首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Evelin H  Giri B  Kapoor R 《Mycorrhiza》2012,22(3):203-217
The study aimed to investigate the effects of an AM fungus (Glomus intraradices Schenck and Smith) on mineral acquisition in fenugreek (Trigonella foenum-graecum) plants under different levels of salinity. Mycorrhizal (M) and non-mycorrhizal (NM) fenugreek plants were subjected to four levels of NaCl salinity (0, 50, 100, and 200 mM NaCl). Plant tissues were analyzed for different mineral nutrients. Leaf senescence (chlorophyll concentration and membrane permeability) and lipid peroxidation were also assessed. Under salt stress, M plants showed better growth, lower leaf senescence, and decreased lipid peroxidation as compared to NM plants. Salt stress adversely affected root nodulation and uptake of NPK. This effect was attenuated in mycorrhizal plants. Presence of the AM fungus prevented excess uptake of Na+ with increase in NaCl in the soil. It also imparted a regulatory effect on the translocation of Na+ ions to shoots thereby maintaining lower Na+ shoot:root ratios as compared to NM plants. Mycorrhizal colonization helped the host plant to overcome Na+-induced Ca2+ and K+ deficiencies. M plants maintained favorable K+:Na+, Ca2+:Na+, and Ca2+:Mg2+ ratios in their tissues. Concentrations of Cu, Fe, and Zn2+ decreased with increase in intensity of salinity stress. However, at each NaCl level, M plants had higher concentration of Cu, Fe, Mn2+, and Zn2+ as compared to NM plants. M plants showed reduced electrolyte leakage in leaves as compared to NM plants. The study suggests that AM fungi contribute to alleviation of salt stress by mitigation of NaCl-induced ionic imbalance thus maintaining a favorable nutrient profile and integrity of the plasma membrane.  相似文献   

2.
3.
The presence of Ca2+ ions in solution is vital for root growth. The plasma membrane is one of the first sites where competition between Ca2+ and other ions occurs. We studied the competition between Ca2+ and Na+ or Mg2+ for sorption sites on the plasma membrane of melon root cells.Sorption of 45Ca2+ to right-side-out PM vesicles of melon (Cucumis melo L.) roots (prepared by aqueous two-phase partitioning) was studied at various Ca2+ concentrations, in the presence of increasing concentrations of Na+ or Mg2+ chlorides. Experimentally determined amounts of Ca2+ sorbed to the plasma membrane vesicles agreed fairly well with those calculated from a competitive sorption model. The best fit of the model to the experimental data was obtained for an average surface area of 370 Å2 per charge, and binding coefficients for Na+, Mg2+ and Ca2+ of 0.8, 9 and 50 m -1, respectively.Our results suggest that nonphospholipid components in the plasma membrane contribute significantly to Ca2+ binding. The high affinity of Ca2+ binding to the plasma membrane found in this study might explain the specific role of Ca2+ in relieving salt stress in plant roots.This research was supported by the GIFRID German-Israel fund for research and international development.  相似文献   

4.
Apoptosis is defined by specific morphological and biochemical characteristics including cell shrinkage (termed apoptotic volume decrease), a process that results from the regulation of ion channels and plasma membrane transporter activity. The Na+–K+-ATPase is the predominant pump that controls cell volume and plasma membrane potential in cells and alterations in its function have been suggested to be associated with apoptosis. We report here that the Na+–K+-ATPase inhibitor ouabain, potentiates apoptosis in the human lymphoma Jurkat cells exposed to Fas ligand (FasL) or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not other apoptotic agents such as H2O2, thapsigargin or UV-C implicating a role for the Na+–K+-ATPase in death receptor-induced apoptosis. Interestingly, ouabain also potentiated perturbations in cell Ca2+ homeostasis only in conjunction with the apoptotic inducer FasL but not TRAIL. Ouabain did not affect alterations in the intracellular Ca2+ levels in response to H2O2, thapsigargin or UV-C. FasL-induced alterations in Ca2+ were not abolished in Ca2+-free medium but incubation of cells with BAPTA-AM inhibited both Ca2+ perturbations and the ouabain-induced potentiation of FasL-induced apoptosis. Our data suggest that the impairment of the Na+–K+-ATPase activity during apoptosis is linked to perturbations in cell Ca2+ homeostasis that modulate apoptosis induced by the activation of Fas by FasL.  相似文献   

