首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
It is of interest to define bacterial toxin biochemical properties to use them as molecular-syringe devices in order to deliver enzymatic activities into host cells. Binary toxins of the AB7/8-type are among the most potent and specialized bacterial protein toxins. The B subunits oligomerize to form a pore that binds with high affinity host cell receptors and the enzymatic A subunit. This allows the endocytosis of the complex and subsequent injection of the A subunit into the cytosol of the host cells. Here we report that the addition of an N-terminal His6-tag to different proteins increased their binding affinity to the protective antigen (PA) PA63-channels, irrespective if they are related (C2I) or unrelated (gpJ, EDIN) to the AB7/8-family of toxins. His6-EDIN exhibited voltage-dependent increase of the stability constant for binding by a factor of about 25 when the trans-side corresponding to the cell interior was set to −70 mV. Surprisingly, the C. botulinum toxin C2II-channel did not share this feature of PA63. Cell-based experiments demonstrated that addition of an N-terminal His6-tag promoted also intoxication of endothelial cells by C2I or EDIN via PA63. Our results revealed that addition of His6-tags to several factors increase their binding properties to PA63 and enhance the property to intoxicate cells.  相似文献   

2.
There is a need in current atomic force microscopy (AFM) molecular recognition studies for generic methods for the stable, functional attachment of proteins on tips and solid supports. In the last few years, the site-directed nitrilotriacetic acid (NTA)-polyhistidine (Hisn) system has been increasingly used towards this goal. Yet, a crucial question in this context is whether the NTA-Hisn bond is sufficiently strong for ensuring stable protein immobilization during force spectroscopy measurements. Here, we measured the forces between AFM tips modified with NTA-terminated alkanethiols and solid supports functionalized with His6-Gly-Cys peptides in the presence of Ni2+. The force histogram obtained at a loading rate of 6600 pN s(-1) showed three maxima at rupture forces of 153 +/- 57 pN, 316 +/- 50 pN and 468 +/- 44 pN, that we attribute primarily to monovalent and multivalent interactions between a single His6 moiety and one, two and three NTA groups, respectively. The measured forces are well above the 50-100 pN unbinding forces typically observed by AFM for receptor-ligand pairs. The plot of adhesion force versus log (loading rate) revealed a linear regime, from which we deduced a kinetic off-rate constant of dissociation, k(off) approximately 0.07 s(-1). This value is in the range of that estimated for the multivalent interaction involving two NTA, using fluorescence measurements, and may account for an increased binding stability of the NTA-His6 bond. We conclude that the NTA-His6 system is a powerful, well-suited platform for the stable, oriented immobilization of proteins in AFM single-molecule studies.  相似文献   

3.
The nucleotide sequence encoding the crystalline bacterial cell surface (S-layer) protein SbpA of Bacillus sphaericus CCM 2177 was determined by a PCR-based technique using four overlapping fragments. The entire sbpA sequence indicated one open reading frame of 3,804 bp encoding a protein of 1,268 amino acids with a theoretical molecular mass of 132,062 Da and a calculated isoelectric point of 4.69. The N-terminal part of SbpA, which is involved in anchoring the S-layer subunits via a distinct type of secondary cell wall polymer to the rigid cell wall layer, comprises three S-layer-homologous motifs. For screening of amino acid positions located on the outer surface of the square S-layer lattice, the sequence encoding Strep-tag I, showing affinity to streptavidin, was linked to the 5′ end of the sequence encoding the recombinant S-layer protein (rSbpA) or a C-terminally truncated form (rSbpA31-1068). The deletion of 200 C-terminal amino acids did not interfere with the self-assembly properties of the S-layer protein but significantly increased the accessibility of Strep-tag I. Thus, the sequence encoding the major birch pollen allergen (Bet v1) was fused via a short linker to the sequence encoding the C-terminally truncated form rSpbA31-1068. Labeling of the square S-layer lattice formed by recrystallization of rSbpA31-1068/Bet v1 on peptidoglycan-containing sacculi with a Bet v1-specific monoclonal mouse antibody demonstrated the functionality of the fused protein sequence and its location on the outer surface of the S-layer lattice. The specific interactions between the N-terminal part of SbpA and the secondary cell wall polymer will be exploited for an oriented binding of the S-layer fusion protein on solid supports to generate regularly structured functional protein lattices.  相似文献   

