首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The cellular distribution of Na+, K+-ATPase subunit isoforms was mapped in the secretory epithelium of the human prostate gland by immunostaining with antibodies to the alpha and beta subunit isoforms of the enzyme. Immunolabeling of the alpha1, beta1 and beta2 isoforms was observed in the apical and lateral plasma membrane domains of prostatic epithelial cells in contrast to human kidney where the alpha1 and beta1 isoforms of Na+, K+-ATPase were localized in the basolateral membrane of both proximal and distal convoluted tubules. Using immunohistochemistry and PCR we found no evidence of Na+, K+-ATPase alpha2 and alpha3 isoform expression suggesting that prostatic Na+, K+-ATPase consists of alpha1/beta1 and alpha1/beta2 isozymes. Our immunohistochemical findings are consistent with previously proposed models placing prostatic Na+, K+-ATPase in the apical plasma membrane domain. Abundant expression of Na+, K+-ATPase in epithelial cells lining tubulo-alveoli in the human prostate gland confirms previous conclusions drawn from biochemical, pharmacological and physiological data and provides further evidence for the critical role of this enzyme in prostatic cell physiology and ion homeostasis. Na+, K+-ATPase most likely maintains an inwardly directed Na+ gradient essential for nutrient uptake and active citrate secretion by prostatic epithelial cells. Na+, K+-ATPase may also regulate lumenal Na+ and K+, major counter-ions for citrate.  相似文献   

3.
The Na(+),K(+)-ATPase catalyzes the active transport of ions. It has two necessary subunits, alpha and beta, but in kidney it is also associated with a 7.4-kDa protein, the gamma subunit. Stable transfection was used to determine the effect of gamma on Na, K-ATPase properties. When isolated from either kidney or transfected cells, alphabetagamma had lower affinities for both Na(+) and K(+) than alphabeta. A post-translational modification of gamma selectively eliminated the effect on Na(+) affinity, suggesting three configurations (alphabeta, alphabetagamma, and alphabetagamma*) conferring different stable properties to Na, K-ATPase. In the nephron, segment-specific differences in Na(+) affinity have been reported that cannot be explained by the known alpha and beta subunit isoforms of Na,K-ATPase. Immunofluorescence was used to detect gamma in rat renal cortex. Cortical ascending limb and some cortical collecting tubules lacked gamma, correlating with higher Na(+) affinities in those segments reported in the literature. Selective expression in different segments of the nephron is consistent with a modulatory role for the gamma subunit in renal physiology.  相似文献   

4.
Messenger RNA for the alpha subunit of Torpedo californica Na+/K(+)-ATPase was injected into Xenopus oocytes together with that of the beta subunit of rabbit H+/K(+)-ATPase. The Na+/K(+)-ATPase alpha subunit was assembled in the microsomal membranes with the H+/K(+)-ATPase beta subunit, and became resistant to trypsin. These results suggest that the H+/K(+)-ATPase beta subunit facilitates the stable assembly of the Na+/K(+)-ATPase alpha subunit in microsomes.  相似文献   

5.
Na(+),K(+)-ATPase, a basolateral transporter responsible for tubular reabsorption of Na(+) and for providing the driving force for vectorial transport of various solutes and ions, can also act as a signal transducer in response to the interaction with steroid hormones. At nanomolar concentrations ouabain binding to Na(+),K(+)-ATPase activates a signaling cascade that ultimately regulates several membrane transporters including Na(+),K(+)-ATPase. The present study evaluated the long-term effect of ouabain on Na(+),K(+)-ATPase activity (Na(+) transepithelial flux) and expression in opossum kidney (OK) cells with low (40) and high (80) number of passages in culture, which are known to overexpress Na(+),K(+)-ATPase (Silva et al., 2006, J Membr Biol 212, 163-175). Activation of a signal cascade was evaluated by quantification of ERK1/2 phosphorylation by Western blot. Na(+),K(+)-ATPase activity was determined by electrophysiological techniques and expression by Western blot. Incubation of cells with ouabain induced activation of ERK1/2. Long-term incubation with ouabain induced an increase in Na(+) transepithelial flux and Na(+),K(+)-ATPase expression only in OK cells with 80 passages in culture. This increase was prevented by incubation with inhibitors of MEK1/2 and PI-3K. In conclusion, ouabain-activated signaling cascade mediated by both MEK1/2 and PI-3K is responsible for long-term regulation of Na(+) transepithelial flux in epithelial renal cells. OK cell line with high number of passages is suggested to constitute a particular useful model for the understanding of ouabain-mediated regulation of Na(+) transport.  相似文献   