5.
罗达  吴正保  史彦江  宋锋惠 《生态学报》2022,42(5):1876-1888
研究盐胁迫下3个品种平欧杂种榛幼苗叶片解剖结构和离子代谢特征,以揭示盐胁迫响应与适应机制及不同品种的耐盐性差异。以‘达维’、‘辽榛7号’、‘玉坠’2年生压条苗为材料,在盆栽条件下经轻度、中度、重度(分别为50、100、200 mmol/L NaCl)盐胁迫处理,设对照为0,研究幼苗叶片显微解剖结构参数和Na~+、K~+、Cl~-、Ca2+含量的变化及其在根、茎、叶中的吸收、运输和分配特征。不同品种平欧杂种榛叶片厚度、上表皮厚度、下表皮厚度、栅栏组织和海绵组织厚度随着盐胁迫程度的增强呈现出先增加后降低的特点,轻度和中度胁迫下各参数显著高于对照。中度盐胁迫显著提高了各品种叶片结构紧密度。盐胁迫导致平欧杂种榛根、茎、叶Na~+和Cl~-含量明显高于对照。盐胁迫下,Na~+和Cl~-在叶中的绝对含量明显高于茎和根,但二者的增幅以根中最大,叶中最小,表明平欧杂种榛根系首先会吸收并截留一定数量的Na~+和Cl~-,然后将其运输至茎和叶中。与对照相比,轻度和中度盐胁迫下根、茎对K~+和Ca2+的吸收保持稳定或减少,叶对K~+和Ca2+...  相似文献   

6.
Extracellular ATP (eATP) has been implicated in mediating plant growth and antioxidant defense; however, it is largely unknown whether eATP might mediate salinity tolerance. We used confocal microscopy, a non-invasive vibrating ion-selective microelectrode, and quantitative real time PCR analysis to evaluate the physiological significance of eATP in the salt resistance of cell cultures derived from a salt-tolerant woody species, Populus euphratica. Application of NaCl (200 mM) shock induced a transient elevation in [eATP]. We investigated the effects of eATP by blocking P2 receptors with suramin and PPADS and applying an ATP trap system of hexokinase-glucose. We found that eATP regulated a wide range of cellular processes required for salt adaptation, including vacuolar Na+ compartmentation, Na+/H+ exchange across the plasma membrane (PM), K+ homeostasis, reactive oxygen species regulation, and salt-responsive expression of genes related to K+/Na+ homeostasis and PM repair. Furthermore, we found that the eATP signaling was mediated by H2O2 and cytosolic Ca2+ released in response to high salt in P. euphratica cells. We concluded that salt-induced eATP was sensed by purinoceptors in the PM, and this led to the induction of downstream signals, like H2O2 and cytosolic Ca2+, which are required for the up-regulation of genes linked to K+/Na+ homeostasis and PM repair. Consequently, the viability of P. euphratica cells was maintained during a prolonged period of salt stress.  相似文献   

7.
彭云玲  保杰  叶龙山  王永健  燕利斌 《生态学报》2014,34(24):7320-7328
盐胁迫影响植物组织的离子分布,不同品种间存在差异。以玉米耐盐自交系81162和8723及盐敏感自交系P138为材料,研究了不同浓度(0、60、140、220 mmol/L)Na Cl胁迫下萌动期种子和幼苗的不同部位中Na+、K+、Ca2+含量以及K+/Na+和Ca2+/Na+比值的变化,旨在探讨不同自交系耐盐性差异的原因。结果表明,在萌动种子中,3个玉米自交系中的Na+积累量表现为种皮胚胚乳,K+累积表现为胚种皮胚乳;幼苗中,Na+积累表现为根茎叶。随着Na Cl浓度的增加,3个玉米自交系萌动种子和幼苗中的Na+含量逐渐升高,但是萌动种子中耐盐自交系81162和8723的Na+增加幅度小于盐敏感自交系P138,Na+含量小于盐敏感自交系P138;幼苗中耐盐自交系81162和8723的Na+增加幅度大于盐敏感自交系P138,幼苗根中Na+含量大于盐敏感自交系P138;茎叶中的Na+含量小于盐敏感自交系P138。随着Na Cl浓度的增加,萌动种子和幼苗中的K+和Ca2+含量逐渐降低。K+离子在耐盐自交系81162和8723萌动种子和幼苗中的降低幅度小于盐敏感自交系P138;Ca2+离子在耐盐自交系81162和8723幼苗中的降低幅度小于盐敏感自交系P138;而在萌动种子中3个自交系Ca2+的流失差异不大。耐盐自交系81162和8723萌动种子和幼苗中K+含量都大于盐敏感自交系P138。耐盐自交系81162和8723的萌动种子和幼苗根中Ca2+含量都大于盐敏感自交系P138;幼苗叶片中则小于盐敏感自交系P138。萌动种子和幼苗中K+/Na+和Ca2+/Na+均随着Na Cl浓度的升高而降低,K+/Na+比值表现为耐盐自交系81162和8723大于盐敏感自交系P138。耐盐自交系81162和8723通过调节离子平衡维持萌动种子和幼苗中较高的K+/Na+比值从而提高耐盐性。  相似文献   

