首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute lung injury (ALI), such as that which occurs with mechanical ventilation, contributes to morbidity and mortality of critical illness. Nonetheless, in many instances, ALI resolves spontaneously through unknown mechanisms. Therefore, we hypothesized the presence of innate adaptive pathways to protect the lungs during mechanical ventilation. In this study, we used ventilator-induced lung injury as a model to identify endogenous mechanisms of lung protection. Initial in vitro studies revealed that supernatants from stretch-induced injury contained a stable factor which diminished endothelial leakage. This factor was subsequently identified as adenosine. Additional studies in vivo revealed prominent increases in pulmonary adenosine levels with mechanical ventilation. Because ectoapyrase (CD39) and ecto-5'-nucleotidase (CD73) are rate limiting for extracellular adenosine generation, we examined their contribution to ALI. In fact, both pulmonary CD39 and CD73 are induced by mechanical ventilation. Moreover, we observed pressure- and time-dependent increases in pulmonary edema and inflammation in ventilated cd39(-/-) mice. Similarly, pharmacological inhibition or targeted gene deletion of cd73 was associated with increased symptom severity of ventilator-induced ALI. Reconstitution of cd39(-/-) or cd73(-/-) mice with soluble apyrase or 5'-nucleotidase, respectively, reversed such increases. In addition, ALI was significantly attenuated and survival improved after i.p. treatment of wild-type mice with soluble apyrase or 5'-nucleotidase. Taken together, these data reveal a previously unrecognized role for CD39 and CD73 in lung protection and suggest treatment with their soluble compounds as a therapeutic strategy for noninfectious ALI.  相似文献   

2.
The pathogenesis of pulmonary fibrosis remains unclear. The receptor for advanced glycation end-products (RAGE) is a multi-ligand receptor known to be involved in the process of fibrotic change in several organs, such as peritoneal fibrosis and kidney fibrosis. The aim of this study was to examine the contribution of RAGE during the acute inflammation and chronic fibrotic phases of lung injury induced by intratracheal instillation of bleomycin in mice. Bleomycin-induced lung fibrosis was evaluated in wild-type and RAGE-deficient (RAGE-/-) mice. Bleomycin administration to wild-type mice caused an initial pneumonitis that evolved into fibrosis. While RAGE-/- mice developed a similar early inflammatory response, the mice were largely protected from the late fibrotic effects of bleomycin. The protection afforded by RAGE deficiency was accompanied by reduced pulmonary levels of the potent RAGE-inducible profibrotic cytokines transforming growth factor (TGF)-beta and PDGF. In addition, bleomycin administration induced high mobility group box 1 (HMGB-1) production, one of the ligands of RAGE, from inflammatory cells that accumulated within the air space. Coculture with HMGB-1 induced epithelial-mesenchymal transition (EMT) in alveolar type II epithelial cells from wild-type mice. However, alveolar type II epithelial cells derived from RAGE-/- mice did not respond to HMGB-1 treatment, such that the RAGE/HMGB-1 axis may play an important role in EMT. Also, bleomycin administration induced profibrotic cytokines TGF-beta and PDGF only in wild-type mouse lungs. Our results suggested that RAGE contributes to bleomycin-induced lung fibrosis through EMT and profibrotic cytokine production. Thus, RAGE may be a new therapeutic target for pulmonary fibrosis.  相似文献   

