首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct somatic embryogenesis from axes of mature peanut embryos   总被引:2,自引:0,他引:2  
Summary Plant regeneration via somatic embryogenesis was obtained in peanut (Arachis hypogaea L.) from axes of mature zygotic embryos. The area of greatest embryogenic activity was a 2-mm region adjacent to and encircling the epicotyl. Somatic embryogenesis was evaluated on Murashige and Skoog media supplemented with a variety of auxin treatments. Maximum production occurred on medium supplemented with 3 mg · liter−1 4-amino-3,5,6-trichloropicolinic acid. Explant cultures were transferred to half-strength medium supplemented with 1 mg · liter−1 gibberellic acid for somatic embryo germination and early plantlet growth. Plantlets, transferred to soil, were placed in a greenhouse and grown to maturity.  相似文献   

2.
Summary The effects of callus inoculation concentration and culture duration on somatic embryogenesis of orchardgrass,Dactylis glomerata L., were evaluated in suspension cultures of an embryogenic genotype Embryogen-P. Somatic embryo formation was induced in liquid SH medium containing 30 μM dicamba (SH-30 and 1.5% casein hydrolysate; embryo development was in liquid SH medium without plant growth regulators (SH-0); and embryo maturation and germination occurred on solid SH-0 medium. Callus proliferation in SH-30 suspension cultures was greatest when callus was inoculated into the liquid medium at a relatively high concentration of 4% (4 g callus/100 ml medium), but the induction of somatic embryos was highest in this medium if the callus was inoculated at a lower concentration (<2%). In a second experiment, somatic embryo yield was highest when SH-0 development medium was inoculated with suspension culture callus at 0.1% concentration and declined markedly as inoculation concentration increased. Cell concentration is a critical factor in regulating the somatic embryogenesis response in orchardgrass suspension cultures.  相似文献   

3.
Summary The synchronization of somatic embryo development in embryogenic suspension cultures is a crucial step in taking advantage of somatic embryogenesis for high production potential and reduction of unit cost through automation. In the present study, a synchronous somatic embryogenic system was developed for Fraxinus angustifolia suspension cultures. High cell density, 6-benzyladenine (BA) and 2,4-dichlorophenoxyacetic acid proved essential for the establishment and maintenance of suspension cultures. Low cell density, BA and 1-naphthaleneacetic acid enhanced somatic embryo development. Cell and cell cluster fractionation by density gradient centrifugation in Ficoll solution proved useful for separation of subpopulations with differing potentials for embryo development. A synchronous development of somatic embryos at high frequency was achieved only from the heaviest cell population.  相似文献   

4.
《Plant science》1988,55(3):267-279
Somatic embryogenesis occurs spontaneously in some monocotyledoneous callus and cell suspension cultures maintained in suitable culture conditions. Nevertherless, the processes involved in somatic embryo development, and factors inducing this differentiation, are poorly understood. In order to study the changes in protein composition accompanying embryogenesis in cell suspension cultures of Dactylis glomerata L., embryos of various sizes and “undifferentiated” callus cells were separated and their total cellular protein extracts analyzed by two-dimensional polyacrylamide gel electrophoresis. Several proteins could be identified that are specific for embryos or callus under various culture conditions. Three independent detection methods were employed: silver-staining of proteins, in vivo labeling of proteins with [35S]methionine, and in vitro translation of poly(A)+ RNA. All culture conditions tested, including those that induce embryonic proteins in carrot, fail to induce embryonic proteins in D. glomerata callus cells.  相似文献   

