraction on anion-exchange chromatography and gave no reaction with antisera raised against the barley isoenzymes. The cyanobacteria are presumed to contain only a single PGK which is not closely related to either of the barley PGK isoenzymes. In all of the investigated leaf extracts the catalytic activity of the cytosolic PGK was exceeded by that of the chloroplastic PGK with the ratio for many of the C3 plants falling within the range 595 to 1585 (cytosolic: chloroplastic). The relative amounts of cytosolic PGK activity appeared to be greater in older leaves, in C4 and CAM plants and in ferns.Abbreviations CAM crassulacean acid metabolism - pgk phosphoglycerate kinase This work was supported by the Science and Engineering Research Council (grant no. GR/E54504) and also the King's College London Research Strategy Fund.  相似文献   

17.
In the leaves of the NAD-malic enzyme (NAD-ME)-type C4 dicot Amaranthus viridis L., there are chloroplasts in the vascular parenchyma cells (VPC), companion cells (CC), ordinary epidermal cells (EC), and guard cells (GC), as well as in the mesophyll cells (MC) and the bundle sheath cells (BSC). However, the chloroplasts of the VPC, CC, EC, and GC are smaller than those of the MC and BSC. In this study, the accumulation of photosynthetic and photorespiratory enzymes in these leaf cell types was investigated by immunogold labelling and electron microscopy. Strong labelling for phosphoenolpyruvate carboxylase was found in the MC cytosol. Weak labelling was observed in the CC and GC cytosol. Labelling for pyruvate, Pi dikinase occurred to varying degrees in the chloroplasts of all cell types except CC. Labelling for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase was detected in the chloroplasts of all cell types except MC. For both NAD-ME and the P-protein of glycine decarboxylase, intense labelling was found in the BSC mitochondria; weaker labelling was recognized in the VPC mitochondria. These data indicate that when not only the MC and BSC but also the other leaf cell types are included, the cell-specific expression of the enzymes in C4 leaves becomes more complex than has been known previously. These findings are discussed in relation to the metabolic function of epidermal and vascular bundle cells.  相似文献   

18.
19.
Scavenger enzyme activities in subcellular fractions under polyethylene glycol (PEG)-induced water stress in white clover (Trifolium repens L.) were studied. Water stress decreased ascorbic acid (AA) content and catalase (CAT) activity and increased the contents of hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS) (measure of lipid peroxidation), and activities of superoxide dismutase (SOD), its various isozymes, ascorbate peroxidase (APOX), and glutathione reductase (GR) in cellular cytosol, chloroplasts, mitochondria, and peroxisomes of Trifolium repens leaves. In both the PEG-treated plants and the control, chloroplastic fractions showed the highest total SOD, APOX, and GR activities, followed by mitochondrial fractions in the case of total SOD and GR activities, whereas cytosolic fractions had the second greatest APOX activity. However, CAT activity was the highest in peroxisomes, followed by the cytosol, mitochondria, and chloroplasts in decreasing order. Although Mn-SOD activity was highest in mitochondrial fractions, residual activity was also observed in cytosolic fractions. Cu/Zn-SOD and Fe-SOD were observed in all subcellular fractions; however, the activities were the highest in chloroplastic fractions for both isoforms. Total Cu/Zn-SOD activity, the sum of activities observed in all fractions, was higher than other SOD isoforms. These results suggest that cytosolic and chloroplastic APOX, chloroplastic and mitochondrial GR, mitochondrial Mn-SOD, cytosolic and chloroplastic Cu/Zn-SOD, and chloroplastic Fe-SOD are the major scavenger enzymes, whereas cellular CAT may play a minor role in scavenging of O2 and H2O2 produced under PEG-induced water stress in Trifolium repens.  相似文献   

20.
Kranz-less, C4-type photosynthesis was induced in the submersed monocot Hydrilla verticillata (L.f.) Royle. During a 12-d induction period the CO2 compensation point and O2 inhibition of photosynthesis declined linearly. Phosphoenolpyruvate carboxylase (PEPC) activity increased 16-fold, with the major increase occurring within 3 d. Asparagine and alanine aminotransferases were also induced rapidly. Pyruvate orthophosphate dikinase (PPDK) and NADP-malic enzyme (ME) activities increased 10-fold but slowly over 15 d. Total ribulose-1,5-bisphosphate carboxylase/oxygenase activity did not increase, and its activation declined from 82 to 50%. Western blots for PEPC, PPDK, and NADP-ME indicated that increased protein levels were involved in their induction. The H. verticillata NADP-ME polypeptide was larger (90 kD) than the maize C4 enzyme (62 kD). PEPC and PPDK exhibited up-regulation in the light. Subcellular fractionation of C4-type leaves showed that PEPC was cytosolic, whereas PPDK and NADP-ME were located in the chloroplasts. The O2 inhibition of photosynthesis was doubled when C4-type but not C3-type leaves were exposed to diethyl oxalacetate, a PEPC inhibitor. The data are consistent with a C4-cycle concentrating CO2 in H. verticillata chloroplasts and indicate that Kranz anatomy is not obligatory for C4-type photosynthesis. H. verticillata predates modern terrestrial C4 monocots; therefore, this inducible CO2-concentrating mechanism may represent an ancient form of C4 photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号