3.
Adenosine is an extracellular signaling molecule that is generated in response to cell injury where it orchestrates tissue protection and repair. Whereas adenosine is best known for promoting anti-inflammatory activities during acute injury responses, prolonged elevations can enhance destructive tissue remodeling processes associated with chronic disease states. The generation of adenosine and the subsequent activation of the adenosine 2B receptor (A(2B)R) is an important processes in the regulation of both acute and chronic lung disease. The goal of this study was to examine the contribution of the A(2B)R in models of bleomycin-induced lung injury that exhibit varying degrees of acute and chronic injury. Intratracheal bleomycin exposure results in substantial acute lung injury followed by progressive fibrosis. In this model, genetic removal of the A(2B)R resulted in enhanced loss of barrier function and increased pulmonary inflammation, with few differences in indexes of pulmonary fibrosis. These results support an anti-inflammatory role for this receptor in this model of acute lung injury. In contrast, systemic exposure of mice to bleomycin resulted in modest acute lung injury together with progressive pulmonary fibrosis. In this model, the effects of A(2B)R removal on acute lung injury were negligible; however, there were substantial reductions in pulmonary fibrosis, supporting a profibrotic role for this receptor. A(2B)R-dependent regulation of IL-6 production was identified as a potential mechanism involved in the diminished pulmonary fibrosis seen in A(2B)R knockout mice exposed to i.p. bleomycin. These studies highlight the distinct roles of A(2B)R signaling during acute and chronic stages of lung injury.  相似文献   

4.
IFN-gamma production is upregulated in lung cells (LC) of bleomycin-treated C57BL/6 mice. The present study characterizes the time course, cellular source, and regulation of IFN-gamma expression in bleomycin-induced lung injury. IFN-gamma mRNA in LC from bleomycin-treated mice peaked 3 days after intratracheal instillation. IFN-gamma protein levels were increased at 6 days, as was the percentage of LC expressing IFN-gamma. CD4+, CD8+, and natural killer cells each contributed significantly to IFN-gamma production. IL-12 mRNA levels were increased at 1 day in LC of bleomycin-treated mice. Anti-IL-12 and anti-IL-18 antibodies decreased IFN-gamma production by these cells. To define the role of endogenous IFN-gamma in the evolution of bleomycin lung injury, we compared the effect of bleomycin in mice with a targeted knockout mutation of the IFN-gamma gene (IFN-gamma knockout) and wild-type mice. At 14 days after intratracheal bleomycin, total bronchoalveolar lavage cell counts and lung hydroxyproline were decreased in IFN-gamma knockouts compared with wild-type animals. There was no difference in morphometric parameters of fibrosis. Our data show that enhanced IFN-gamma production in the lungs of bleomycin-treated mice is at least partly IL-12 and IL-18 dependent. Absence of IFN-gamma in IFN-gamma knockout mice does not increase pulmonary fibrosis. Endogenous IFN-gamma may play a proinflammatory or profibrotic role in bleomycin-induced lung fibrosis.  相似文献   

5.
Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis.  相似文献   

6.
Impairment of bleomycin-induced lung fibrosis in CD28-deficient mice   总被引:3,自引:0,他引:3  
Lung fibrosis is an important pulmonary disease with a high mortality rate, but its pathophysiological mechanism has not been fully clarified. Various types of cells have been implicated in the development of lung fibrosis, including T cells. However, the contribution of functional molecules expressed on T cells to the development of lung fibrosis remains largely unknown. In this study, we determined whether costimulation via CD28 on T cells was crucial for the development of lung fibrosis by intratracheally administering bleomycin into CD28-deficient mice. Compared with wild-type mice, the CD28-deficient mice showed markedly impaired lung fibrosis after injection with low doses of bleomycin, as judged by histological changes and hydroxyproline content in the lungs. In addition, bleomycin-induced T cell infiltration into the airways and production of several cytokines and chemokines including IL-5 were also impaired in the CD28-deficient mice. Furthermore, adoptive transfer of CD28-positive T cells from wild-type mice recovered the impaired bleomycin-induced lung fibrosis in CD28-deficient mice. These findings suggest that the CD28-mediated T cell costimulation plays a critical role in the development of lung fibrosis, possibly by regulating the production of cytokines and chemokines in the lung. Thus, manipulation of the CD28-mediated costimulation could be a potential therapeutic strategy for the prevention of lung fibrosis.  相似文献   