4.
Interaction force of chitin-binding domains (ChBD1 and ChBD2) from a thermostable chitinase onto chitin surface was directly measured by atomic force microscopy (AFM) in a buffer solution. In the force curve measurement, multiple pull-off events were observed for the AFM tips functionalized with either ChBD1 or ChBD2, whereas the AFM tips terminated with nitrilotriacetic acid groups without ChBD showed no interaction peak, suggesting that the detected forces are derived from the binding functions of ChBDs onto the chitin surface. The force curve analyses indicate that the binding force of ChBD2 is stronger than that of ChBD1. This result suggests that ChBD1 and ChBD2 play different roles in adsorption onto chitin surface.  相似文献   

5.

The gram-positive bacterium Lactococcus lactis is a useful host for extracellular protein production. A main advantage of L. lactis over other bacterial expression systems is that lactococcal cells display low levels of autolysis and proteolysis. Previously, we developed a set of vectors for nisin-inducible extracellular production of N- or C-terminally hexa-histidine (His6)-tagged proteins. The present study was aimed at expanding our portfolio of L. lactis expression vectors for protein purification and site-specific labeling. Specifically, we present two new groups of vectors allowing N- or C-terminal provision of proteins with a Strep-tag II or AVI-tag. Vectors for AVI-tagging encode an additional His6-tag for protein purification. Another set of vectors allows removal of N-terminal Strep- or His6-tags from expressed proteins with the tobacco etch virus protease. Two possible applications of the developed vectors are presented. First, we show that Strep-tagged LytM of Staphylococcus aureus in the growth medium of L. lactis can be directly bound to microtiter plates coated with an affinity reagent and used for enzyme-linked immunosorbent assays. Second, we show that the AVI-tagged Sle1 protein from S. aureus produced in L. lactis can be directly biotinylated and fluorescently labeled. The fluorescently labeled Sle1 was successfully applied for S. aureus re-binding studies, allowing subcellular localization by fluorescence microscopy. In conclusion, we have developed a set of expression vectors that enhances the versatility of L. lactis as a system for production of proteins with tags that can be used for affinity purification and site-specific protein labeling.

  相似文献   

6.
We have developed a tool for directly inserting proteins into living cells by using atomic force microscopy (AFM) and an ultrathin needle, termed a nanoneedle. The surface of the nanoneedle was modified with His-tagged proteins using nickel chelating nitrilotriaceticacid (NTA). The fluorescent proteins, DsRed2-His6 and EGFP-His6, could be attached to and detached from the surface of the nanoneedle. These results suggest that the Ni-NTA modified nanoneedle can successfully be used for specific delivery of proteins. The nanoneedle modified with DsRed2-His6 was able to penetrate the surface of a living HeLa cell, as confirmed by laser scanning fluorescence microscopy and monitoring an exerting force on the nanoneedle using AFM. Force curves using the nanoneedle indicated that the needle was able to penetrate at displacement speeds of 0.10–10 μm/s. These results suggest that this technique can be used to directly insert proteins into living cells and is applicable for modulation or regulation of single cell activity.  相似文献   

7.
Matriptase is a transmembrane serine protease expressed in vertebrates. This enzyme is synthesized as a zymogen form and is converted to an active form by cleavage at the N-terminus of the serine protease catalytic domain. In a mammalian cell-based expression system, we have produced pseudozymogen forms of recombinant matriptase (r-matriptase) that are activated by cleavage with a recombinant enterokinase (r-EK) in vitro. In the present study, four different pseudozymogen forms of r-matriptase containing a site for activation by r-EK and a hexahistidine tag (His6-tag) were expressed in and secreted by Pichia pastoris, a methylotrophic yeast. The pseudozymogens with His6-tag at their C-termini formed multimers linked by intermolecular disulfide bonds. After treatment with r-EK, they exhibited no detectable hydrolytic activity toward a chromogenic substrate. A pseudozymogen form of matriptase catalytic domain with N-terminal His6-tag (designated His6t-S-CD) was secreted as a monomer. His6t-S-CD after r-EK treatment exhibited activity comparable to that of the activated form of an r-matriptase expressed in mammalian cells. His6t-S-CD could be purified from culture medium in milligram quantities. The expression in the yeast offers an efficient method of producing larger amounts of r-matriptase.  相似文献   