6.
The chondrocyte is the cell responsible for the maintenance of the articular cartilage matrix. The negative charges of proteoglycans of the matrix draw cations, principally Na+, into the matrix to balance the negative charge distribution. The Na+,K(+)-ATPase is the plasma membrane enzyme that maintains the intracellular Na+ and K+ concentrations. The enzyme is composed of an alpha and a beta subunit, so far, 4 alpha and 3 beta isoforms have been identified in mammals. Chondrocytes are sensitive to their ionic and osmotic environment and are capable of adaptive responses to ionic environmental perturbations particularly changes to extracellular [Na+]. In this article we show that human fetal and adult chondrocytes express three alpha (alpha 1, alpha 2 and the neural form of alpha 3) and the three beta isoforms (beta 1, beta 2 and beta 3) of the Na+,K(+)-ATPase. The presence of multiple Na+,K(+)-ATPase isoforms in the plasma membrane of chondrocytes suggests a variety of kinetic properties that reflects a cartilage specific and very fine specialization in order to maintain the Na+/K+ gradients. Changes in the ionic and osmotic environment of chondrocytes occur in osteoarthritis and rheumatoid arthritis as result of tissue hydration and proteoglycan loss leading to a fall in tissue Na+ and K+ content. Although the expression levels and cellular distribution of the proteins tested do not vary, we detect changes in p-nitrophenylphosphatase activity "in situ" between control and pathological samples. This change in the sodium pump enzymatic activity suggests that the chondrocyte responds to these cationic environmental changes with a variation of the active isozyme types present in the plasma membrane.  相似文献   

7.
Topical intranasal application of the antifungal Amphotericin B (AmphoB) has been shown as an effective medical treatment of chronic rhinosinusitis. Because this antibiotic forms channels in lipid membranes, we considered the possibility that it affects the properties and/or cell surface expression of ion channels/pumps, and consequently transepithelial ion transport. Human nasal epithelial cells were exposed apically to AmphoB (50 microM) for 4 h, 5 days (4 h daily), and 4 weeks (4 h daily, 5 days weekly) and allowed to recover for 18-48 h. AmphoB significantly reduced transepithelial potential difference, short-circuit current, and the amiloride-sensitive current. This was not due to generalized cellular toxicity as judged from normal transepithelial resistance and mitochondrial activity, but was related to inhibitory effects of AmphoB on ion transport proteins. Thus, cells exposed to AmphoB for 4 h showed decreased apical epithelial sodium channels (ENaC) activity with no change in basolateral Na(+)K(+)-ATPase activity and K(+) conductance, and reduced amount of alphaENaC, alpha1-Na(+)K(+)-ATPase, and NKCC1 proteins at the cell membrane, but no change in mRNA levels. After a 5-day treatment, there was a significant decrease in Na(+)K(+)-ATPase activity. After a 4-week treatment, a decrease in basolateral K(+) conductance and in alphaENaC and alpha1-Na(+)K(+)-ATPase mRNA levels was also observed. These findings may reflect a feedback mechanism aimed to limit cellular Na(+) overload and K(+) depletion subsequently to formation of AmphoB pores in the cell membrane. Thus, the decreased Na(+) absorption induced by AmphoB resulted from reduced cell surface expression of the ENaC, Na(+)K(+)-ATPase pump and NKCC1 and not from direct inhibition of their activities.  相似文献   