7.
Protection from pulmonary fibrosis in the absence of CCR2 signaling   总被引:27,自引:0,他引:27  
Pulmonary fibrosis can be modeled in animals by intratracheal instillation of FITC, which results in acute lung injury, inflammation, and extracellular matrix deposition. We have previously shown that despite chronic inflammation, this model of pulmonary fibrosis is lymphocyte independent. The CC chemokine monocyte-chemoattractant protein-1 is induced following FITC deposition. Therefore, we have investigated the contribution of the main monocyte-chemoattractant protein-1 chemokine receptor, CCR2, to the fibrotic disease process. We demonstrate that CCR2(-/-) mice are protected from fibrosis in both the FITC and bleomycin pulmonary fibrosis models. The protection is specific for the absence of CCR2, as CCR5(-/-) mice are not protected. The protection is not explained by differences in acute lung injury, or the magnitude or composition of inflammatory cells. FITC-treated CCR2(-/-) mice display differential patterns of cellular activation as evidenced by the altered production of cytokines and growth factors following FITC inoculation compared with wild-type controls. CCR2(-/-) mice have increased levels of GM-CSF and reduced levels of TNF-alpha compared with FITC-treated CCR2(+/+) mice. Thus, CCR2 signaling promotes a profibrotic cytokine cascade following FITC administration.  相似文献   

8.

Background

Resistin-like molecule alpha or found in inflammatory zone protein (Fizz1) is increased in pulmonary epithelial cells and also in limited amounts by other lung cells during various lung injuries and fibrosis. However, the direct role of Fizz1 produced in the pulmonary epithelium has not been determined.

Methods

Fizz1 Transgenic mice (CCSP/Fizz1) were generated that overexpress Fizz1 in the lung epithelium under the control of a doxycycline (Dox) inducible lung epithelial cell specific promoter Scgb1a1 (Clara cell secretory protein, CCSP). Histology and FACS analysis of lung cells were used to identify the direct effects of Fizz1 in the transgenic mice (Dox treated) when compared with control (CCSP/-) mice. Intratracheal bleomycin sulfate or silica in saline and saline alone were used to study the role of Fizz1 during bleomycin- and silica-induced pulmonary fibrosis in CCSP/Fizz1 and CCSP/- mice. Weight change, pulmonary inflammation, and fibrosis were assessed 10 days post bleomycin or 28 days post silica challenge.

Results

When CCSP/Fizz1 mice were fed Dox food, elevated Fizz1 protein was detected in lung homogenates by western blot. Lungs of mice in which Fizz1 was induced in the epithelium contained increased lung cells staining for CD11c and F4/80 by FACS analysis consistent with increased dendritic cells however, no changes were observed in the percentage of interstitial macrophages compared to CCSP/- controls. No significant changes were found in the lung histology of CCSP/Fizz1 mice after up to 8 weeks of overexpression compared to CCSP/- controls. Overexpression of Fizz1 prior to challenge or following challenge with bleomycin or silica did not significantly alter airway inflammation or fibrosis compared to control mice.

Conclusions

The current study demonstrates that epithelial cell derived Fizz1 is sufficient to increase the bone-marrow derived dendritic cells in the lungs, but it is not sufficient to cause lung fibrosis or alter chemical or particle-induced fibrosis.  相似文献   

9.

Background

Lung fibrosis is a devastating pulmonary disorder characterized by alveolar epithelial injury, extracellular matrix deposition and scar tissue formation. Due to its potent collagenolytic activity, cathepsin K, a lysosomal cysteine protease is an interesting target molecule with therapeutic potential to attenuate bleomycin-induced pulmonary fibrosis in mice. We here tested the hypothesis that over-expression of cathepsin K in the lungs of mice is protective in bleomycin-induced pulmonary fibrosis.

Methods

Wild-type and cathepsin K overexpressing (cathepsin K transgenic; cath K tg) mice were challenged intratracheally with bleomycin and sacrificed at 1, 2, 3 and 4 weeks post-treatment followed by determination of lung fibrosis by estimating lung collagen content, lung histopathology, leukocytic infiltrates and lung function. In addition, changes in cathepsin K protein levels in the lung were determined by immunohistochemistry, real time RT-PCR and western blotting.