5.
Extracellular compounds isolated from embryogenic carrot cell suspension cultures increase, by 1.5 to 6-fold, end-stage embryo production when added back to carrot cultures initiating embryogenesis. The causative factors related to the enhancement of embryo production are most likely to be extracellular, high molecular weight proteins found in the embryo-free medium (EFM) after somatic embryos have been formed. The addition of heat-treated EFM to fresh cultures did not result in enhancing effects on the production of end-stage embryos. However, the addition of compounds precipitated from EFM, by high concentrations of salt, accelerated by four days the formation of comparable amounts of end-stage embryos and surpassed total end-stage embryo levels by a factor of 4-6, dependent on the precipitate dose. These results suggest that heat-labile polypeptide molecules may be responsible for growth factor-like effects during somatic embryogenesis.  相似文献   

6.
Developmental pathways of somatic embryogenesis   总被引:20,自引:0,他引:20  
Somatic embryogenesis is defined as a process in which a bipolar structure, resembling a zygotic embryo, develops from a non-zygotic cell without vascular connection with the original tissue. Somatic embryos are used for studying regulation of embryo development, but also as a tool for large scale vegetative propagation. Somatic embryogenesis is a multi-step regeneration process starting with formation of proembryogenic masses, followed by somatic embryo formation, maturation, desiccation and plant regeneration. Although great progress has been made in improving the protocols used, it has been revealed that some treatments, coinciding with increased yield of somatic embryos, can cause adverse effects on the embryo quality, thereby impairing germination and ex vitro growth of somatic embryo plants. Accordingly, ex vitro growth of somatic embryo plants is under a cumulative influence of the treatments provided during the in vitro phase. In order to efficiently regulate the formation of plants via somatic embryogenesis it is important to understand how somatic embryos develop and how the development is influenced by different physical and chemical treatments. Such knowledge can be gained through the construction of fate maps representing an adequate number of morphological and molecular markers, specifying critical developmental stages. Based on this fate map, it is possible to make a model of the process. The mechanisms that control cell differentiation during somatic embryogenesis are far from clear. However, secreted, soluble signal molecules play an important role. It has long been observed that conditioned medium from embryogenic cultures can promote embryogenesis. Active components in the conditioned medium include endochitinases, arabinogalactan proteins and lipochitooligosaccharides.  相似文献   

7.
Somatic embryogenesis is an important biotechnological technique for large-scale propagation of elite genotypes. Identifying stage-specific compounds associated with somatic embryo development can help elucidate the ontogenesis of Carica papaya L. somatic embryos and improve tissue culture protocols. To identify the stage-specific proteins that are present during the differentiation of C. papaya somatic embryos, proteomic analyses of embryos at the globular, heart, torpedo and cotyledonary developmental stages were performed. Mass spectrometry data have been deposited in the ProteomeXchange with the dataset identifier PXD021107. Comparative proteomic analyses revealed a total of 801 proteins, with 392 classified as differentially accumulated proteins in at least one of the developmental stages. The globular-staged presented a higher number of unique proteins (16), and 7 were isoforms of 60S ribosomal proteins, suggesting high translational activity at the beginning of somatic embryogenesis. Proteins related to mitochondrial metabolism accumulated to a high degree at the early developmental stages and then decreased with increasing development, and they contributed to cell homeostasis in early somatic embryos. A progressive increase in the accumulation of vicilin, late embryogenesis abundant proteins and chloroplastic proteins that lead to somatic embryo maturation was also observed. The differential accumulation of acetylornithine deacetylase and S-adenosylmethionine synthase 2 proteins was correlated with increases in putrescine and spermidine contents, which suggests that both polyamines should be tested to determine whether they increase the conversion rates of globular- to cotyledonary-staged somatic embryos. Taken together, the results showed that somatic embryo development in C. papaya is regulated by the differential accumulation of proteins, with ribosomal and mitochondrial proteins more abundant during the early somatic embryo stages and seed maturation proteins more abundant during the late stages.  相似文献   