8.
Functionalized atomic force microscope tips were used to sense specific forces of interaction between ligand—receptor pairs and to map the positions of polysaccharides on a living microbial cell surface. Gold-coated tips were functionalized with concanavalin A using a cross-linker with a spacer arm of 15.6Å. It was possible to measure the binding force between concanavalin A and mannan polymers on the yeast (Saccharomyces cerevisiae) cell surface. This force ranged from 75 to 200pN. The shape of the force curve indicated that the polymers were pulled away from the cell surface for a fairly long distance that sometimes reached several hundred nanometres. The distribution of mannan on the cell surface was mapped by carrying out the force measurement in the force volume mode of atomic force microscopy (AFM). During the measurement, the maximum cantilever deflection after contact between the tip and the sample was kept constant at 10nm using trigger mode to keep the pressing force on the sample surface as gently as possible at a force of 180pN. This regime was used to minimize the non-specific adhesion between the tip and the cell surface. Specific molecular recognition events took place on specific areas of the cell surface that could be interpreted as reflecting a non-uniform distribution of mannan on the cell surface.  相似文献   

9.

Background

While the static structure of the intracellular Ca2+ release channel, the ryanodine receptor type 1 (RyR1) has been determined using cryo electron microscopy, relatively little is known concerning changes in RyR1 structure that accompany channel gating. Förster resonance energy transfer (FRET) methods can resolve small changes in protein structure although FRET measurements of RyR1 are hampered by an inability to site-specifically label the protein with fluorescent probes.

Methodology/Principal Findings

A novel site-specific labeling method is presented that targets a FRET acceptor, Cy3NTA to 10-residue histidine (His) tags engineered into RyR1. Cy3NTA, comprised of the fluorescent dye Cy3, coupled to two Ni2+/nitrilotriacetic acid moieties, was synthesized and functionally tested for binding to His-tagged green fluorescent protein (GFP). GFP fluorescence emission and Cy3NTA absorbance spectra overlapped significantly, indicating that FRET could occur (Förster distance = 6.3 nm). Cy3NTA bound to His10-tagged GFP, quenching its fluorescence by 88%. GFP was then fused to the N-terminus of RyR1 and His10 tags were placed either at the N-terminus of the fused GFP or between GFP and RyR1. Cy3NTA reduced fluorescence of these fusion proteins by 75% and this quenching could be reversed by photobleaching Cy3, thus confirming GFP-RyR1 quenching via FRET. A His10 tag was then placed at amino acid position 1861 and FRET was measured from GFP located at either the N-terminus or at position 618 to Cy3NTA bound to this His tag. While minimal FRET was detected between GFP at position 1 and Cy3NTA at position 1861, 53% energy transfer was detected from GFP at position 618 to Cy3NTA at position 1861, thus indicating that these sites are in close proximity to each other.

Conclusions/Significance

These findings illustrate the potential of this site-specific labeling system for use in future FRET-based experiments to elucidate novel aspects of RyR1 structure.  相似文献   

10.
Mouse embryonic stem cells (mESCs) rely on a cytokine named leukemia inhibitory factor (LIF) to maintain their undifferentiated state and pluripotency. However, the progress of mESC research is restricted and limited to highly funded laboratories due to the cost of commercial LIF. Here we presented the homemade hLIF which is biologically active. The hLIF cDNA was cloned into two different vectors in order to produce N-terminal His6-tag and Trx-His6-tag hLIF fusion proteins in Origami(DE3) Escherichia coli. The His6-hLIF fusion protein was not as soluble as the Trx-His6-hLIF fusion protein. One-step immobilized metal affinity chromatography (IMAC) was done to recover high purity (>95% pure) His6-hLIF and Trx-His6-hLIF fusion proteins with the yields of 100 and 200 mg/l of cell culture, respectively. The hLIF fusion proteins were identified by Western blot and verified by mass spectrometry (LC/MS/MS). The hLIF fusion proteins specifically promote the proliferation of TF-1 cells in a dose-dependent manner. They also demonstrate the potency to retain the morphology of undifferentiated mESCs, in that they were positive for mESC markers (Oct-4, Sox-2, Nanog, SSEA-1 and alkaline phosphatase activity). These results demonstrated that the N-terminal fusion tags of the His6-hLIF and Trx-His6-hLIF fusion proteins do not interfere with their biological activity. This expression and purification approach to produce recombinant hLIF is a simple, reliable, cost effective and user-friendly method.  相似文献   