Results

Cathepsin K protein levels were strongly increased in alveolar macrophages and lung parenchymal tissue of mock-treated cathepsin K transgenic (cath K tg) mice relative to wild-type mice and further increased particularly in cath K tg but also wild-type mice in response to bleomycin. Moreover, cath K tg mice responded with a lower collagen deposition in their lungs, which was accompanied by a significantly lower lung resistance (RL) compared to bleomycin-treated wild-type mice. In addition, cath K tg mice responded with a lower degree of lung fibrosis than wild-type mice, a process that was found to be independent of inflammatory leukocyte mobilization in response to bleomycin challenge.

Conclusion

Over-expression of cathepsin K reduced lung collagen deposition and improved lung function parameters in the lungs of transgenic mice, thereby providing at least partial protection against bleomycin-induced lung fibrosis.  相似文献   

10.

Background

Catalase is preferentially expressed in bronchiolar and alveolar epithelial cells, and acts as an endogenous antioxidant enzyme in normal lungs. We thus postulated epithelial damage would be associated with a functional deficiency of catalase during the development of lung fibrosis.

Methods

The present study evaluates the expression of catalase mRNA and protein in human interstitial pneumonias and in mouse bleomycin-induced lung injury. We examined the degree of bleomycin-induced inflammation and fibrosis in the mice with lowered catalase activity.

Results

In humans, catalase was decreased at the levels of activity, protein content and mRNA expression in fibrotic lungs (n = 12) compared to control lungs (n = 10). Immunohistochemistry revealed a decrease in catalase in bronchiolar epithelium and abnormal re-epithelialization in fibrotic areas. In C57BL/6J mice, catalase activity was suppressed along with downregulation of catalase mRNA in whole lung homogenates after bleomycin administration. In acatalasemic mice, neutrophilic inflammation was prolonged until 14 days, and there was a higher degree of lung fibrosis in association with a higher level of transforming growth factor-β expression and total collagen content following bleomycin treatment compared to wild-type mice.

Conclusions

Taken together, these findings demonstrate diminished catalase expression and activity in human pulmonary fibrosis and suggest the protective role of catalase against bleomycin-induced inflammation and subsequent fibrosis.  相似文献   

11.

Background

The role of the receptor for advanced glycation end-products (RAGE) has been shown to differ in two different mouse models of asbestos and bleomycin induced pulmonary fibrosis. RAGE knockout (KO) mice get worse fibrosis when challenged with asbestos, whereas in the bleomycin model they are largely protected against fibrosis. In the current study the role of RAGE in a mouse model of silica induced pulmonary fibrosis was investigated.

Methodology/Principal Findings

Wild type (WT) and RAGE KO mice received a single intratracheal (i.t.) instillation of silica in saline or saline alone as vehicle control. Fourteen days after treatment mice were subjected to a lung mechanistic study and the lungs were lavaged and inflammatory cells, protein and TGF-β levels in lavage fluid determined. Lungs were subsequently either fixed for histology or excised for biochemical assessment of fibrosis and determination of RAGE protein- and mRNA levels. There was no difference in the inflammatory response or degree of fibrosis (hydroxyproline levels) in the lungs between WT and RAGE KO mice after silica injury. However, histologically the fibrotic lesions in the RAGE KO mice had a more diffuse alveolar septal fibrosis compared to the nodular fibrosis in WT mice. Furthermore, RAGE KO mice had a significantly higher histologic score, a measure of affected areas of the lung, compared to WT silica treated mice. A lung mechanistic study revealed a significant decrease in lung function after silica compared to control, but no difference between WT and RAGE KO. While a dose response study showed similar degrees of fibrosis after silica treatment in the two strains, the RAGE KO mice had some differences in the inflammatory response compared to WT mice.