8.
We identified and isolated a monoclonal antibody (MAb 3G2) raised against extracellular proteins from microcluster cells of orchard grass (Dactylis glomerata L.) embryogenic suspension culture. MAb 3G2 recognized with high specificity an antigen ionically bound within the primary cell wall and in the culture medium of microcluster cells. Two-dimensional polyacrylamide gel analysis and blotting of proteins on PVDF membrane showed that MAb 3G2 detected a single polypeptide of apparent molecular mass of 48 kDa and an isoelectric point (pI) of 5.2, designated EP48. A transient expression during somatic embryogenesis was observed for EP48. Indirect immunofluorescence showed that this protein highly accumulated in the cell walls of some single cells, microclusters and partly in proembryogenic masses (PEMs), but not in globular embryos of the embryogenic cell line and microclusters from the non-embryogenic cell line. Signal intensity varied between individual cells of the same population and in successive stages of somatic embryo development. Screening of several D. glomerata L. embryogenic and non-embryogenic cell lines with MAb 3G2 indicated the presence of ECP48 in only embryogenic suspension cultures at early stages of embryo development long before morphological changes have taken place and thus it could serve as an early marker for embryogenic potential in D. glomerata L. suspension cultures.  相似文献   

9.
Changes in protein profiles associated with somatic embryogenesis in peanut   总被引:6,自引:0,他引:6  
The somatic embryogenesis potential of zygotic embryo axes of peanut (Arachis hypogaea L. cv. DRG-12) at different stages of development was evaluated by culturing on MS medium with 18.1 μM 2,4-dichlorophenoxyacetic acid (2,4-D). A 100 % frequency with 18.3 somatic embryos per explant was observed from 4 mm long immature zygotic embryo axes collected 31 – 40 d after pollination. Medium supplemented with 16.6 μM picloram resulted in slow development of somatic embryos whereas in the presence of 21.5 μM α-naphthaleneacetic acid (NAA), the explants underwent maturation with induction of roots after 30 d. The changes in protein profiles in zygotic embryo axes at different stages of development correlated with their potential to form somatic embryos. Immature zygotic embryo axes exhibited high frequency somatic embryogenesis in the stage preceding abundant accumulation of 22 and 65 kDa proteins. The content of 22 and 65 kDa proteins decreased immediately after culture on medium fortified with 18.1 μM 2,4-D and increased again after 12 d of culture coinciding with the development of somatic embryos on the explants. The content of 22 and 65 kDa proteins was low at 15 d of culture on medium supplemented with 16.6 μM picloram possibly due to slow development of the somatic embryos on the explant. On maturation medium containing 21.5 μM NAA, a marked increase in the content of 22 and 65 kDa proteins in 15 d-old cultures was observed.  相似文献   

10.
Extracellular proteins and glycoproteins secreted by ammonium- or auxin-induced somatic embryogenic cultures of pumpkin were analyzed. Despite an overall similarity in developmental characteristics between these embryogenic cultures, distinct expression patterns of extracellular proteins and glycoproteins were observed. Ammonium, when supplied as the sole source of nitrogen, caused acidification of the culture medium and significantly reduced protein secretion. Buffering pH in the ammonium-containing medium restored extracellular protein secretion and glycosylation and an enhanced cell aggregation but not the development of later embryo stages. As revealed by Concavalin A (Con A) immunodetection, extracellular glycoproteins containing α-D-mannose and α-D-glucose were most abundant in proembryogenic cultures grown in a buffered ammonium-containing medium and in a medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D). We assume that extracellular proteins (Mr 28, 31, and 44 kDa) and Con Abinding glycoproteins (Mr 26, 30, 40, 53, and 100 kDa) found in both proembryogenic cultures may have a role during somatic embryogenesis induction. The glycan components of proteins were further characterized by affinity blotting with different lectins. Binding patterns of mannose-specific lectin from Galanthus nivalis partially correlated with those detected with Con A, whereas no signal was observed with lectins from Datura stramonium and Arachis hypogea regardless of the treatment applied. Results indicate that complex N- or O-glycans are not typical for early phases of pumpkin embryo development. The accumulation of extracellular glycoproteins with high-mannose-type glycans from 30 to 34 kDa, observed after the transfer from the ammonium- or 2,4-D-containing media into a maturation medium, appeared to be associated with development of later embryo stages. This study also revealed the presence of EP-3-like endochitinases in pumpkin embryogenic cultures, particularly in cultures grown in the buffered ammonium-containing medium, however, these proteins should be examined further.  相似文献   