11.
Structural and functional imaging with carbon nanotube AFM probes   总被引:11,自引:0,他引:11  
Atomic force microscopy (AFM) has great potential as a tool for structural biology, a field in which there is increasing demand to characterize larger and more complex biomolecular systems. However, the poorly characterized silicon and silicon nitride probe tips currently employed in AFM limit its biological applications. Carbon nanotubes represent ideal AFM tip materials due to their small diameter, high aspect ratio, large Young's modulus, mechanical robustness, well-defined structure, and unique chemical properties. Nanotube probes were first fabricated by manual assembly, but more recent methods based on chemical vapor deposition provide higher resolution probes and are geared towards mass production, including recent developments that enable quantitative preparation of individual single-walled carbon nanotube tips [J. Phys. Chem. B 105 (2001) 743]. The high-resolution imaging capabilities of these nanotube AFM probes have been demonstrated on gold nanoparticles and well-characterized biomolecules such as IgG and GroES. Using the nanotube probes, new biological structures have been investigated in the areas of amyloid-beta protein aggregation and chromatin remodeling, and new biotechnologies have been developed such as AFM-based haplotyping. In addition to measuring topography, chemically functionalized AFM probes can measure the spatial arrangement of chemical functional groups in a sample. However, standard silicon and silicon nitride tips, once functionalized, do not yield sufficient resolution to allow combined structural and functional imaging of biomolecules. The unique end-group chemistry of carbon nanotubes, which can be arbitrarily modified by established chemical methods, has been exploited for chemical force microscopy, allowing single-molecule measurements with well-defined functionalized tips.  相似文献   

12.
Abstract

Zinc finger protein ZNF191(243–368), the zinc finger region of ZNF191, is potentially associated with cell proliferation in hepatocellular carninoma. A His-tag expression system was used to express and purify proteins with mutations in the zinc finger 3 of ZNF191(243–368) for analysis of protein properties, structure, and functions. The purification of the His-tag fusion proteins was simpler and faster than that of the ZNF191(243–368) inclusion bodies. The properties and structures of the His-tag fusion mutant proteins were investigated using spectrographic techniques and DNA hydrolysis experiment. The His6-tag system could be used to express ZNF191(243–368). The presence of the His6-tag at the N-terminus of ZNF191(243–368) did not evidently affect its properties and structure. However, the site-directed mutations in zinc finger 3 affected the structure of the protein. The DNA hydrolase activity of His6-ZF-F3/H4 suggested that four histidines in zinc finger 3 might form a structure similar to that of the active center in a hydrolase. This work reports that continuous histidines need to form a certain structure for specific functions, and provides new insights into the design of an artificial nuclease.  相似文献   

13.
Seven P2X purinergic receptor subunits have been identified: P2X1–P2X7. The overlapping expression of P2X2, P2X4 and P2X6 subunits has been shown in different cell types, and functional analysis of P2X receptors in Leydig cells suggests that the three subunits might interact. Here, His6-tagged P2X2, HA-tagged P2X4 and FLAG-tagged P2X6 subunits were co-expressed in tsA 201 cells. After sequential co-immunoprecipitation using anti-HA and anti-FLAG beads, all three subunits were present, demonstrating their interaction. Atomic force microscopy (AFM) imaging revealed receptors that were specifically decorated by both an anti-His6 antibody and an anti-HA Fab fragment, indicating the presence of a P2X2/4/6 heterotrimer. To our knowledge, this is the first report of a P2X receptor containing three different subunits.  相似文献   

