首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A repetitive DNA sequence, ZmCR2.6c, was isolated from maize based on centromeric sequence CCS1 of the wild grass Brachypodium sylvaticum. ZmCR2.6c is 309 bp in length and shares 65% homology to bases 421–721 of the sorghum centromeric sequence pSau3A9. Fluorescence in situ hybridization (FISH) localized ZmCR2.6c to the primary constrictions of pachytene bivalents and to the stretched regions of MI/AI chromosomes, indicating that ZmCR2.6c is an important part of the centromere. Based on measurements of chromosome lengths and the positions of FISH signals of several cells, a pachytene karyotype was constructed for maize inbred line KYS. The karyotype agrees well with those derived from traditional analyses. Four classes of tandemly repeated sequences were mapped to the karyotype by FISH. Repeats 180 bp long are present in cytologically detectable knobs on 5L, 6S, 6L, 7L, and 9S, as well as at the termini and in the interstitial regions of many chromosomes not reported previously. A most interesting finding is the presence of 180-bp repeats in the NOR-secondary constriction. TR-1 elements co-exist with 180-bp repeats in the knob on 6S and form alone a small cluster in 4L. 26S and 5S rRNA genes are located in the NOR and at 2L.88, respectively. The combination of chromosome length, centromere position, and distribution of the tandem repeats allows all chromosomes to be identified unambiguously. The results presented form an important basis for using FISH for physical mapping and for investigating genome organization in maize. Received: 29 June 1999 / Accepted: 10 November 1999  相似文献   

4.
Biotinylated DNA from two satellite-related, repetitive DNA clones, pHuR 98 and pHuR 195 (specific for chromosomes 9 and 16, respectively), and from a Y-specific clone, pY-3.4A, were hybridized to human metaphase chromosomes using fluoresceinated avidin to detect binding. The chromosomes were simultaneously counterstained with distamycin-DAPI to identify the AT-rich heterochromatin of chromosomes 1, 9, 15, 16, and the Y chromosome. With this method, clear results were obtained under both normal and low stringency conditions, allowing hybridization between molecules sharing 80-85% and 60-65% identity, respectively. Thus, additional sites related to the probes could be identified. A close relationship was shown between the heterochromatin of chromosomes 1 and 16, both hybridizing with clone pHuR 195 under low stringency. Hybridization with clone pHuR 98 was highly specific for chromosome 9, even under low stringency. A relationship between chromosomes 9, 15, and the Y chromosome, however, was shown by hybridization with clone pY-3.4A. The chromosomal distribution of the three repetitive DNA clones used in this study, and data from the literature, are in accordance with the distribution of the heterochromatin types characterized by staining with different fluorescent dyes and dye combinations. Furthermore, our sequence data for clones pHuR 98 and pHuR 195 may explain the fluorescent properties on which the cytogenetic classification of the heterochromatin is based.  相似文献   

5.
Previously, we showed that a human repetitive DNA sequence (Sau3A family) belonging to a satellite DNA is unstable and constantly excised from the chromosomes (R. Kiyama, H. Matsui, and M. Oishi, 1986, Proc. Natl. Acad. Sci. USA 83, 4665). The unusual property of the repetitive DNA, along with another repetitive DNA (Alu sequence), was further investigated by in situ hybridization in several different human cells including HeLa, bone marrow, and peripheral blood cells. We found that the excised repetitive DNA sequences are localized not only in nuclei, but also in cytoplasm. These results have confirmed the instability of these DNA sequences in the chromosomes and further suggest that the alpha satellite DNA and the Alu sequence which were excised from the chromosomes are released from nuclei to cytoplasm.  相似文献   

6.
3H-RNA, complementary to repetitive DNA of wheat, rye, barley, and oat, was hybridizedin situ to root tip or pollen mother cells of the species mentioned. The cRNAs hybridized best with the DNA in cell nuclei of the species from which they were prepared. Cross hybridization with cells of the other related species resulted in a significant but diminished labelling. Wheat, rye, and barley hybridized better to each other than to oat, andvice versa, in agreement with the usual taxonomical classification. Over the interphase nuclei the label was distributed unevenly; not all regions of dense chromatin were labelled, and little label was found over the nucleoli. On chromosomes, the repetitive DNA was located somewhere along the chromosome arms or near the centromers in wheat, barley, and oat. Only in rye, most of the label was located near the telomers, probably over the large heterochromatin areas.  相似文献   

