首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The in vivo luminescence of an aldehyde-requiring mutant of the luminous bacteria Vibrio harveyi (M42) increases dramatically upon the addition of long-chain aliphatic aldehydes (C8-C16). The intensity of this luminescence is linearly related to aldehyde concentration. This property was utilized for the determination of monoamine oxidase activity using n-octylamine and n-decylamine as substrates, which are converted by monoamine oxidase to n-octylaldehyde and n-decylaldehyde, respectively. The addition of the amine to a suspension containing rat liver mitochondria and M42 cells initiated a luminescence that was directly proportional to monoamine oxidase activity according to two parameters: (1) the rate of the initial increase in luminescence and (2) the final "steady-state" level of luminescence. The new assay has advantages of high sensitivity, rapidity, the possibility to perform discontinuous as well as continuous monitoring of monoamine oxidase activity, and applicability to turbid preparations.  相似文献   

2.
Abstract: Acute inhibition of monoamine oxidase B (MAO-B) in the rat does not affect striatal dopamine (DA) metabolism, but chronic MAO-B inhibition with deprenyl has been reported to increase the release of striatal DA, as shown using in vitro techniques. To see whether chronic MAO-B inhibition also causes an increase in DA release in vivo, rats were treated for 21 days with either deprenyl (0.25 mg/kg), TVP-1012 [R(+)-N-propargyl-1-aminoindan mesylate; 0.05 mg/kg), an irreversible inhibitor of MAO-B that is not metabolized to amphetamines, clorgyline (0.2 mg/kg), or saline (all doses once daily by subcutaneous injection). Concentric 4-mm-long microdialysis probes were implanted in the left striatum under pentobarbital/chloral hydrate anesthesia on day 21, and microdialysate DA, 3,4-dihydroxyacetic acid (DOPAC), and 4-hydroxy-3-methoxyphenyl acetic acid (HVA) were determined in the conscious animals on day 22. Baseline levels of DA were as follows: control, 0.34 ± 0.04 (n = 13); deprenyl, 0.88 ± 0.10 (n = 8, p < 0.01); TVP-1012, 0.94 ± 0.20 (n = 7, p < 0.01); clorgyline, 0.90 ± 0.12 (n = 7, p < 0.01) pmol/20 min. Levels of DOPAC and HVA were reduced only in the clorgyline-treated group. The incremental release of DA induced by depolarizing concentration of K+ (100 mM bolus of KCl in perfusate) was significantly greater in clorgyline- and deprenyl-treated rats and elevated (nonsignificantly) in TVP-1012-treated rats. Chronic treatment with the MAO-B inhibitors reduced striatal MAO-B activity by 90%, with 15% (TVP-1012) or 40% (deprenyl) inhibition of MAO-A. Clorgyline inhibited MAO-A by 95%, with 30% inhibition of MAO-B. A single dose of deprenyl (0.25 mg/kg, 24 h before microdialysis) had no significant effect on striatal efflux of DA. The results show that DA metabolism was reduced only by clorgyline, whereas neuronal release of DA was enhanced by both MAO-A and MAO-B inhibitors on chronic administration. The enhanced DA release by chronic MAO-B inhibition does not appear to be dependent on production of amphetamine-like metabolites of the inhibitor. Possible mechanisms for the release-enhancing effect of the MAO-B inhibitors include elevation in levels of endogenous β-phenylethylamine, or an inhibition of DA reuptake, which develops only on chronic administration, because both deprenyl and TVP-1012 have only very weak effects on amine uptake in acute experiments.  相似文献   

3.
The kinetic properties of type A and type B monoamine oxidase (MAO) were examined in guinea pig striatum, rat striatum, and autopsied human caudate nucleus using 3,4-dihydroxyphenylethylamine (dopamine, DA) as the substrate. MAO isozyme ratio in guinea pig striatum (28% type A/72% type B) was similar to that in human caudate nucleus (25% type A/75% type B) but different from that in rat striatum (76% type A/24% type B). Additional similarities between guinea pig striatum and human caudate nucleus were demonstrated for the affinity constants (Km) of each MAO) isozyme toward DA. Endogenous concentrations of DA, 3-methoxytyramine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid were also measured in guinea pig and rat striatum following selective type A (clorgyline-treated) and type B (deprenyl-treated) MAO inhibition. In guinea pig, DA metabolism was equally but only partially affected by clorgyline or deprenyl alone. Combined treatment with clorgyline and deprenyl was required for maximal alterations in DA metabolism. By contrast, DA metabolism in rat striatum was extensively altered by clorgyline but unaffected by deprenyl alone. Finally, the deamination of DA in synaptosomes from guinea pig striatum was examined following selective MAO isozyme inhibition. Neither clorgyline nor deprenyl alone reduced synaptosomal DA deamination. However, clorgyline and deprenyl together reduced DA deamination by 94%. These results suggest that the isozyme localization and/or isozyme affinity for DA, rather than the absolute isozyme content, determines the relative importance of type A and type B MAO in synaptic DA deamination. Moreover, based on the enzyme kinetic properties of each MAO isozyme, guinea pig striatum may serve as a suitable model of human DA deamination.  相似文献   