14.
Inorganic-binding peptides termed as genetically engineered polypeptides for inorganics (GEPIs), are small peptide sequences selected via combinatorial biology-based protocols of phage or cell surface display technologies. Recent advances in nanotechnology and molecular biology allow the engineering of these peptides with specific affinity to inorganics, often used as molecular linkers or assemblers, to facilitate materials synthesis, which provides a new insight into the material science and engineering field. As a case study on this biomimetic application, here we report a novel biosynthetic ZnO binding protein and its application in promoting bio-inorganic materials synthesis. In brief, the gene encoding a ZnO binding peptide(ZBP) was genetically fused with His6-tag and GST-tag using E.coli expression vector pET-28a (+) and pGEX-4T-3. The recombinant protein GST-His-ZBP was expressed, purified with Ni–NTA system, identified by SDS–PAGE electrophoresis and Western blot analysis and confirmed by liquid chromatography-mass spectrometry/mass spectrometry (LC–MS/MS) analysis. Affinity adsorption test demonstrated that the fusion protein had a specific avidity for ZnO nanoparticles (NPs). Results from the bio-inorganic synthesis experiment indicated that the new protein played a promoting part in grain refinement and accelerated precipitation during the formation of the ultra-fine precursor powders in the Zn(OH)2 sol. X-ray diffraction (XRD) analysis on the final products after calcining the precursor powders showed that hexagonal wurtzite ZnO crystals were obtained. Our work suggested a novel approach to the application about the organic–inorganic interactions.  相似文献   

15.
The hexahistidine (His6)/nickel(II)-nitrilotriacetic acid (Ni2+-NTA) system is widely used for affinity purification of recombinant proteins. The NTA group has many other applications, including the attachment of chromophores, fluorophores, or nanogold to His6 proteins. Here we explore several applications of the NTA derivative, (Ni2+-NTA)2-Cy3. This molecule binds our two model His6 proteins, N-ethylmaleimide sensitive factor (NSF) and O6-alklyguanine-DNA alkyltransferase (AGT), with moderate affinity (K ∼ 1.5 × 106 M−1) and no effect on their activity. Its high specificity makes (Ni2+-NTA)2-Cy3 ideal for detecting His6 proteins in complex mixtures of other proteins, allowing (Ni2+-NTA)2-Cy3 to be used as a probe in crude cell extracts and as a His6-specific gel stain. (Ni2+-NTA)2-Cy3 binding is reversible in 10 mM ethylenediaminetetraacetic acid (EDTA) or 500 mM imidazole, but in their absence it exchanges slowly (kexchange ∼ 5 × 10−6 s−1 with 0.2 μM labeled protein in the presence of 1 μM His6 peptide). Labeling with (Ni2+-NTA)2-Cy3 allows characterization of hydrodynamic properties by fluorescence anisotropy or analytical ultracentrifugation under conditions that prevent direct detection of protein (e.g., high ADP absorbance). In addition, fluorescence resonance energy transfer (FRET) between (Ni2+-NTA)2-Cy3-labeled proteins and suitable donors/acceptors provides a convenient assay for binding interactions and for measurements of donor-acceptor distances.  相似文献   

16.
Cai  Kexin  Wang  Jiawen  Wang  Min  Zhang  Hui  Wang  Siming  Zhao  Yu 《Biotechnology letters》2016,38(7):1229-1235
Objectives

To establish an efficient expression system for a fusion protein GST-pgLTP (Lipid Transfer Protein) and to test its antifungal activity.

Results

The nucleotide sequence of LTP gene was obtained from Panax ginseng using RT-PCR. The ORF of the cDNA is 363 bp, codING for a protein OF 120 amino acids with a calculated MW of 12.09 kDa. The pgLTP gene with a His6-tag at the C-terminus was cloned into the pGEX-6p1 vector to generate a GST-fusion pgLTP protein construct that was expressed in Escherichia coli Rosetta. Following purification by Ni–NTA, the fusion protein exhibited antifungal activity against five fungi found in ginseng.

Conclusion

The fusion protein GST-pgLTP has activity against a broad spectrum of phytopathogenic fungi, and can potentially be adapted for production to combat fungal diseases that affect P. ginseng.