8.
Increases in Na/K-ATPase activity occur concurrently with the onset of cavitation and are associated with increases in Na(+)-pump subunit mRNA and protein expression. We have hypothesized that the alpha1-isozyme of the Na/K-ATPase is required to mediate blastocyst formation. We have tested this hypothesis by characterizing preimplantation development in mice with a targeted disruption of the Na/K-ATPase alpha1-subunit (Atp1a1) using embryos acquired from matings between Atp1a1 heterozygous mice. Mouse embryos homozygous for a null mutation in the Na/K-ATPase alpha1-subunit gene are able to undergo compaction and cavitation. These findings demonstrate that trophectoderm transport mechanisms are maintained in the absence of the predominant isozyme of the Na(+)-pump that has previously been localized to the basolateral membranes of mammalian trophectoderm cells. The presence of multiple isoforms of Na/K-ATPase alpha- and beta-subunits at the time of cavitation suggests that there may be a degree of genetic redundancy amongst isoforms of the catalytic alpha-subunit that allows blastocyst formation to progress in the absence of the alpha1-subunit.  相似文献   

9.
Unlike glucose transport, where translocation of the insulin-responsive glucose transporter (GLUT4) from an intracellular compartment to the plasma membrane is the principal mechanism underlying insulin stimulation, no consensus exists presently for the mechanism by which insulin activates the Na+/K(+)-ATPase. We have investigated (i) the subunit isoforms expressed and (ii) the effect of insulin on the subcellular distribution of the alpha beta isoforms of the Na+/K(+)-ATPase in plasma membranes (PM) and internal membranes (IM) from rat skeletal muscle. Western blot analysis, using isoform-specific antibodies to the various subunits of the Na+/K(+)-ATPase, revealed that skeletal muscle PM contains the alpha 1 and alpha 2 catalytic subunits and the beta 1 and beta 2 subunits of the Na+ pump. Skeletal muscle IM were enriched in alpha 2, beta 1, and beta 2; alpha 1 was barely detectable in this fraction. After insulin treatment, alpha 2 content in the PM increased, with a parallel decrease in its abundance in the IM pool; insulin did not have any effect on alpha 1 isoform amount or subcellular distribution. The beta 1 subunit, but not beta 2, was also elevated in the PM after insulin treatment, but this increase originated from a sucrose gradient fraction different from that of the alpha 2 subunit. Our findings suggest that insulin induces an isoform-specific translocation of Na+ pump subunits from different intracellular sources to the PM and that the hormone-responsive enzyme in rat skeletal muscle is an alpha 2:beta 1 dimer.  相似文献   