7.
S Selig  K Okumura  D C Ward    H Cedar 《The EMBO journal》1992,11(3):1217-1225
Fluorescence in situ hybridization has been used to visualize specific genomic DNA sequences in interphase nuclei. In normal diploid cells, unreplicated DNA segments give singlet hybridization signals while replicated loci are characterized by doublets. The distribution of these two patterns in unsynchronized cell populations can be used to determine the S phase replication time of any DNA sequence. The validity of this approach was established by analyzing genes whose replication profiles in expressing and non-expressing cells had been determined previously by conventional methods. Using this technique it has been possible to map the replication timing topography of the DNA within and flanking the cystic fibrosis (CF) gene locus on chromosome 7. The gene itself is located within a defined time zone which is approximately 500 kb in length and is under developmental control. It is early replicating in cells which express CF but late replicating in other cell types. These time zones probably represent basic units of chromosome structure.  相似文献   

8.
A Cuadrado  N Jouve 《Génome》1994,37(4):709-712
An analysis of the presence and distribution of the rye and wheat repeated sequences in rye B chromosomes was carried out by fluorescent in situ hybridization. Probes used consisted of three highly repetitive sequences from rye (pSc119.2, pSc74, and pSc34) and the multigene families for the 25S-5.8S-18S and 5S rDNA from wheat (pTa71 and pTa794, respectively). pSc74 and pSc119.2 showed hybridization signals in the telomeric regions of rye B chromosomes. The remaining DNA clones did not hybridize to the B chromosomes.  相似文献   

9.
The sperm products of two male carriers of reciprocal translocations were studied by fluorescence in situ hybridization (FISH) using a combination of three probes for each translocation. One patient carried a t(2;18)(p21;q11.2), the other a t(8;9)(q24.2;q32). The probes selected included a centromeric marker for each chromosome involved in the translocation plus a third probe distal to the translocation breakpoint of one of the translocation chromosomes. This assay identifies alternate, adjacent 1, adjacent 2, and 3:1 types of meiotic products. It allows the identification of recombination events and also estimation of the frequency of diploidy. For the t(2;18), the frequency of normal and balanced sperm and of adjacent 1, adjacent 2, and 3:1 products was 43.6%, 29. 8%, 10.5%, and 12.8%, respectively. Similar segregation patterns had been reported for this donor by direct sperm karyotyping of sperm cells. For the t(8;9), the frequency of normal and balanced sperm and of adjacent 1, adjacent 2, and 3:1 products was 44.4%, 41%, 3.1%, and 9.4%, respectively. The frequency of complementary adjacent 1 products was statistically different in both the t(2;18) (P < 0. 0001) and the t(8;9) (P < 0.0001) carrier. When the number of adjacent 2 products with one translocation chromosome (regardless of normal or derivative) was compared to the number of adjacent 2 products with the second translocation chromosome (again, regardless of normal or derivative), no statistical difference was noted for either the t(2;18) (P = 0.32) or the t(8;9) (P = 0.69). Recombination events within the interstitial segment of chromosome 2 were statistically higher than those seen in chromosome 18 (P < 0. 0001), whereas in chromosomes 8 and 9, recombination in the interstitial segments was similar (P = 0.64). The rate of diploidy was similar in both the t(2;18) (0.5%) and the t(8;9) (0.6%). Thus, FISH provides chromosome information on the sperm products produced by translocation carriers, although it cannot provide an assessment of the full chromosome complement of the spermatozoon.  相似文献   

10.
We report of case of a complex chromosomal rearrangement detected prenatally and studied with traditional banding methods and fluorescence in situ hybridization. The combination of these techniques showed that four chromosomes were involved in the translocation. Nine breakpoints were proposed to explain these results. Some of the findings could only be detected with fluorescence in situ hybridization, demonstrating the usefulness of this technique in characterizing chromosomal abnormalities that would otherwise be difficult to interpret correctly with classical cytogenetics alone.  相似文献   