11.
Mature embryonic axes were used for chickpea (Cicer arietinum L.) regeneration via somatic embryogenesis. Qualitative and quantitative estimation of protein profile during somatic embryogenesis by SDS-PAGE and densitometric analysis showed differential expression of various storage proteins at different stages of somatic embryo development, which was compared with the profile of developing seeds. Total protein content in somatic embryos of chickpea increased from globular stage [2.9 μg mg−1(f.m.)] to cotyledonary stage [4.8 μg mg−1(f.m.)] and then started decreasing during onset of maturation and germination [up to 1.5 μg mg−1(f.m.)]. Differential expression of seed storage proteins, late embryogenesis abundant (LEA) proteins and proteins related with stress response were documented at different stages of somatic embryogenesis. Germinating somatic embryos showed degradation products of several seed storage proteins and the appearance of new polypeptides (76.8, 67.6, 49.9 and 34.2 kDa), which were absent during differentiation of somatic embryos. A low molecular mass (17.7 kDa) polypeptide was uniformly present during all stages of somatic embryogenesis and it may belong to a group of stress-related proteins. This study describes the expression of true seed storage proteins like legumin, vicilin, convicilin and their subunits at different stages of somatic embryogenesis, which may serve as excellent markers for embryogenic pathway of regeneration in chickpea.  相似文献   

12.
Summary High-frequency embryogenesis systems were established for hybrid yellow-poplar (Liriodendron tulipifera×L. chinense) and hybrid sweetgum (Liquidambar styraciflua×L. formosana) by modifying a medium originally developed for embryogenic yellow-poplar cultures. Embryogenic cultures of both hybrids, consisting of proembryogenic masses (PEMs), were initiated from immature hybrid seeds on an induction-maintenance medium (IMM) supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D), benzyladenine (BA), and casein hydrolyzate (CH). For hybrid yellow-poplar, as many as 2100 germinable somatic embryos per 4000 cells or cell clumps were produced when PEMs were grown in liquid IMM lacking CH, at a pH that varied with genotype (3.5 or 5.6), followed by size fractionation and plating on semisolid embryo development medium (DM; IMM lacking 2,4-D and BA) without CH, but supplemented with 4.0 mgl−1 (15 μM) abscisic acid. For hybrid sweetgum, up to 1650 germinable somatic embryos per 4000 cells or cell clumps were produced when PEMs were grown in liquid IMM without CH, but with 550 mgl−1 l-glutamine, 510 mg l−1 asparagine, and 170 mg l−1 arginine at pH 5.6. Somatic embryos developed from cell clumps on DM without any plant growth regulators or other supplements. Hundreds of somatic embryos of both hybrids were germinated on DM without CH, transferred to potting mix, and hardened off in a humidifying chamber for transfer to the greenhouse.  相似文献   

13.
花楸合子胚诱导体细胞胚胎发生研究   总被引:2,自引:0,他引:2  
分别以完整成熟胚、切去一个子叶的成熟胚和切下的子叶为外植体,以MS为基本诱导培养基、1/2MS为基本分化培养基,进行了花楸体细胞胚胎发生研究。结果表明:以完整合子胚作为外植体的体胚诱导率最高,为100%,最佳植物生长调节剂组合为5 mg.L-1NAA+2 mg.L-16-BA;NAA和6-BA浓度及二者的交互作用对愈伤组织和体胚诱导率的影响极显著;光照配合延长继代间隔时间有利于体胚发生。实体观察结果表明,花楸体胚发生方式有直接发生和间接发生两种;体胚发育经历了球形期、心形期、鱼雷形期和子叶期。组织学观察结果表明,体胚具有两极性,子叶期体胚结构完整。  相似文献   

