首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Polymyxin B (PX) does not penetrate phospholipid monolayers and bilayers at low field strength across the lipid layers. The degree of penetration of PX is evaluated from its effect on the capacitance of the monolayers and on the conductance of the bilayers. PX added to one side of a bilayer causes its destabilization, it also enhances destabilization of lipid monolayers at positive electric fields across the surface layer in the direction of the adsorbed PX. PX lowers very little the fluorescence polarization of 1,6-diphenyl 1,3,5 hexatriene embedded in phospholipid vesicles. It is suggested that the penetration mechanism of PX into gram-negative bacteria is based on transient local breakdown of the plasma membrane.  相似文献   

2.
1. Generation of a transmembrane electric potential difference by oligomycin-sensitive ATPase complex, incorporated into spherical or planar phospholipid membrane, has been demonstrated. To this end, penetrating anion probe and direct voltmeter measurement of electric potential across phospholipid membrane were used. It was found that ATP-induced electric response is sensitive to oligomycin and protonophorous uncouplers. 2. The effect of variations in the phospholipid component of proteoliposomes on the electric generation was studied. It was revealed that the usage of mitochondrial phospholipids and phosphatidylethanolamine allows the highest values of membrane potential to be obtained in the case of ATPase proteoliposomes. In the case of cytochrome oxidase and bacteriorhodopsin proteoliposomes, phosphatidylserine was also shown to be quite suitable. Phosphatidylcholine was absolutely ineffective in all cases. 3. In proteoliposomes, containing both ATPase and bacteriorhodopsin, ATP and light induced generation of the electric field of the same direction. 4. In ATPase + cytochrome oxidase proteoliposomes, ATP hydrolysis and ascorbate oxidation was found to support electric generation of the same direction if cytochrome c was inside vesicles. Oxidation via external cytochrome c resulted in formation of electric field of the direction, opposite to that induced by ATP hydrolysis. 5. The data obtained in experiments with proteoliposomes of different types are discussed. The conclusion is made that conversion of energy of different resources into electric form is a common feature of membraneous energy transducers, which is in agreement with the Mitchellian principle of cellular energetics.  相似文献   

3.
The effect of the magnitude and direction of an external electric field on the plasma flowing through a magnetic barrier is studied by numerically solving two-fluid MHD equations. The drift velocity of the plasma flow and the distribution of the flow electrons over transverse velocities are found to depend on the magnitude and direction of the electric field. It is shown that the direction of the induced longitudinal electric field is determined by the direction of the external field and that the electric current generated by the plasma flow significantly disturbs the barrier field.  相似文献   

4.
We present a model for the light-induced charge separation, proton and ion transport across photosynthetic membranes based on an assumption of the transmembrane surface charge asymmetry. In dark equilibrium, this asymmetry gives rise to an internal membrane electric field whose direction is perpendicular to the membrane surfaces. The role of the field in the light-induced charge separation is similar to the function of the built-in electric field across a solid-state p-n junction. Light-generated free charge carriers in the membrane flow according to its direction and upon recombination on the surface give rise to an electrochemical potential difference for electrons across the membrane. The associated coupled electron-proton transport, and ion diffusion can be viewed as a response of the system to the light-induced redox and electric potential changes.  相似文献   

5.
Summary It is proposed as a working hypothesis that conformational changes propagated like waves along intracellular fibrils (tubules, microtubules, microfilaments) have an electric component,i.e., there are waves of disturbance of electric potential in the fibrils. The paper considers the unavoidable consequences of the wave. The latter is accompanied by local electric field in the boundary layer of cytoplasmic fluid. Both positively and negatively charged particles may be attracted to the fibril in certain regions of the field and, being attracted, the particle may be under the action of longitudinal component of electric force. When the force is strong enough to move the particle with wave velocity, the particle will travel smoothly along the fibril, otherwise the movement will be saltatory or of agitation type. Net electroosmotic flow in one direction in the boundary layer of fluid may be expected when the waves are propagated in series. Turbulent motion of the fluid caused by the waves may provide the basis for activated diffusion. Asymmetry of the wave may account for polar transport of this sort. The electric field transmitted along the fibril across a sieve pore in phloem may facilitate electroosmotically the flow through the pore. Quantitative requirements of the hypothesis that electric field generated by the waves may account for different aspects of longitudinal transport in cells are apparently met.  相似文献   