4.
Abstract

The substrate- and inhibitor-related characteristics of monoamine oxidase (MAO) were studied for catfish brain and liver. The kinetic constants for MAO in both tissues were determined using 5-hydroxytryptamine (5-HT), tyramine and β-phenylethylamine (PEA) as substrates. For both tissues, the Vmax values were highest with 5-HT and lowest with PEA. The Km value for the brain was highest with 5-HT, followed by tyramine and PEA; but for the liver its value was highest with PEA, followed by 5-HT and tyramine, although all values were in the same order of magnitude. The inhibition of MAO by clorgyline and deprenyl by use of 5-HT, tyramine and PEA as substrates showed that the MAO-A inhibitor clorgyline was more effective than the MAO-B inhibitor deprenyl for both catfish tissues; a single form was present since inhibition by clorgyline or deprenyl with 1000 μM PEA showed single phase sigmoid curves. It is concluded that catfish brain and liver contain a single form of MAO, relatively similar to mammalian MAO-A.  相似文献   

5.
Abstract: K m and V max values of monoamine oxidase (MAO) A and B towards 5-hydroxytryptamine were determined for rat brain homogenates after the in vitro inhibition of one of the two forms by the selective inhibitors clorgyline and l -deprenyl. K m values of 178 and 1170μ m , and V max values of 0.73 and 0.09 nmol·mg protein−1·min−1 towards 5-hydroxytryptamine were found for MAO-A and -B, respectively. The K 1 for 5-hydroxytryptamine as a competitive inhibitor of β-phenethylamine oxidation by MAO-B was found to be 1400 μm. The significance of these findings is discussed.  相似文献   

6.
Abstract: Administration of l -DOPA (50 mg/kg) elicits a significant increase in extracellular dopamine in striata of rats treated with the catecholaminergic neurotoxin 6-hydroxydopamine but not in striata of intact rats. To assess the role of dopaminergic nerve terminals in determining the effects of exogenous l -DOPA on extracellular dopamine levels in striatum, we examined the relative contributions of monoamine oxidase A and monoamine oxidase B to the catabolism of dopamine synthesized from exogenous l -DOPA. Extracellular concentrations of dopamine and its catabolite, 3,4-dihydroxyphenylacetic acid, were monitored with in vivo dialysis in striata of intact rats and of rats with unilateral 6-hydroxydopamine lesions of striatal dopamine. Clorgyline (2 mg/kg), an inhibitor of monoamine oxidase A, significantly increased dopamine and decreased 3,4-dihydroxyphenylacetic acid in intact but not in dopamine-depleted striata. Inhibition of monoamine oxidase B with either l -deprenyl (1 mg/kg) or Ro 19-6327 (1 mg/kg) did not significantly affect dopamine or 3,4-dihydroxyphenylacetic acid in striata of intact or dopamine-depleted rats. In intact rats, administration of clorgyline in conjunction with l -DOPA produced a >20-fold increase in dopamine and prevented the l -DOPA-induced increase in 3,4-dihydroxyphenylacetic acid. Although both l -deprenyl and Ro 19-6327 administered in combination with l -DOPA elicited a small but significant increase in dopamine, levels of 3,4-dihydroxyphenylacetic acid were not affected. In rats pretreated with 6-hydroxydopamine, clorgyline had no significant effect on the increases in dopamine and 3,4-dihydroxyphenylacetic acid elicited by l -DOPA. Furthermore, neither l -deprenyl nor Ro 19-6327 affected l -DOPA-induced increases in dopamine and 3,4-dihydroxyphenylacetic acid in dopamine-depleted striata. The present findings indicate that deamination by monoamine oxidase A is the primary mechanism for catabolism of striatal dopamine, both under basal conditions and after administration of exogenous l -DOPA. Loss of dopaminergic terminals eliminates this action of monoamine oxidase A but does not enhance deamination by monoamine oxidase B. These data support a model in which exogenous l -DOPA elicits enhanced extracellular accumulation of dopamine in the dopamine-depleted striatum because some transmitter synthesis occurs at nondopaminergic sites and the dopamine terminals that normally take up and catabolize this pool of transmitter are absent.  相似文献   