8.
The present study aimed to clarify the existence of a Na+/Ca2+ antiport device in kidney tubular epithelial cells discussed in the literature to represent the predominant mechanistic device for Ca2+ reabsorption in the kidney. (1) Inside-out oriented plasma membrane vesicles from tubular epithelial cells of guinea-pig kidney showed an ATP-driven Ca2+ transport machinery similar to that known to reside in the plasma membrane of numerous cell types. It was not affected by digitalis compounds which otherwise are well-documented inhibitors of Ca2+ reabsorption. (2) The vesicle preparation contained high, digitalis-sensitive (Na++K+-ATPase activities indicating its origin from the basolateral portion of plasma membrane. (3) The operation of Na+/Ca2+ antiport device was excluded by the findings that steep Ca2+ gradients formed by ATP-dependent Ca2+ accumulation in the vesicles were not discharged by extravesicular Na+, and did not drive 45Ca2+ uptake into the vesicles via a Ca2+-45Ca2+ exchange. (4) The ATP-dependent Ca2+ uptake into the vesicles became increasingly depressed with time by extravesicular Na+. This was not due to an impairment of the Ca2+ pump itself, but caused by Na+/Ca2+ competition for binding sites on the intravesicular membrane surface shown to be important for high Ca2+ accumulation in the vesicles. (5) Earlier observations on Na+-induced release of Ca2+ from vesicles pre-equilibrated with Ca2+, seemingly favoring the existence of a Na+/Ca2+ antiporter in the basolateral plasma membrane, were likewise explained by the occurrence of Na+/Ca2+ competition for binding sites. The weight of our findings disfavors the transcellular pathway of Ca2+ reabsorption through tubule epithelium essentially depending on the operation of a Na+/Ca2+ antiport device.  相似文献   

9.
Little is known about the role of mitogen-activated protein kinase 6 (MPK6) in Na+ toxicity and inhibition of root growth in Arabidopsis under NaCl stress. In this study, we found that root elongation in seedlings of the loss-of-function mutants mpk6-2 and mpk6-3 was less sensitive to NaCl or Na-glutamate, but not to KCl or mannitol, as compared with that of wild-type (WT) seedlings. The less sensitive characteristic was eliminated by adding the Ca2+ chelator EGTA or the Ca2+ channel inhibitor LaCl3, but not the Ca2+ ionophore A23187. This suggested that the tolerance of mpk6 to Na+ toxicity was Ca2+-dependent. We measured plasma membrane (PM) Na+-conducted currents (NCCs) in root cells. Increased concentrations of NaCl increased the inward NCCs while decreased the outward NCCs in WT root cells, attended by a positive shift in membrane potential. In mpk6 root cells, NaCl significantly increased outward but not inward NCCs, accompanied by a negative shift in membrane potential. That is, mpk6 decreased NaCl-induced the Na+ accumulation by modifying PM Na+ flux in root cells. Observations of aequorin luminescence revealed a NaCl-induced increase of cytosolic Ca2+ in mpk6 root cells, resulting from PM Ca2+ influx. An increase of cytosolic Ca2+ was required to alleviate the NaCl-increased Na+ content and Na+/K+ ratio in mpk6 roots. Together, these results show that mpk6 accumulated less Na+ in response to NaCl because of the increased cytosolic Ca2+ level in root cells; thus, its root elongation was less inhibited than that of WT by NaCl.  相似文献   