10.
The Na+,K(+)-ATPase alpha 1, alpha 2, and alpha 3 subunit isoforms have been shown to be differentially expressed in the nonpigmented (NPE) and pigmented (PE) cells of the ocular ciliary epithelium (CE) (Martin-Vasallo et al., J. Cell. Physiol., 141:243-252, 1989; Ghosh et al., J. Biol. Chem., 265:2935-2940, 1990). In this study we analyzed and compared the pattern of expression of the multiple Na+,K(+)-ATPase alpha (alpha 1, alpha 2, alpha 3) subunit genes with the pattern of expression of the Na+,K(+)-ATPase beta (beta 1, beta 2) subunit genes along the bovine CE. We have selected three regions in the CE, referred to as 1) the anterior region of the pars plicata, near the iris; 2) the middle region of the pars plicata; and 3) the posterior region of the pars plana, near the ora serrata. Using isoform-specific cDNA probes and antibodies for the Na+,K(+)-ATPase alpha 1, alpha 2, alpha 3, beta 1, and beta 2 subunits on Northern and Western blot analysis, we found that mRNA and polypeptides are expressed in all three CE regions with different abundance. The pattern of expression of alpha and beta isoforms detected along the NPE cell layers suggests a gradient of alpha 1, alpha 2, alpha 3, beta 1, and beta 2 mRNAs and polypeptides that correlates with decreasing Na+,K(+)-ATPase activity from the most anterior region at the pars plicata towards the posterior region at the ora serrata. We also found marked differences in the pattern of immunolocalization of Na+,K(+)-ATPase alpha 1, alpha 2, alpha 3, beta 1, and beta 2 subunit isoforms in different regions of the CE. In the anterior region, NPE cells stained intensely at the basal lateral membrane with specific monoclonal and polyclonal antibodies for each of the alpha (alpha 1, alpha 2, alpha 3) and beta (beta 1, beta 2) Na,K-ATPase isoforms. In the middle and posterior regions of the CE, NPE cells showed lower or absent levels of staining with alpha 1, alpha 2, alpha 3, and beta 1 antibodies, although staining with beta 2 was abundant. In contrast, PE cells throughout the CE were stained at the basal lateral membrane by antibodies to alpha 1 and beta 1, while no staining signals were detected with the rest of the antibodies (i.e. alpha 2, alpha 3, and beta 2). Our results support the conclusion that the three alpha and two beta isoforms of the Na+,K(+)-ATPase are differentially expressed in the two cell layers that make up the CE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
By altering the Na+/K+ electrochemical gradient, Na+,K(+)-ATPase activity profoundly influences cardiac cell excitability and contractility. The recent finding of mineralocorticoid hormone receptors in the heart implies that Na+,K(+)-ATPase gene expression, and hence cardiac function, is regulated by aldosterone, a corticosteroid hormone associated with certain forms of hypertension and classically involved in regulating Na+,K(+)-ATPase gene expression and transepithelial Na+ transport in tissues such as the kidney. The regulation by aldosterone of the major cardiac Na+,K(+)-ATPase isoform genes, alpha-1 and beta-1, were studied in adult and neonatal rat ventricular cardiocytes grown in defined serum-free media. In both cell types, aldosterone-induced a rapid and sustained 3-fold induction in alpha-1 mRNA accumulation within 6 h. beta-1 mRNA was similarly induced. alpha-1 mRNA induction occurred over the physiological range with an EC50 of 1-2 nM, consistent with binding of aldosterone to the high affinity mineralocorticoid hormone receptor. In adult cardiocytes, this was associated with a 36% increase in alpha subunit protein accumulation and an increase in Na(+)-K(+)-ATPase transport activity. Aldosterone did not alter the 3-h half-life of alpha-1 mRNA, indicating an induction of alpha-1 mRNA synthesis. Aldosterone-dependent alpha-1 mRNA accumulation was not blocked by the protein synthesis inhibitor cycloheximide, whereas amiloride inhibited both an aldosterone-dependent increase in intracellular Na+ [Na+]i) and alpha-1 mRNA accumulation. This demonstrates that aldosterone directly stimulates Na+,K(+)-ATPase alpha-1 subunit mRNA synthesis and protein accumulation in cardiac cells throughout development and suggests that the heart is a mineralocorticoid-responsive organ. An early increase in [Na+]i may be a proximal event in the mediation of the hormone effect.  相似文献   

12.
Vocal fold hydration is critical to phonation. We hypothesized that the vocal fold generates bidirectional water fluxes, which are regulated by activity of the Na(+)-K(+)- ATPase. Western blots and immunohistochemistry demonstrated the presence of the alpha-subunit Na(+)-K(+)-ATPase in the canine vocal fold (n = 11). Luminal cells, basal and adjacent one to two layers of suprabasal cells within stratified squamous epithelium, were immunopositive, as well as basolateral membranes of submucosal seromucous glands underlying transitional epithelia. Canine (n = 6) and ovine (n = 14) vocal fold mucosae exhibited transepithelial potential differences of 8.1 +/- 2.8 and 9.3 +/- 1.3 mV (lumen negative), respectively. The potential difference and short-circuit current (ovine = 31 +/- 4 microA/cm(2); canine = 41 +/- 10 microA/cm(2)) were substantially reduced by luminal administration of 75 microM acetylstrophanthidin (P < 0.05). Ovine (n = 7) transepithelial water fluxes decreased from 5.1 +/- 0.3 to 4.3 +/- 0.3 microl x min(-1) x cm(-2) from the basal to luminal chamber and from 5.2 +/- 0.2 to 3.9 +/- 0.3 microl x min(-1) x cm(-2) from the luminal to basal chamber by luminal acetylstrophanthidin (P < 0.05). The presence of the Na(+)-K(+)-ATPase in the vocal fold epithelium and the electrolyte transport derived from its activity provide the intrinsic mechanisms to regulate cell volume as well as vocal fold hydration.  相似文献   