7.
Abstract: The effect of selective inhibition of monoamine oxidase (MAO) subtypes A and B on striatal metabolism of DOPA to dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 4-hydroxy-3-methoxyphenylacetic acid (homovanillic acid; HVA) was studied in halothane-anesthetized rats 3 weeks after unilateral 6-hydroxydopamine lesion of the substantia nigra. Implantation of bilateral microdialysis probes allowed simultaneous quantitation of metabolite production on lesioned and control sides. The DOPA was administered as a 15-min bolus of 1 m M solution in the striatal microdialysate. Rats were pretreated with the selective MAO-A inhibitor clorgyline, or the selective MAO-B inhibitors deprenyl or TVP-101 [2,3-dihydro- N -2-propynyl-1 H -inden-1-amine-(1 R )-hydrochloride]. Intrastriatal infusion of DOPA caused an increased efflux of DA, DOPAC, and HVA, which was greater on the intact side. Clorgyline, but not deprenyl or TVP-101, increased post-DOPA DA efflux on both intact and lesioned sides. Clorgyline also caused a marked suppression of post-DOPA DOPAC and HVA effluxes, whereas only mild effects were produced by the MAO-B inhibitors. There was no evidence for a differential effect of MAO-B inhibition on efflux of DA or metabolites in the lesioned as compared with the control striatum. The results indicate a major role for MAO-A in DA metabolism both intra- and extraneuronally in the rat striatum.  相似文献   

8.
9.
Substrate Selectivity of Type A and Type B Monoamine Oxidase in Rat Brain   总被引:5,自引:5,他引:0  
Abstract: Use of the irreversible inhibitors clorgyline and deprenyl showed that rat brain mitochondria contain type A and type B monoamine oxidase (MAO). Tyramine is a substrate for both types of MAO, whereas serotonin is a preferential substrate for type A MAO. In contrast to MAO in other tissues, type A MAO in brain tissue oxidizes β-phenylethylamine (PEA) at high concentrations (0.5 and 1.0 mM). The proportions of type A and type B MAO activities in the mitochondria estimated from the double-sigmoidal inhibition curves of tyramine oxidation were about 70:30 irrespective of the concentration of tyramine. With PEA as substrate, the ratios of type A to type B activities were found to increase from low values at low concentrations to about 1 at 0.5-1.0 mM-PEA, and even higher at further increased concentrations of PEA. At very low (0.01 mM) and high (10.0 mM) concentrations of PEA, single-sigmoidal curves were obtained; with the high PEA concentration the activity was highly sensitive to clorgyline, whereas with the low concentration it was highly sensitive to deprenyl. In deprenyl-pretreated mitochondrial preparations, all the remaining activity towards 0.5-1.0 mM-PEA was shown to be highly sensitive to clorgyline, demonstrating that this activity was indeed due to oxidation by type A MAO. The opposite result was obtained with deprenyl as inhibitor of clorgyline-pretreated preparations, demonstrating that PEA at this concentration was also oxidized by type B MAO in rat brain mitochondria. The K3 values of type A and type B MAO for PEA were significantly different. On Lineweaver-Burk analysis, plots with PEA as substrate for type A MAO in a deprenyl-treated preparation were linear over a wide concentration range, whereas those for type B MAO in a clorgyline-treated preparation were not linear, but showed substrate inhibition at higher concentrations of the substrate. It is concluded from the present findings that the effect of the substrate concentration must be considered in studies on the characteristics of multiple forms of MAO in various organs and species.  相似文献   