10.
To assess whether foliar application of K+S as potassium sulfate (K2SO4) could alleviate the adverse effects of salt on sunflower (Helianthus annuus L. cv. SF-187) plants, a greenhouse experiment was conducted. There were two NaCl levels (0 and 150 mM) applied to the growth medium and six levels of K+S as K2SO4 (NS (no spray), WS (spray of water+0.1% Tween 20 solution), 0.5% K+0.21% S, 1.0% K+0.41% S, 1.5% K+0.62% S, and 2.0% K+0.82% S in 0.1% Tween-20 solution) applied two times foliarly to non-stressed and salt-stressed sunflower plants. Salt stress markedly repressed the growth, yield, photosynthetic pigments, water relations and photosynthetic attributes, quantum yield (Fv/Fm), leaf and root K+, Mg2+, P, Ca2+, N as well as K+/Na+ ratios, while it enhanced the cell membrane permeability, and leaf and root Na+ and Cl concentrations. Foliar application of potassium sulfate significantly improved growth, achene yield, photosynthetic and transpiration rates, stomatal conductance, water use efficiency, leaf turgor and enhanced shoot and leaf K+ of the salt-stressed sunflower plants, but it did not improve leaf and root Na+, Cl, Mg2+, P, Ca2+, N as well as K+/Na+ ratios. The most effective dose of K+S for improving growth and achene yield was found to be 1.5% K+0.62% S and 1% K+0.41% S, respectively. Improvement in growth of sunflower plants due to exogenously applied K2SO4 was found to be linked to enhanced photosynthetic capacity, water use efficiency, leaf turgor and relative water content.  相似文献   

11.
Summary The relative contributions of the Na+/Ca2+ exchange and the plasma membrane Ca2+ pump to active Ca2+ efflux from stimulated rat pancreatic acini were studied. Na+ gradients across the plasma membrane were manipulated by loading the cells with Na+ or suspending the cells in Na+-free media. The rates of Ca2+ efflux were estimated from measurements of [Ca2+] i using the Ca2+-sensitive fluorescent dye Fura 2 and45Ca efflux. During the first 3 min of cell stimulation, the pattern of Ca2+ efflux is described by a single exponential function under control, Na+-loaded, and Na+-depleted conditions. Manipulation of Na+ gradients had no effect on the hormone-induced increase in [Ca2+] i . The results indicate that Ca2+ efflux from stimulated pancreatic acinar cells is mediated by the plasma membrane Ca2+ pump. The effects of several cations, which were used to substitute for Na+, on cellular activity were also studied. Choline+ and tetramethylammonium+ (TMA+) released Ca2+ from intracellular stores of pancreatic acinar, gastric parietal and peptic cells. These cations also stimulated enzyme and acid secretion from the cells. All effects of these cations were blocked by atropine. Measurements of cholecystokinin-octapeptide (CCK-OP)-stimulated amylase release from pancreatic acini, suspended in Na+, TMA+, choline+, or N-methyl-d-glucamine+ (NMG+) media containing atropine, were used to evaluate the effect of the cations on cellular function. NMG+, choline+, and TMA+ inhibited amylase release by 55, 40 and 14%, respectively. NMG+ also increased the Ca2+ permeability of the plasma membrane. Thus, to study Na+ dependency of cellular function, TMA+ is the preferred cation to substitute for Na+. The stimulatory effect of TMA+ can be blocked by atropine.  相似文献   

12.
It is well established that mitochondria are the main source of ATP production within cells. However, mitochondria have other remarkable functions, serving as important modulators of cellular Ca2+ signaling, and it is now generally recognized that control over Ca2+ homeostasis is intrinsically interwoven with mitochondrial abilities to adjust and tune ATP production. In this review, we describe the mechanisms that mitochondria use to balance Ca2+ homeostasis maintenance and cell energy metabolism. In recent years, the knowledge on the molecular machinery mediating Ca2+ influx/efflux has been improved and, albeit still open to further investigations, several lines of evidence converge on the hypothesis that plasma membrane Na+/Ca2+ exchanger (NCX) isoforms are also expressed at the mitochondrial level, where they contribute to the Ca2+ and Na+ homeostasis maintenance. In particular, the connection between mitochondrial NCX activity and metabolic substrates utilization is further discussed here. We also briefly focus on the alterations of both mitochondrial Ca2+ handling and cellular bioenergetics in neurodegenerative diseases, such as Parkinson’s and Alzheimer’s disease.  相似文献   