Conclusions/Significance

Aside from the difference in the fibrotic pattern, these studies showed no indicators of RAGE having an effect on the severity of pulmonary fibrosis following silica injury.  相似文献   

12.
13.
Matrix metalloproteinases (MMPs) are mediators of lung injury, and their activity has been associated with the development of pulmonary fibrosis. To understand how MMPs regulate the development of pulmonary fibrosis, we examined MMP expression in two strains of mice with differing sensitivities to the fibrosis-inducing drug bleomycin. After a single intratracheal injection of the drug, bleomycin-sensitive C57BL/6 mice showed increased expression for MMPs (-2, -7, -9, -13) at both 7 and 14 days posttreatment compared with the bleomycin-resistant BALB/c strain. In addition, TIMP-1, an endogenous inhibitor of MMPs, was upregulated in the lungs of C57BL/6 mice but not BALB/c mice. We designed two strategies to decrease MMP expression to potentially decrease sensitivity of C57BL/6 mice: 1) we engineered C57BL/6 mice that overexpressed TIMP-1 in their lungs via surfactant protein C (SP-C) promoter; and 2) we inhibited expression of MMPs independent of TIMP-1 by knocking out metallothionein (MT), a critical zinc binding protein. SP-C-TIMP-1 mice reduced MMP expression in response to bleomycin. However, they were equally sensitive to bleomycin as their wild-type counterparts, displaying similar levels of hydroxyproline in the lung tissue. MT null mice displayed decreased lung activity of MMPs with no change in TIMP-1. Nonetheless, there was no difference between the MT null and wild-type control littermates with regards to any of the lung injury parameters measured. We conclude that although TIMP-1 expression is differentially regulated in fibrosis-sensitive and fibrosis-resistant strains, epithelial overexpression of TIMP-1 does not appear to substantially alter fibrotic lung disease in mice.  相似文献   

14.
Idiopathic pulmonary fibrosis (IPF) involves pulmonary injury associated with inflammatory responses, fibrosis and dysfunction. Myofibroblasts and transforming growth factor (TGF)-β1 play major roles in the pathogenesis of this disease. Endoplasmic reticulum (ER) stress response is induced in the lungs of IPF patients. One of ER chaperones, the 150-kDa oxygen-regulated protein (ORP150), is essential for the maintenance of cellular viability under stress conditions. In this study, we used heterozygous ORP150-deficient mice (ORP150(+/-) mice) to examine the role of ORP150 in bleomycin-induced pulmonary fibrosis. Treatment of mice with bleomycin induced the expression of ORP150 in the lung. Bleomycin-induced inflammatory responses were slightly exacerbated in ORP150(+/-) mice compared to wild-type mice. On the other hand, bleomycin-induced pulmonary fibrosis, alteration of lung mechanics and respiratory dysfunction was clearly ameliorated in the ORP150(+/-) mice. Bleomycin-induced increases in pulmonary levels of both active TGF-β1 and myofibroblasts were suppressed in ORP150(+/-) mice. These results suggest that although ORP150 is protective against bleomycin-induced lung injury, this protein could stimulate bleomycin-induced pulmonary fibrosis by increasing pulmonary levels of TGF-β1 and myofibroblasts.  相似文献   