  相似文献   

17.
Bacterial surface layers (S-layers) are extracellular protein networks that act as molecular sieves and protect a large variety of archaea and bacteria from hostile environments. Atomic force microscopy (AFM) was used to asses the S-layer of Coryne-bacterium glutamicum formed of PS2 proteins that assemble into hexameric complexes within a hexagonal lattice. Native and trypsin-treated S-layers were studied. Using the AFM stylus as a nanodissector, native arrays that adsorbed to mica as double layers were separated. All surfaces of native and protease-digested S-layers were imaged at better than 1 nm lateral resolution. Difference maps of the topographies of native and proteolysed samples revealed the location of the cleaved C-terminal fragment and the sidedness of the S-layer. Because the corrugation depths determined from images of both sides span the total thickness of the S-layer, a three-dimensional reconstruction of the S-layer could be calculated. Lattice defects visualized at 1 nm resolution revealed the molecular boundaries of PS2 proteins. The combination of AFM imaging and single molecule force spectroscopy allowed the mechanical properties of the Corynebacterium glutamicum S-layer to be examined. The results provide a basis for understanding the amazing stability of this protective bacterial surface coat.  相似文献   

18.
To date, nanoscale imaging of the morphological changes and adhesion force of CD4+ T cells during in vitro activation remains largely unreported. In this study, we used atomic force microscopy (AFM) to study the morphological changes and specific binding forces in resting and activated human peripheral blood CD4+ T cells. The AFM images revealed that the volume of activated CD4+ T cells increased and the ultrastructure of these cells also became complex. Using a functionalized AFM tip, the strength of the specific binding force of the CD4 antigen-antibody interaction was found to be approximately three times that of the unspecific force. The adhesion forces were not randomly distributed over the surface of a single activated CD4+ T cell, indicated that the CD4 molecules concentrated into nanodomains. The magnitude of the adhesion force of the CD4 antigen-antibody interaction did not change markedly with the activation time. Multiple bonds involved in the CD4 antigen-antibody interaction were measured at different activation times. These results suggest that the adhesion force involved in the CD4 antigen-antibody interaction is highly selective and of high affinity.  相似文献   

19.
The catalytic and physical–chemical properties of organophosphorus hydrolase (OPH) modified by the addition of an N-terminal dodecahistidine tag (His12-OPH) have been investigated. Introduction of the His12-tag caused a 30- and 74-fold increase in catalytic efficiency of the enzyme with parathion and methyl parathion, respectively, compared to OPH. Concurrently, the His12-OPH had a more alkaline pH-optimum and extended temperature range than OPH and OPH modified with a hexahistidine tag. A study of His12-OPH thermostability showed that the enzyme had a tendency to oligomerise. This resulted in a decrease in the enzymatic activity of His12-OPH at temperatures <50°C, but provided the enzyme with much higher thermostability at temperatures >50°C, compared to OPH.  相似文献   

20.
A gene encoding cellobiose dehydrogenase (CDH) from Neurospora crassa strain FGSC 2489 has been cloned and expressed in the heterologous host Pichia pastoris, under the control of the AOX1 methanol inducible promoter. Recombinant CDH without the native signal sequence and fused with a His6-tag (rNC-CDH1) was successfully expressed and secreted. rNC-CDH1 was produced at the level of 652 IU/L after 2 days of cultivation in the induction medium. The His6-tagged rNC-CDH1 was purified through a one-step Ni–NTA affinity column under non-denaturing conditions. The purified rNC-CDH1 has a CDH activity of 7451 IU/L (0.89 mg protein/mL), with a specific CDH activity of 8.37 IU/mg. The purity of the enzyme was examined by SDS–PAGE, and a single band corresponding to a molecular weight of about 120 kDa was observed. Activity staining confirmed the CDH activity of the protein band. The purified rNC-CDH1 has maximum CDH activity at pH 4.5, and a rather broad temperature optimum of 25–70 °C. Kinetic analysis showed cellobiose and cellooligosaccharides are the best substrates for rNC-CDH1. The Km value of the rNC-CDH1 for cellooligosaccharide increases with the elongation of glucosyl units. kcat remains relatively constant when the chain length changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号