13.
14.
15.
The effects of an arbuscular mycorrhizal (AM) fungus, Glomus mosseae, and a phosphate-solubilizing microorganism (PSM), Mortierella sp., and their interactions, on nutrient (N, P and K) uptake and the ionic composition of different root tissues of the halophyte Kosteletzkya virginica (L.), cultured with or without NaCl, were evaluated. Plant biomass, AM colonization and PSM populations were also assessed. Salt stress adversely affected plant nutrient acquisition, especially root P and K, resulting in an important reduction in shoot dry biomass. Inoculation of the AM fungus or/and PSM strongly promoted AM colonization, PSM populations, plant dry biomass, root/shoot dry weight ratio and nutrient uptake by K. virginica, regardless of salinity level. Ion accumulation in root tissues was inhibited by salt stress. However, dual inoculation of the AM fungus and PSM significantly enhanced ion (e.g., Na+, Cl?, K+, Ca2+, Mg2+) accumulation in different root tissues, and maintained lower Na+/K+ and Ca2+/Mg2+ ratios and a higher Na+/Ca2+ ratio, compared to non-inoculated plants under 100 mM NaCl conditions. Correlation coefficient analysis demonstrated that plant (shoot or root) dry biomass correlated positively with plant nutrient uptake and ion (e.g., Na+, K+, Mg2+ and Cl?) concentrations of different root tissues, and correlated negatively with Na+/K+ ratios in the epidermis and cortex. Simultaneously, root/shoot dry weight ratio correlated positively with Na+/Ca2+ ratios in most root tissues. These findings suggest that combined AM fungus and PSM inoculation alleviates the deleterious effects of salt on plant growth by enabling greater nutrient (e.g., P, N and K) absorption, higher accumulation of Na+, K+, Mg2+ and Cl? in different root tissues, and maintenance of lower root Na+/K+ and higher Na+/Ca2+ ratios when salinity is within acceptable limits.  相似文献   

16.
A precise temporal and spatial control of intracellular Ca2+ concentration is essential for a coordinated contraction of the heart. Following contraction, cardiac cells need to rapidly remove intracellular Ca2+ to allow for relaxation. This task is performed by two transporters: the plasma membrane Na+-Ca2+ exchanger (NCX) and the sarcoplasmic reticulum (SR) Ca2+‐ATPase (SERCA). NCX extrudes Ca2+ from the cell, balancing the Ca2+entering the cytoplasm during systole through L-type Ca2+ channels. In parallel, following SR Ca2+ release, SERCA activity replenishes the SR, reuptaking Ca2+ from the cytoplasm.The activity of the mammalian exchanger is fine-tuned by numerous ionic allosteric regulatory mechanisms. Micromolar concentrations of cytoplasmic Ca2+ potentiate NCX activity, while an increase in intracellular Na+ levels inhibits NCX via a mechanism known as Na+-dependent inactivation. Protons are also powerful inhibitors of NCX activity. By regulating NCX activity, Ca2+, Na+ and H+ couple cell metabolism to Ca2+ homeostasis and therefore cardiac contractility. This review summarizes the recent progress towards the understanding of the molecular mechanisms underlying the ionic regulation of the cardiac NCX with special emphasis on pH modulation and its physiological impact on the heart.  相似文献   

17.
Using confocal microscopy, X‐ray microanalysis and the scanning ion‐selective electrode technique, we investigated the signalling of H2O2, cytosolic Ca2+ ([Ca2+]cyt) and the PM H+‐coupled transport system in K+/Na+ homeostasis control in NaCl‐stressed calluses of Populus euphratica. An obvious Na+/H+ antiport was seen in salinized cells; however, NaCl stress caused a net K+ efflux, because of the salt‐induced membrane depolarization. H2O2 levels, regulated upwards by salinity, contributed to ionic homeostasis, because H2O2 restrictions by DPI or DMTU caused enhanced K+ efflux and decreased Na+/H+ antiport activity. NaCl induced a net Ca2+ influx and a subsequent rise of [Ca2+]cyt, which is involved in H2O2‐mediated K+/Na+ homeostasis in salinized P. euphratica cells. When callus cells were pretreated with inhibitors of the Na+/H+ antiport system, the NaCl‐induced elevation of H2O2 and [Ca2+]cyt was correspondingly restricted, leading to a greater K+ efflux and a more pronounced reduction in Na+/H+ antiport activity. Results suggest that the PM H+‐coupled transport system mediates H+ translocation and triggers the stress signalling of H2O2 and Ca2+, which results in a K+/Na+ homeostasis via mediations of K+ channels and the Na+/H+ antiport system in the PM of NaCl‐stressed cells. Accordingly, a salt stress signalling pathway of P. euphratica cells is proposed.  相似文献   