15.
An important determinant of disease following Streptococcus pneumoniae (pneumococcus) lung infection is pulmonary inflammation mediated by polymorphonuclear leukocytes (PMNs). We found that upon intratracheal challenge of mice, recruitment of PMNs into the lungs within the first 3 hours coincided with decreased pulmonary pneumococci, whereas large numbers of pulmonary PMNs beyond 12 hours correlated with a greater bacterial burden. Indeed, mice that survived infection largely resolved inflammation by 72 hours, and PMN depletion at peak infiltration, i.e. 18 hours post-infection, lowered bacterial numbers and enhanced survival. We investigated host signaling pathways that influence both pneumococcus clearance and pulmonary inflammation. Pharmacologic inhibition and/or genetic ablation of enzymes that generate extracellular adenosine (EAD) (e.g. the ectoenzyme CD73) or degrade EAD (e.g. adenosine deaminase) revealed that EAD dramatically increases murine resistance to S. pneumoniae lung infection. Moreover, adenosine diminished PMN movement across endothelial monolayers in vitro, and although inhibition or deficiency of CD73 had no discernible impact on PMN recruitment within the first 6 hours after intratracheal inoculation of mice, these measures enhanced PMN numbers in the pulmonary interstitium after 18 hours of infection, culminating in dramatically elevated numbers of pulmonary PMNs at three days post-infection. When assessed at this time point, CD73 -/- mice displayed increased levels of cellular factors that promote leukocyte migration, such as CXCL2 chemokine in the murine lung, as well as CXCR2 and β-2 integrin on the surface of pulmonary PMNs. The enhanced pneumococcal susceptibility of CD73 -/- mice was significantly reversed by PMN depletion following infection, suggesting that EAD-mediated resistance is largely mediated by its effects on PMNs. Finally, CD73-inhibition diminished the ability of PMNs to kill pneumococci in vitro, suggesting that EAD alters both the recruitment and bacteriocidal function of PMNs. The EAD-pathway may provide a therapeutic target for regulating potentially harmful inflammatory host responses during Gram-positive bacterial pneumonia.  相似文献   

16.
Extracellular adenosine formed by 5'-ectonucleotidase (CD73) is involved in tubulo-glomerular feedback in the kidney but is also known to be an important immune modulator. Since CD73(-/-)mutant mice exhibit a vascular proinflammatory phenotype, we asked whether long term lack of CD73 causes inflammation related kidney pathologies. CD73(-/-)mice (13 weeks old) showed significantly increased low molecule proteinuria compared to C57BL6 wild type controls (4.8 ≥ 0.52 vs. 2.9 ± 0.54 mg/24 h, p<0.03). Total proteinuria increased to 5.97 ± 0.78 vs. 2.55 ± 0.35 mg/24 h at 30 weeks (p<0.01) whereas creatinine clearance decreased (0.161 ± 0.02 vs. 0.224 ± 0.02 ml/min). We observed autoimmune inflammation in CD73(-/-)mice with glomerulitis and peritubular capillaritis, showing glomerular deposition of IgG and C3 and enhanced presence of CD11b, CD8, CD25 as well as GR-1-positive cells in the interstitium. Vascular inflammation was associated with enhanced serum levels of the cytokines IL-18 and TNF-α as well as VEGF and the chemokine MIP-2 (CXCL-2) in CD73(-/-)mice, whereas chemokines and cytokines in the kidney tissue were unaltered or reduced. In CD73(-/-)mice glomeruli, we found a reduced number of podocytes and endothelial fenestrations, increased capillaries per glomeruli, endotheliosis and enhanced tubular fibrosis. Our results show that adult CD73(-/-)mice exhibit spontaneous proteinuria and renal functional deterioration even without exogenous stress factors. We have identified an autoimmune inflammatory phenotype comprising the glomerular endothelium, leading to glomeruli inflammation and injury and to a cellular infiltrate of the renal interstitium. Thus, long term lack of CD73 reduced renal function and is associated with autoimmune inflammation.  相似文献   

17.
Leukocyte infiltration is characteristic of lung injury and fibrosis, and its role during tissue repair and fibrosis is incompletely understood. We found that overexpression of IL-5 in transgenic mice (IL-5(TG)) or by adenoviral gene transfer increased bleomycin (blm)-induced lung injury, fibrosis, and eosinophilia. Surprisingly, blm-treated IL-5-deficient (IL-5(-/-)) mice also developed pronounced pulmonary fibrosis but characterized by marked T lymphocyte infiltration and absence of eosinophilia. In both murine strains however, induction of lung TGF-beta expression was evident. Purified lung eosinophils from blm-treated IL-5(TG) mice stimulated alpha-smooth muscle actin and collagen expression in mouse lung fibroblasts, without affecting proliferation. Furthermore instillation of purified eosinophils into murine lungs resulted in extension of blm-induced lung fibrosis, thus confirming a role for eosinophils. However, lung T lymphocytes from blm-treated IL-5(-/-) mice were able to stimulate fibroblast proliferation but not alpha-smooth muscle actin or collagen expression. Blocking T cell influx by anti-CD3 Abs abrogated lung fibrosis, thus also implicating T lymphocytes as a key participant in fibrosis. Pulmonary fibrosis in IL-5(TG) mice was preferentially associated with type 2 cytokines (IL-4 and IL-13), whereas fibrotic lesions in IL-5(-/-) animals were accompanied by proinflammatory cytokine (TNF-alpha, IL-1beta, and IFN-gamma) expression. We suggest that eosinophils and T cells contribute distinctly to the development of blm-induced lung fibrosis potentially via their production of different cytokine components, which ultimately induce TGF-beta expression that is intimately involved with the fibrosis.  相似文献   