13.
By regulating transmembrane Na+ and K+ concentrations and membrane potential, the Na+,K(+)-ATPase plays an important role in regulating cardiac, skeletal, and smooth muscle function. A high degree of amino acid sequence and structural identity characterizes the three Mr 100,000 Na+,K(+)-ATPase alpha subunit isoforms expressed in cardiac and skeletal muscle. Strikingly, vascular smooth muscle utilizes alternative RNA processing of the alpha-1 gene to express a structurally distinct Mr approximately 65,000 isoform, alpha 1-T (truncated). Analysis of both its mRNA and protein structure reveals that alpha-1-T represents a major, evolutionarily conserved, truncated Na+,K(+)-ATPase isoform expressed in vascular smooth muscle. This demonstrates an unexpected complexity in the regulation of vascular smooth muscle Na+,K(+)-ATPase gene expression and suggests that a structurally novel, truncated alpha subunit may play a role in vascular smooth muscle active ion transport.  相似文献   

14.
15.
Na+,K(+)-ATPase is a marker of the basolateral plasma membrane domain of polarized epithelial cells, including the mural trophectoderm of the mammalian blastocyst (Watson and Kidder (1988). Dev. Biol. 126, 80-90). We have used this marker to explore the factors governing the establishment and maintenance of apical/basolateral polarity during differentiation of trophectoderm. A polyclonal antiserum (anti-GP80) against human cell-CAM 120/80, a homolog of the mouse cell-cell adhesion protein, uvomorulin, was used to prevent cell flattening (compaction) and formation of the epithelial junctional complex. The majority of treated embryos failed to develop a blastocoel; instead their blastomeres developed fluid-filled cavities that expanded while untreated control embryos were cavitating. Immunocytochemistry revealed that the catalytic subunit of Na+,K(+)-ATPase was contained within the membranes lining these cavities, as well as within numerous punctate foci in the cytoplasm. The down-regulation of expression of the enzyme that normally occurs in the ICM and polar trophectoderm did not take place, since the immunoreactivity remained equally strong in all blastomeres. The enzyme could not be detected in plasma membranes. We conclude that uvomorulin-mediated cell adhesion is involved in spatially restricting the expression of the catalytic subunit and is a prerequisite for the insertion of enzyme-laden vesicles into plasma membranes, but not for expression of the catalytic subunit gene. When fully developed blastocysts were treated with cytochalasins to disrupt the epithelial junctional complex, the catalytic subunit shifted from the basolateral to the apical plasma membrane. This finding suggests a primary role for the apical plasma membrane in the process of polarization, and implies that tight junctions are a manifestation of polarity that serve to maintain the separation between apical and basolateral markers.  相似文献   

16.
The Na(+)-dependent hexose carrier, an endogenous apical marker, develops during differentiation of LLC-PK1, an established cell line with characteristics of the proximal tubule. This development was inhibited by the microtubule-disrupting drugs, colchicine and nocodazole, while it was insensitive to lumicolchicine. This strongly suggests that microtubules are involved in the plasma membrane expression of the Na(+)-dependent hexose carrier. We also analyzed the increase in activity of endogenous apical and basolateral membrane proteins during the polarization process. The development of three apical (Na(+)-dependent hexose carrier, gamma-glutamyltransferase and alkaline phosphatase) and one basolateral membrane protein (Na+/K(+)-ATPase) was studied during the reorganization of LLC-PK1 cells into a polarized epithelium. Colchicine inhibited the rapid, transient increase in the expression of the Na(+)-dependent hexose carrier during this polarization process. A similar result was observed for the development of the other apical proteins, while the development of Na+/K(+)-ATPase seemed to be largely insensitive to colchicine. Our results are in agreement with the model that the vesicles containing the apical membrane proteins use microtubules as tracks to reach the plasma membrane. The transport of vesicles containing basolateral membrane proteins clearly occurs by a different pathway which is independent on an intact microtubular network. Since the inhibition by the microtubule-disrupting drugs was complete, it can be concluded that after disruption of microtubules, the apical vesicles do not use the basolateral pathway by default.  相似文献   