18.
Naturally adapted salt tolerant populations provide a valuable material for exploring the adaptive components of salt tolerance. Under this aspect, two populations of Cynodon dactylon (L.) Pers. were subjected to salt stress in hydroponics. One was collected from a heavily salt-affected soil in the vicinity of a natural salt lake, Uchhali Lake, in the Salt Range of the Punjab province of Pakistan, and the other from a normal non-saline habitat from the Faisalabad region. The NaCl treatments in Hoagland's nutrient solution were: Control (no salt), 50, 100, 150 and 200 mM of NaCl. After 8 weeks of growth in hydroponics produced biomass, ion relations, and photosynthetic capacity were measured in the differently adapted ecotypes. In the ecotype of C. dactylon from the Salt Range, shoot dry weight was only slightly affected by varying levels of salt. However, in contrast, its root weight was markedly increased. On the other hand, the ecotype from Faisalabad (non-saline habitat) showed a marked decrease in shoot and root dry weights under saline regimes. The ecotype from the Salt Range accumulated relatively less amount of Na+ in the shoot than did that from Faisalabad, particularly at higher salt levels. Shoot or root K+ and Ca2+ contents varied inconsistently in both ecotypes under salt stress. All the photosynthetic parameters, leaf water potential and osmotic potential, and chlorophyll content in both ecotypes were adversely affected by salt stress, but all these physiological attributes except turgor potential and soluble sugars were less affected at high salinities in the salt tolerant ecotype from Salt Range. This ecotype accumulated significantly higher organic osmotica (total free amino acids, proline, total soluble proteins, and total soluble sugars) under saline conditions than its intolerant counterpart. Overall, the salt tolerant ecotype of C. dactylon from the Salt Range showed high salt tolerance due to its restricted uptake of Na+ accompanied by an increased uptake of K+ and Ca2+ in the roots as well as shoot due to its higher photosynthetic capacity and accumulation of organic osmotica such as free amino acids and proline under saline conditions.  相似文献   

19.
Ionic mechanisms of salt stress perception were investigated by non‐invasive measurements of net H+, K+, Ca2+, Na+, and Cl? fluxes from leaf mesophyll of broad bean (Vicia faba L.) plants using vibrating ion‐selective microelectrodes (the MIFE technique). Treatment with 90 m M NaCl led to a significant increase in the net K+ efflux and enhanced activity of the plasma membrane H+‐pump. Both these events were effectively prevented by high (10 m M ) Ca2+ concentrations in the bath. At the same time, no significant difference in the net Na+ flux has been found between low‐ and high‐calcium treatments. It is likely that plasma membrane K+ and H+ transporters, but not the VIC channels, play the key role in the amelioration of negative salt effects by Ca2+ in the bean mesophyll. Experiments with isotonic mannitol application showed that cell ionic responses to hyperosmotic treatment are highly stress‐specific. The most striking difference in response was shown by K+ fluxes, which varied from an increased net K+ efflux (NaCl treatment) to a net K+ influx (mannitol treatment). It is concluded that different ionic mechanisms are involved in the perception of the ‘ionic’ and ‘osmotic’ components of salt stress.  相似文献   

20.
Previous results showed that in short-term NaCl-treated beans increased leaf abscisic acid (ABA) concentration was triggered by Na+ but not by Cl-. In this work, the specificity of ABA signaling for Na+ homeostasis was studied by comparing the plant’s responses to solutions that modified accumulation of ABA and/or Na+ uptake and distribution, such as supplemental Ca2+, increased nutrient strength, different isosmotic composition, application of exogenous ABA, fluridone (an ABA inhibitor) and aminooxiacetic acid (AOA, an ethylene inhibitor). After fluridone pretreatment, salt-treated beans had lower Na+ uptake and higher leaf Na+ exclusion capacity than non-pretreated plants. Moreover, Na+ uptake was increased and leaf Na+ exclusion was decreased by AOA and ABA. NaCl and KCl similarly increased leaf ABA and decreased transpiration rates, whereas supplemental Ca2+ and increased strength nutrient solution decreased leaf ABA and leaf Na+. These results show (1) a non-ion-specific increase in ABA that probably signaled the osmotic component of salt, and (2) increased ABA levels that resulted in higher leaf Na+ concentrations due to lower Na+ exclusion or increased root-shoot Na+ translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号