11.
The Sau3A DNA family consists of unique alphoid human repetitive DNA which is prone to be excised from the chromosomes and exhibits restriction fragment length polymorphism. We studied the chromosomal localization of the DNA by in situ hybridization using cultured normal human lymphocytes. Under standard hybridization conditions, the sequence hybridized with the centromeric regions of chromosomes 1, 2, 4, 11, 15, 17, 18, 19 and X, but under high stringency hybridization conditions, it hybridized with the centromeric regions of chromosomes 1, 17 and X, and particularly chromosome 11. Based on these results, we discuss the evolutionary relationship among the sequences of the Sau3A DNA family.  相似文献   

12.
13.
The enormous potential of in situ hybridization derives from the unique ability of this approach to directly couple cytological and molecular information. In recent years, there has been a surge of success in powerful new applications, resulting from methodologic advances that bring the practical capabilities of this technology closer to its theoretical potential. A major advance has been improvements that enable, with a high degree of reproducibility and efficiency, precise visualization of single sequences within individual metaphase and interphase cells. This has implications for gene mapping, the analysis of nuclear organization, clinical cytogenetics, virology, and studies of gene expression. This article discusses the current state of the art of fluorescence in situ hybridization, with emphasis on applications to human genetics, but including brief discussions on studies of nuclear DNA and RNA organization, and on applications to clinical genetics and virology. Although a review of all of the literature in this field is not possible here, many of the major contributions are summarized along with recent work from our laboratory.  相似文献   

14.
RFLP analyses were performed on wheat-Aegilops uniaristata Vis. addition and translocation lines to confirm the identity of added N-genome chromosomes. Complete 1N, 3N, 4N, 5N and 7N chromosome additions were identified, while the complete long arm and only part of the short arm was identified for chromosome 2N. There were no wheat-like 4/5 and 4/7 translocations in the Ae. uniaristata chromosomes. Chromosome 3N carried an asymmetric pericentric inversion, and the translocation line was a product of centric fusion between the long arms of chromosomes 3B and 3N. Chromosome-specific RAPD and microsatellite markers were also identified for all the added Ae. uniaristata chromosomes available in this set of addition lines. A new genomic in situ hybridization protocol combining pre-annealing of probe and blocking DNA and prehybridization with blocking DNA was developed to differentiate the very closely related genomes of Ae. uniaristata and wheat. Hybridization sites for the repetitive DNA sequences pAs1, pSc119.2 and pTa71 were identified on the N-genome chromosomes of Ae. uniaristata using the fluorescent in situ hybridization technique. Results showed deviation from the previously published ideogram of this species. A new ideogram, which shows the hybridization sites for the above sequences, was produced in which the chromosomes are arranged according to their homoeologous group. Received: 23 April 1999 / Accepted: 6 August 1999  相似文献   

15.
We characterized 21 t(13;14) and 3 t(14;21) Robertsonian translocations for the presence of DNA derived from the short arms of the translocated acrocentric chromosomes and identified their centromeres. Nineteen of these 24 translocation carriers were unrelated. Using centromeric alpha-repeat DNA as chromosome-specific probe, we found by in situ hybridization that all 24 translocation chromosomes were dicentric. The chromatin between the two centomeres did not stain with silver, and no hybridization signal was detected with probes for rDNA or beta-satellite DNA that flank the distal and proximal ends of the rDNA region on the short arm of the acrocentrics. By contrast, all 24 translocation chromosomes gave a distinct hybridization signal when satellite III DNA was used as probe. This result strongly suggests that the chromosomal rearrangements leading to Robertsonian translocations occur preferentially in satellite III DNA. We hypothesize that guanine-rich satellite III repeats may promote chromosomal recombination by formation of tetraplex structures. The findings localize satellite III DNA to the short arm of the acrocentric chromosomes distal to centromeric alpha-repeat DNA and proximal to beta-satellite DNA.  相似文献   