6.
A one-dimensional drift model of the cathode region of a glow discharge with allowance for both electron-impact ionization and charged particle loss is proposed. An exact solution to the model equations is obtained for the case of similar power-law dependences of the ion and electron drift velocities on the electric field strength. It is shown that, even in the drift approximation, a relatively wide transition layer in which the ion-to-electron current ratio approaches a constant value typical of the positive column of a glow discharge should occur between the thin space-charge sheath and the quasineutral plasma, the voltage drop across the space-charge sheath being comparable to that across the transition layer. The calculated parameters of the normal and anomalous glow discharges are in good agreement with available experimental data.  相似文献   

7.
The effect of the Debye layer on the absorption of an electromagnetic surface wave propagating along the plasma-dielectric interface is considered. The electric field distribution in the Debye layer and the energy absorbed by the plasma electrons in this layer are determined. It is shown that the ratio of the rate at which surface waves are damped due to Cherenkov absorption by the electrons reflected from the electric field potential in the transition layer to their frequency is on the order of the ratio of the electron thermal velocity to the wave phase velocity.  相似文献   

8.
In-vitro studies of biological effects of electromagnetic fields are often conducted with cultured cells either in suspension or grown in a monolayer. In the former case, the exposed medium can be assumed to be homogeneous; however, eventually the cells settle to the bottom of the container forming a two layer system with different dielectric and conductive properties. In the present work the effect of this separation on the electric field distribution is calculated and experimentally measured at selected positions for a commonly used exposure configuration. The settled cell suspension is modeled by a well-defined two layer system placed in a rectangular container with the base of the container parallel to the direction of the magnetic field. Theoretical calculations based on numerical techniques are done for various two layer systems with different conductivities in each layer. The agreement between the theoretical calculations and the experimental measurements is within ± 1.5 mV/m, or 10% of the maximum induced field when the conductivity of the lower layer is ten times that of the upper layer. This result is well within experimental error. When the thickness of one of the layers is small compared to the thickness of the other layer, it is found that the electric field distribution is essentially that of the homogeneous case. The latter situation corresponds to a typical cell exposure condition. © 1993 Wiley-Liss, Inc.  相似文献   

9.
With light and electron microscopy structure and composition of the small intestine parietal mucous layer of rat, chicken, and man were studied. It has been shown that parietal layer is complicated and multicomponent system includes mucous glycoproteins, vesicular and membrane structures, epithelial cells fragments, food substrates particles and bacteria. It is assumed that subepithelial mucous layer components may be of significance in premembrane digestion and absorption.  相似文献   

10.
The polyelectrolyte layer coating mammalian cells, known as the glycocalyx, may be important in communicating flow information to the cell. In this paper, the layer is modelled as a semi-infinite, doubly periodic array of parallel charged cylinders. The electric potential and ion distributions surrounding such an array are found using the linearized Poisson-Boltzmann equation and an iterative domain decomposition technique. Similar methods are used to calculate Strokes flows, driven either by a shear at infinity or by an electric field, parallel or transverse to the cylinders. The resulting electric streaming currents due to flow over endothelial cells, and the electrophoretic mobilities of red blood cells are deduced as functions of polymer concentration and electrolyte molarity. It is shown that only the top portion of the layer is important in these effects.  相似文献   

11.
An electric field of alternating polarity applied in a direction transverse to the direction of solute transport is used as the basis of a method for the separation of biological macromolecules. The method derives directly from the ability of an electric field to induce movement of a charged macromolecule and from the physics of laminar fluid flow; no adsorptive immobile phase component is involved.