14.
15.
Differential protein profiles of three stages of somatic embryogenesis, including globular, torpedo, and cotyledonary somatic embryos, of Coffea arabica cv. Catuaí Vermelho were analyzed in an attempt to better understand somatic embryogenesis in coffee plants. Somatic embryos at these different stages of development were collected from in vitro-grown cultures, and then macerated in liquid nitrogen. Proteins were extracted with phenol and further quantified using the Bradford method. The bidimensional electrophoresis analysis revealed a wide range of proteins ranging between 10 and 160?kDa and of pH values ranging from 3 to 10. Several differentially expressed proteins were identified by mass spectrometry, and some were found to be specific to these different stages of somatic embryogenesis in coffee. The enolase and 11S storage globulin proteins, for example, could be used as molecular markers for somatic embryo development stages and for embryogenic and non-embryogenic genotype differentiation, respectively.  相似文献   

16.
Kikuchi A  Sanuki N  Higashi K  Koshiba T  Kamada H 《Planta》2006,223(4):637-645
Studies of carrot embryogenesis have suggested that abscisic acid (ABA) is involved in somatic embryogenesis. A relationship between endogenous ABA and the induction of somatic embryogenesis was demonstrated using stress-induced system of somatic embryos. The embryonic-specific genes C-ABI3 and embryogenic cell proteins (ECPs) were expressed during stress treatment prior to the formation of somatic embryos. The stress-induction system for embryogenesis was clearly distinguished by two phases: the acquisition of embryogenic competence and the formation of a somatic embryo. Somatic embryo formation was inhibited by the application of fluridone (especially at 10−4 M), a potent inhibitor of ABA biosynthesis, during stress treatment. The inhibitory effect of fluridone was nullified by the simultaneous application of fluridone and ABA. The level of endogenous ABA increased transiently during stress. However, somatic embryogenesis was not significantly induced by the application of only ABA to the endogenous level, in the absence of stress. These results suggest that the induction of somatic embryogenesis, in particular the acquisition of embryogenic competence, is caused not only by the presence of ABA but also by physiological responses that are directly controlled by stresses.  相似文献   

17.
Somatic embryogenesis and plant regeneration were successfully established on Nitsch and Nitsch (NN) medium from immature zygotic embryos of six genotypes of grapevine (Vitis vinifera). The optimum hormone combinations were 1.0 mg dm−3 2,4-dichlorophenoxyacetic acid (2,4-D) for callus induction and 1.0 mg dm−3 α-naphthalene acetic acid (NAA) + 0.5 mg dm−3 6-benzyladenine (BA) for embryos production and 0.03 mg dm−3 NAA + 0.5 mg dm−3 BA for embryos conversion and plant regeneration. The frequency of somatic embryogenesis varied from 10.5 to 37.5 % among six genotypes and 15.5–42.1 % of somatic embryos converted into normal plantlets. The analysis of DNA content determined by flow cytometry and chromosome counting of the regenerated plantlets clearly indicated that no ploidy changes were induced during somatic embryogenesis and plant regeneration, the nuclear DNA content and ploidy levels of the regenerated plants were stable and homogeneous to those of the donor plants. RAPD markers were also used to evaluate the genetic fidelity of plants regenerated from somatic embryos. All RAPD profiles from regenerated plants were monomorphic and similar to those of the field grown donor plants. We conclude that somaclonal variation is almost absent in our grapevine plant regeneration system.  相似文献   