16.
A new multicolor fluorescence in situ hybridization (mFISH) probe set is presented, and its possible applications are highlighted in 25 clinical cases. The so-called heterochromatin-M-FISH (HCM-FISH) probe set enables a one-step characterization of the large heterochromatic regions within the human genome. HCM-FISH closes a gap in the now available mFISH probe sets, as those do not normally cover the acrocentric short arms; the large pericentric regions of chromosomes 1, 9, and 16; as well as the band Yq12. Still, these regions can be involved in different kinds of chromosomal rearrangements such as translocations, insertions, inversions, amplifications, and marker chromosome formations. Here, examples are given for all these kinds of chromosomal aberrations, detected as constitutional rearrangements in clinical cases. Application perspectives of the probe set in tumors as well as in evolutionary cytogenetic studies are given.  相似文献   

17.
Heterochromatin in the European field vole, Microtus agrestis, was studied using a special staining technique and DNA/RNA in situ hybridization. The heterochromatin composed the proximal 1/4 of the short arm and the entire long arm of the X chromosome, practically the entire Y chromosome and the centromeric areas of the autosomes. By using the DNA/RNA in situ hybridization technique, repeated nucleotide sequences are shown to be in the heterochromatin of the sex chromosomes.Supported in part by Research Grants DRG-1061 and 269 from the Damon Runyon Memorial Fund for Cancer Research, G-373 and G-267 from the Robert A. Welch Foundation.  相似文献   

18.
Physical mapping of DNA clones by nonisotopic in situ hybridization has greatly facilitated the human genome mapping effort. Here we combine a variety of in situ hybridization techniques that make the physical mapping of DNA clones to mouse chromosomes much easier. Hybridization of probes containing the mouse long interspersed repetitive element to metaphase chromosomes produces a Giemsa-like banding pattern which can be used to identify individual Mus musculus, Mus spretus, and Mus castaneus chromosomes. The DNA binding fluorophore, DAPI, gives quinacrine-like bands that can complement the hybridization banding data. Simultaneous hybridization of a differentially labeled clone of interest with the banding probe allows the assignment of a mouse clone to a specific cytogenetic band. These methods were validated by first mapping four known genes, Cpa, Ly-2, Cck, and Igh-6, on banded chromosomes. Twenty-seven additional clones, including twenty anonymous cosmids, were then mapped in a similar fashion. Known marker clones and fractional length measurements can also provide information about chromosome assignment and clone order without the necessity of recognizing banding patterns. Clones hybridizing to each murine chromosome have been identified, thus providing a panel of marker probes to assist in chromosome identification.  相似文献   

19.
Multiple fluorescence in situ hybridization   总被引:18,自引:0,他引:18  
A method for multiple fluorescence in situ hybridization is described allowing the simultaneous detection of more than three target sequences with only three fluorescent dyes (FITC, TRITC, AMCA), respectively emitting in the green, red, and blue. This procedure is based on the labeling of (DNA) probes with more than one hapten and visualisation in multiple colors. The possibility to detect multiple targets simultaneously is important for prenatal diagnosis and the detection of numerical and/or structural chromosome aberrations in tumor diagnosis. It may form the basis for an in situ hybridization based chromosome banding technique.  相似文献   

20.
Four recombinant DNA clones (H1, H7, H12, and H15) carrying low-repetitive human DNA were previously isolated from a human genomic library based on their specificity for chromosome 21 and were studied for their distribution as determined by in situ hybridization. Clone H7 hybridized to the satellite regions of chromosomes 13, 14, 15, 21, and 22 as well as to the centromere region of chromosome 1. Clone H12 hybridized strongly to chromosomes 11 and 17 and the centromere of the X. Clones H1 and H15 had a very widespread distribution throughout the genome. Clone H15 hybridized significantly more to the short arm of chromosome 18 than to any other chromosomal segment. Clone H1 hybridized strongly to the centromere of chromosome 19 and also showed random distribution on all the other human chromosomes. We conclude that these probes appear to represent four repetitive families that demonstrate in situ hybridization patterns that do not correspond with those of any other repetitive family. Further, the in situ hybridization patterns do not show the strong chromosome 21 specificity originally defined by Southern blot analysis. The nature and chromosomal localization of these repetitive families should be useful in regional mapping and evolutionary studies and give additional insight into chromosomal organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号