10.
Abstract: Aliphatic N -propargylamines have recently been discovered to be highly potent, selective, and irreversible monoamine oxidase B (MAO-B) inhibitors. N -Methyl- N -(2-pentyl)propargylamine (M-2-PP) and N -methyl- N -(2-hexyl) propargylamine (2-HxMP), for example, are approximately fivefold more potent than I -deprenyl at inhibiting mouse brain MAO-B activity following oral administration. These inhibitors are nonaromatic compounds and are chemically quite different from other known MAO-B inhibitors. Some of their neurochemical and neuroprotective properties have been evaluated and compared with those of I -deprenyl. We have confirmed that these new inhibitors selectively inhibit MAO-B activity both in vitro and in vivo. 2-Phenylethylamine levels were substantially increased following administration of M-2-PP, but the levels of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, 5-hydroxytryptamine, and 5-hydroxyindoleacetic acid were not affected except at high, nonselective doses. Chronic oral administration of I -deprenyl and M-2-PP causes selective inhibition of MAO-B activity and increases dopamine levels in mouse caudate. M-2-PP, like I -deprenyl, has been shown to be potent in protecting against MPTP-induced damage in the mouse. N -(2-Chloroethyl)- N -ethyl-2-bromobenzylamine (DSP-4), a noradrenaline neurotoxin, is not an MAO substrate. Its noradrenaline-depleting effects were substantially mitigated by I -deprenyl as well as by M-2-PP and 2-HxMP in the mouse hippocampus. Administration of 2-phenylethylamine, however, failed to reverse the effect of DSP-4. The neuroprotective effect of M-2-PP and 2-HxMP is apparently unrelated to the uptake of DSP-4.  相似文献   

11.
Genetic variations in monoamine oxidase (MAO)-B activity have been proposed to have a contributory role in several neurologic and psychiatric diseases. Variations in activity could affect rates of degradation of exogenous amines, including toxins, precursors of toxins (like 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), or false transmitters, and of endogenous amines, such as neurotransmitters. In this study a highly polymorphic (GT)n repeat element was used to mark alleles at the MAOB locus. The MAOB allele status and levels of platelet MAO-B activity were determined for 41 control males. No correlation was noted between specific alleles and levels of MAO-B activity in this sample set. This suggests that the structural gene for MAOB is not usually the primary determinant of activity levels in platelets.  相似文献   

12.
Intracerebroventricular injections of angiotensin II caused 108, 62, and 54% increases in monoamine oxidase A activities in rat hippocampus, hypothalamus, and striatum, respectively. These activatory effects were abolished by simultaneous injections of eledoisin. No significant changes of monoamine oxidase B activities were found under the same experimental conditions. Neither angiotensin II nor elodoisin changed substrate/inhibitor affinities of both isoenzymes. These data indicate that angiotensin II and tachykinin transmitter systems may exert opposite, long-term regulatory effects on monoaminergic neurons in rat brain.  相似文献   

13.
Influence of C Terminus on Monoamine Oxidase A and B Catalytic Activity   总被引:1,自引:0,他引:1  
Abstract: Monoamine oxidase (MAO) A and B play important roles in the metabolism of neurotransmitters and dietary amines. The domains important for enzyme specificities were studied by construction of chimeric MAOA/B enzymes. Exchange of the N-terminal 45 amino acids of MAOA with the N-terminal 36 residues of MAOB (chimeric enzymes B36A and A45B) resulted in the same substrate and inhibitor sensitivities as the wild-type MAOA or B. Thus, the N terminus may not be responsible for MAOA or B enzyme specificities. When MAOB C-terminal residues 393–520 were replaced with MAOA C-terminal residues 402–527 (chimeric B393A) catalytic activity was not detectable. Chimeric B393A consists of eight residues with different charges, three less proline residues (458, 476, and 490), and one additional proline at 518 compared with wild-type MAOB. These differences may have induced conformational changes and affected MAOB catalytic activity. Thus, the C terminus of MAOB is critical for maintaining MAOB in an active form. It is interesting that when the C terminus of MAOA was switched with MAOB (chimeric A402B), little effect was observed on MAOA catalytic activity. This new information is valuable for further studies of the structure and function relationship of this important enzyme.  相似文献   

14.
We have examined the changes induced by the monoamine oxidase (MAO; EC 1.4.3.4) inhibitors tranylcypromine, clorgyline, and deprenyl on MAO activity and 5-hydroxytryptamine (serotonin, 5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) content in rat brain and blood (plasma and whole blood). The decreases of MAO-A activity observed in the liver and lungs after different doses of clorgyline or tranylcypromine correlated significantly (r > 0.80 in all cases) with the decline of plasma 5-HIAA. This was unaffected by 0.25 and 5 mg kg?1 of deprenyl, indicating that 5-HT was deaminated exclusively in the periphery by MAO-A. It is interesting that very potent and significant correlations (r > 0.75) were found between plasma 5-HIAA and MAO-A activity, 5-HIAA and 5-HT content in brain tissue. These results suggest that plasma 5-HIAA can be used confidently as a peripheral indicator of the inhibition of MAO-A in brain. This may represent a favorable alternative to the analysis of 5-HIAA in CSF in psychiatric patients undergoing antidepressant treatment with nonspecific MAO inhibitors or with the new selective MAO-A inhibitors.  相似文献   