18.
Synchronization of somatic embryogenesis at high frequency is a useful system for the mass production of embryos. Many attempts have been carried out, however, it was difficult to obtain the system in which most of the initial embryogenic cells or cell clusters synchronously differentiate to embryos. In carrot suspension cultures, high frequency, synchronous embryogenesis systems (following three systems) have been established.(1) Small spherical single cells from suspension cultures obtained by sieving and density gradient centrifugation in Percoll solutions differentiated to embryogenic cell clusters at high frequency when they were cultured in a medium containing 2,4-dichlorophenoxyacetic acid (0.05 micromolar), zeatin (1 micromolar) and mannitol (0.2 molar). (2) Embryogenic cell clusters from suspension cultures obtained by sieving, density gradient centrifugation in Ficoll solutions, and subsequent centrifugation at a low speed for a short time synchronously differentiated to embryos, especially globular embryos at high frequency, when they were cultured in a medium containing zeatin (0.1 micromolar) but no auxin. (3) Embryogenic cell clusters obtained by above method are cultured at cell densities of 2×103 cell clusters ml-1. Globular embryos which were sieved from embryos induced synchronously differentiated to torpedo-shaped embryos at high frequency when they were cultured at densities below 150 globular embryos ml-1.Using these systems, the whole process of embryogenesis from single cells to whole plants could be synchronously induced at high frequency.Abbreviations ABA abscissic acid - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellin A3 - IAA indoleacetic acid - NAA naphthylacetic acid  相似文献   

19.
橡胶树的花药愈伤组织在长期继代过程中,胚性易下降甚至丧失;而AgNO3作为乙烯活性抑制剂,被广泛应用于植物组织培养中.该研究以继代培养4 a以上的热研7-33-97花药愈伤组织为材料,在继代培养基中添加2.5 mg·L-1 AgNO3预培养35 d后,观察预培养前后愈伤组织表形及其细胞形态的变化,并设计不同浓度AgNO3及不同处理时间对其进行体胚诱导,90 d后分别统计胚状体总数和正常胚数.结果表明:浅黄色质地柔软的愈伤组织在含AgNO3的培养基上预培养后能转变成鲜黄色易碎愈伤组织,在倒置显微镜下前者大多表现为不规则多边形,细胞内含物较稀薄;而后者则呈圆形或椭圆形,细胞内含物丰富,属于典型的胚性细胞.在体胚诱导的第1个月添加5 mg·L-1 AgNO3能显著促进体胚的发生,AgNO3浓度升至10 mg·L-1时体胚发生受到抑制,且畸形胚的形成率显著增加;在含5 mg·L-1 AgNO3的培养基中培养2个月以上,体胚发育明显受阻,大部分形成畸形胚.该研究结果在一定程度上恢复了橡胶树长期继代花药愈伤组织的胚性能力,并提高了其体胚发生频率,为橡胶树花药胚性愈伤组织长期继代培养过程中胚性的保持提供了参考.  相似文献   

20.
An improved protocol for high frequency plant regeneration via somatic embryogenesis from zygotic embryo-derived cell suspension cultures of watershield (Brasenia schreberi) was developed. Zygotic embryos formed pale-yellow globular structures and white friable callus at a frequency of 80% when cultured on half-strength MS medium supplemented with 0.3 mg l−1 2,4-D. However, the frequency of formation of pale-yellow globular structures and white friable callus decreased slightly with increasing concentrations of 2,4-D up to 3 mg l−1, where the frequency reached ~50% of the control. Cell suspension cultures from zygotic embryo-derived white friable callus were established using half-strength MS medium supplemented with 0.3 mg l−1 2,4-D. Upon plating of cell aggregates on half-strength MS basal medium, approximately 8.3% gave rise to somatic embryos and developed into plantlets. However, the frequency of plantlet development from cell aggregates was sharply increased (by up to 55%) when activated charcoal and zeatin were applied. Regenerated plantlets were successfully transplanted to potting soil and grown to normal plants in a growth chamber. The distinctive feature of this study is the establishment of a high frequency plant regeneration system via somatic embryogenesis from zygotic embryo-derived cell suspension cultures of watershield, which has not been previously reported. The protocol for plant regeneration of watershield through somatic embryogenesis could be useful for the mass propagation and transformation of selected elite lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号