The method is simulated by computer for the case of solute molecules in a solvent flowing through a narrow chamber of recta generates an electric field orthogonal to the direction of solvent flow. Solute molecules repetitively traverse the solvent channel at rates determined by their electrophoretic mobility. During the transit across the channel, solute molecules are transported in the direction of solvent flow; at the channel wall, solvent velocity is negligible and solute transport is limited to that provided by transient diffusion into a mobile solvent zone. Molecules of different intrinsic electrophoretic mobility are separated.

The computer model was used to illustrate the process and to demonstrate the ‘tunability’ of the method as a function of the oscillation frequency and voltage wave form. Because of this tunability, a single instrument can function as the equivalent of several different chromatographic systems. Because fractionation is effected by direct physicochemical phenomena rather than via interaction with chromatographic sites, variations in fractionation results arising from formation of polymers for gel electrophoresis, packing of chromatography columns, or deterioration of columns with use are avoided. This method may be of particular use for the purification of nucleic acid fragments and for the analysis of protei: nucleic acid interactions.  相似文献   


12.
Results are presented from numerical simulations of the breakdown of a dense noble gas by the electrons of a boundary layer that forms during the irradiation of a metal target by a high-power picosecond laser pulse. It is shown that, when the electric field of the boundary layer is taken into account, the density of the seed electrons near the target surface increases substantially, so that the ionization process occurs much faster. The dependence of the time of the onset of breakdown on the electric field of the incident wave and on the concentration of gas atoms is calculated.  相似文献   

13.
Whereas resonant transverse magnetic transmission across an undulated continuous metal film is achieved with the mediation of plasmon modes excited by the undulation, it is shown here that transverse electric (TE) resonant transmission through a continuous metal film can also be achieved with the mediation of the second-order TE1 mode of a dielectric slab waveguide having the metal film sandwiched at its middle. The demonstration is made by using the materials currently used in the domain of optical security and counterfeit deterrence: ZnS is shown to possibly be a lossless interface/adhesion layer between a polymer and a noble metal for plasmonic resonant elements.  相似文献   

14.
Advances in modern computational methods and technology make it possible to carry out extensive molecular dynamics simulations of complex membrane proteins based on detailed atomic models. The ultimate goal of such detailed simulations is to produce trajectories in which the behavior of the system is as realistic as possible. A critical aspect that requires consideration in the case of biological membrane systems is the existence of a net electric potential difference across the membrane. For meaningful computations, it is important to have well validated methodologies for incorporating the latter in molecular dynamics simulations. A widely used treatment of the membrane potential in molecular dynamics consists of applying an external uniform electric field E perpendicular to the membrane. The field acts on all charged particles throughout the simulated system, and the resulting applied membrane potential V is equal to the applied electric field times the length of the periodic cell in the direction perpendicular to the membrane. A series of test simulations based on simple membrane-slab models are carried out to clarify the consequences of the applied field. These illustrative tests demonstrate that the constant-field method is a simple and valid approach for accounting for the membrane potential in molecular dynamics studies of biomolecular systems. This article is part of a Special Issue entitled: Membrane protein structure and function.  相似文献   

15.
The technique of transient electric birefringence was used to investigate the effect of pulsed electric fields on the orientation of the agarose gel matrix. Orientation of the gel was observed at all electric field strengths. Very slow, time-dependent effects were observed when pulses of 10-100 V/cm were applied to 1% gels for 0.5-2 seconds, indicating that domains of the matrix were being oriented by the electric field. The sign of the birefringence reversed when the direction of the applied electric field was reversed, indicating that the domains tend to orient in the perpendicular direction after field reversal. Theories of gel electrophoresis will need to incorporate the orientation of the matrix in order to provide a complete explanation of electrophoresis in agarose gels.  相似文献   

16.
The structure of the mucous layer covering the oesophageal epithelium was analysed by scanning electron microscopy in the eel, Anguilla anguilla . Different fixation procedures were used to conserve the mucus in situ. The mucous layer changes progressively down the oesophagus from a thick dense layer to a very thin fibrous network. The possible roles of these mucous structures in ion absorption are discussed.  相似文献   