18.
Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2–4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent with in vitro studies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP''s protective effects in the lung.  相似文献   

19.
CC chemokine ligand-2 (CCL2)/monocyte chemoattractant protein (MCP)-1 expression is upregulated during pulmonary inflammation, and the CCL2-CCR2 axis plays a critical role in leukocyte recruitment and promotion of host defense against infection. The role of CCL2 in mediating macrophage subpopulations in the pathobiology of noninfectious lung injury is unknown. The goal of this study was to examine the role of CCL2 in noninfectious acute lung injury. Our results show that lung-specific overexpression of CCL2 protected mice from bleomycin-induced lung injury, characterized by significantly reduced mortality, reduced neutrophil accumulation, and decreased accumulation of the inflammatory mediators IL-6, CXCL2 (macrophage inflammatory protein-2), and CXCL1 (keratinocyte-derived chemokine). There were dramatic increases in the recruitment of myosin heavy chain (MHC) II IA/IE(int)CD11c(int) cells, exudative macrophages, and dendritic cells in Ccl2 transgenic mouse lungs both at baseline and after bleomycin treatment compared with levels in wild-type mice. We further demonstrated that MHCII IA/IE(int)CD11c(int) cells engulfed apoptotic cells during acute lung injury. Our data suggested a previously undiscovered role for MHCII IA/IE(int)CD11c(int) cells in apoptotic cell clearance and inflammation resolution.  相似文献   

20.

Background

Reactive oxygen species and tissue remodeling regulators, such as metalloproteinases (MMPs) and their inhibitors (TIMPs), are thought to be involved in the development of pulmonary fibrosis. We investigated these factors in the fibrotic response to bleomycin of p47phox -/- (KO) mice, deficient for ROS production through the NADPH-oxidase pathway.

Methods

Mice are administered by intranasal instillation of 0.1 mg bleomycin. Either 24 h or 14 days after, mice were anesthetized and underwent either bronchoalveolar lavage (BAL) or lung removal.

Results

BAL cells from bleomycin treated WT mice showed enhanced ROS production after PMA stimulation, whereas no change was observed with BAL cells from p47phox -/- mice. At day 1, the bleomycin-induced acute inflammatory response (increased neutrophil count and MMP-9 activity in the BAL fluid) was strikingly greater in KO than wild-type (WT) mice, while IL-6 levels increased significantly more in the latter. Hydroxyproline assays in the lung tissue 14 days after bleomycin administration revealed the absence of collagen deposition in the lungs of the KO mice, which had significantly lower hydroxyproline levels than the WT mice. The MMP-9/TIMP-1 ratio did not change at day 1 after bleomycin administration in WT mice, but increased significantly in the KO mice. By day 14, the ratio fell significantly from baseline in both strains, but more in the WT than KO strains.

Conclusions

These results suggest that NADPH-oxidase-derived ROS are essential to the development of pulmonary fibrosis. The absence of collagen deposition in KO mice seems to be associated with an elevated MMP-9/TIMP-1 ratio in the lungs. This finding highlights the importance of metalloproteinases and protease/anti-protease imbalances in pulmonary fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号