15.
16.
Inhibition of Monoamine Oxidase by N-Methylisoquinolinium Ion   总被引:3,自引:3,他引:0  
N-Methylisoquinolinium ion (N-MIQ) has been found to inhibit the biosynthesis of catecholamines; it inhibited tyrosine hydroxylase activity in striatal tissue slices. In this article, the effects of N-MIQ and an analogue, N-methylquinolinium ion, on monoamine oxidase (MAO) activity were examined to see their effects on the catabolism of catecholamines. MAO-A in human placental mitochondria was strongly inhibited by N-MIQ in competition with the substrate. The apparent Ki value of N-MIQ was found to be 20.4 +/- 1.1 microM, whereas that of N-methylquinolinium ion was 54.6 +/- 4.5 microM. MAO-B in human brain synaptosomes and liver mitochondria was found to be inhibited by N-MIQ, but the inhibition proved to be noncompetitive. The inhibition of MAO-B by N-MIQ was completely reversible by dialysis of the incubation mixture. MAO-A in human brain and liver mitochondria was more sensitive to the inhibitor than MAO-B. By quantitative analysis of N-MIQ, using HPLC, it was found not to be catabolized by the incubation with mitochondria, suggesting that the inhibition was due to N-MIQ itself and not due to any metabolic product. The inhibition of MAO by N-MIQ is discussed in terms of its possible involvement of the etiology of parkinsonism.  相似文献   

17.
Abstract: A monoamine oxidase assay utilizing generally labeled [3H]-serotonin as substrate became nonlinear after only ~5% conversion of initial c.p.m. to product. Subsequent analysis showed that a significant proportion of the tritium label was readily exchangeable into water and that monoamine oxidase activity increased release of label as water. The use of generally labeled substrates for oxidase activities is not recommended.  相似文献   

18.
19.
7-Chloro-4-nitrobenzofurazan (NBD-Cl) is a potent inhibitor of both types of monoamine oxidase (MAO). NBD-Cl competitively inhibited the oxidative deamination of kynuramine catalyzed by human placenta MAO-A, the oxidative deamination of benzylamine catalyzed by bovine liver MAO-B, the oxidative deamination of serotonin catalyzed by rat brain MAO-A, and the oxidative deamination of phenylethylamine catalyzed by rat brain MAO-B. In addition, a time-dependent inactivation of MAOs by NBD-Cl has been demonstrated upon incubation of the enzyme preparations with NBD-Cl at pH 9, but not at pH 7.5. The time-dependent inhibition of MAO by NBD-Cl could be prevented by the addition of 4-nitrophenyl azide, an active site-directed label of MAO, during incubation of the enzyme with NBD-Cl. On the basis of these findings, it is suggested that at pH 9, NBD-Cl modifies one (or more) essential lysine residue(s) in the active sites of the two types of MAO.  相似文献   

20.
Abstract

The monoamine oxidase catalyses the oxidative deamination of neuroactive amines. This enzyme exists in two forms A and B, which differ by substrates preference and inhibitors specificity. Investigation of the structures of these enzymes and design new selective inhibitors are of greatly interesting since MAO A inhibitors are used in therapeutic practice as antidepressants and MAO B inhibitors – in the treatment Parkinson's diseases. The three dimension structures of monoamine oxidases are still unknown. Therefore, one of the most perspective approach to define significant features of structure active site is method based on analysis of structure-activity relationship (3D QSAR) with comparison of molecular fields analysis (CoMFA) allowing to get the spatial distribution of important properties affecting the activity.

In present study we investigate the structures of active sites MAO A and B using 16 pyrazinocarbazole derivatives in variant conformation. Majority of pyrazinocarbazole derivatives have a rigit conformation, but three of those is sufficiently flexible. The latters can be in two conformation types: long molecules (substitution accommodate along axis of main structure) and short molecules (substitution accommodate at acute angle about of main structure). Several 3D QSAR and CoMFA models of MAO A and B active sites were design for data sets containing various types of flexible molecules conformation. All obtained models are statistical reliable and have sufficient predictive power for tested compound tetrindole. The best MAO A model that include two flexible molecules in long conformations was obtained, and the longest one of those in short conformation. In contrast, for MAO B model containing all flexible molecules in the short conformations is more preferred.

On the basis of obtained data the schematic models of MAO A and B active sites structures are proposed. According to these models MAO A active site have the narrow long cavity that accommodate long molecules, while MAO B active site is broader and shorter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号