17.
We have developed new methods to minimize fluid shear during preparation of specimens for electron microscopy and to retain the mucous blanket that covers the tissue surface of the ileum in mice. We also used general stabilization by nonspecific antibodies to minimize the collapse of the mucous layer during dehydration for electron microscopy. These methods allowed us to visualize the gradual progression of the mucous blanket from a thin diaphanous layer in newborn animals to a very thick (ca. 50 micrometers), coherent structure in older animals that contained a mixed population of bacteria and protozoa. Some bacteria, notably filamentous forms, were patently anchored to the epithelial tissue but projected into the mucous blanket, whereas others clearly existed within the mucous blanket and were unattached to the epithelial surface. Similarly, some protozoa were firmly attached to the tissue surface, whereas others were suspended in the viscous mucous blanket. In an adult animal, the mucous blanket was a very thick layer which actually occluded most of the tissue surface and contained a rich variety of bacteria and protozoa.  相似文献   

18.
M Lanan  R Shick  M D Morris 《Biopolymers》1991,31(9):1095-1104
Time-resolved and steady-state electric birefringence imaging with a slow-scan video camera is used to study orientation during DNA agarose gel electrophoresis. The hydrodynamically induced gel distortion is shown to be the major source of birefringence under electrophoresis running conditions and to generate a birefringence image that approximates the image of the DNA concentration gradient in the electric field direction. A fluid kinematic model is presented to describe the spatial distribution of steady-state birefringence and is verified with fluorescence measurements of DNA distribution. The stress-optic coefficient of 1% agarose gel is measured by mechanical compression and used to evaluate the magnitude of the induced strain on the gel during electrophoresis.  相似文献   

19.
Intracochlear electric fields arising out of sound-induced receptor currents, silent currents, or electrical current injected into the cochlea induce transmembrane potential along the outer hair cell (OHC) but its distribution along the cells is unknown. In this study, we investigated the distribution of OHC transmembrane potential induced along the cell perimeter and its sensitivity to the direction of the extracellular electric field (EEF) on isolated OHCs at a low frequency using the fast voltage-sensitive dye ANNINE-6plus. We calibrated the potentiometric sensitivity of the dye by applying known voltage steps to cells by simultaneous whole-cell voltage clamp. The OHC transmembrane potential induced by the EEF is shown to be highly nonuniform along the cell perimeter and strongly dependent on the direction of the electrical field. Unlike in many other cells, the EEF induces a field-direction-dependent intracellular potential in the cylindrical OHC. We predict that without this induced intracellular potential, EEF would not generate somatic electromotility in OHCs. In conjunction with the known heterogeneity of OHC membrane microdomains, voltage-gated ion channels, charge, and capacitance, the EEF-induced nonuniform transmembrane potential measured in this study suggests that the EEF would impact the cochlear amplification and electropermeability of molecules across the cell.  相似文献   

20.
Intracochlear electric fields arising out of sound-induced receptor currents, silent currents, or electrical current injected into the cochlea induce transmembrane potential along the outer hair cell (OHC) but its distribution along the cells is unknown. In this study, we investigated the distribution of OHC transmembrane potential induced along the cell perimeter and its sensitivity to the direction of the extracellular electric field (EEF) on isolated OHCs at a low frequency using the fast voltage-sensitive dye ANNINE-6plus. We calibrated the potentiometric sensitivity of the dye by applying known voltage steps to cells by simultaneous whole-cell voltage clamp. The OHC transmembrane potential induced by the EEF is shown to be highly nonuniform along the cell perimeter and strongly dependent on the direction of the electrical field. Unlike in many other cells, the EEF induces a field-direction-dependent intracellular potential in the cylindrical OHC. We predict that without this induced intracellular potential, EEF would not generate somatic electromotility in OHCs. In conjunction with the known heterogeneity of OHC membrane microdomains, voltage-gated ion channels, charge, and capacitance, the EEF-induced nonuniform transmembrane potential measured in this study suggests that the EEF would impact the cochlear amplification and electropermeability of molecules across the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号