17.
18.
N-acetylcysteine (NAC) is a widely used mucolytic drug in patients with a variety of respiratory disorders. The mechanism of action is based on rupture of the disulfide bridges of the high molecular glycoproteins present in the mucus, resulting in smaller subunits of the glycoproteins and reduced viscosity of the mucus. Because Na(+) absorption regulates airway surface liquid volume and thus the efficiency of mucociliary clearance, we asked whether NAC affects the bioelectric properties of human nasal epithelial cells. A 24-h basolateral treatment with 10 mM of NAC decreased the transepithelial potential difference and short-circuit current (I(SC)) by 40%, and reduced the amiloride-sensitive current by 50%, without affecting the transepithelial resistance. After permeabilization of the basolateral membranes of cells with amphotericin B in the presence of a mucosal-to-serosal Na(+) gradient (135:25 mM), NAC inhibited 45% of the amiloride-sensitive current. The Na(+)-K(+)-ATPase pump activity and the basolateral K(+) conductance were not affected by NAC treatment. NAC did not alter total cell mRNA and protein levels of alpha-epithelial Na(+) channel (EnaC) subunit, but reduced abundance of alpha-ENaC subunits in the apical cell membrane as quantified by biotinylation. This effect can be ascribed to the sulphydryl (SH) group of NAC, since N-acetylserine and S-carboxymethyl-l-cysteine were ineffective. Given the importance of epithelial Na(+) channels in controlling the thin layer of fluid that covers the surface of the airways, the increase in the fluidity of the airway mucus following NAC treatment in vivo might be in part related to downregulation of Na(+) absorption and consequently water transport.  相似文献   

19.
Electrolyte transport across the adult alveolar epithelium plays an important role in maintaining a thin fluid layer along the apical surface of the alveolus that facilitates gas exchange across the epithelium. Most of the work published on the transport properties of alveolar epithelial cells has focused on the mechanisms and regulation of Na(+) transport and, in particular, the role of amiloride-sensitive Na(+) channels in the apical membrane and the Na(+)-K(+)-ATPase located in the basolateral membrane. Less is known about the identity and role of Cl(-) and K(+) channels in alveolar epithelial cells, but studies are revealing important functions for these channels in regulation of alveolar fluid volume and ionic composition. The purpose of this review is to examine previous work published on Cl(-) and K(+) channels in alveolar epithelial cells and to discuss the conclusions and speculations regarding their role in alveolar cell transport function.  相似文献   

20.
This study describes the modulation of the ouabain-insensitive Na(+)-ATPase activity from renal proximal tubule basolateral membranes (BLM) by protein kinase C (PKC). Two PKC isoforms were identified in BLM, one of 75 kDa and the other of 135 kDa. The former correlates with the PKC isoforms described in the literature but the latter seems to be a novel isoform, not yet identified. Both PKC isoforms of BLM are functional since a protein kinase C activator, TPA, increased the total hydroxylamine-resistant 32P(i) incorporation from [gamma-32P]ATP into the BLM. In parallel, TPA stimulated the Na(+)-ATPase activity from BLM in a dose-dependent manner, the effect being reversed by the PKC inhibitor sphingosine. The stimulatory effect of TPA on Na(+)-ATPase involved an increase in the V(max) (from 13.4+/-0.6 nmol P(i) mg(-1) min(-1) to 25.2+/-1.4 nmol P(i) mg(-1) min(-1), in the presence of TPA, P<0.05) but did not change the apparent affinity for Na(+) (K(0.5)=14.5+/-2.1 mM in control and 10.0+/-2.1 mM in the presence of TPA, P>0.07). PKC involvement was further confirmed by stimulation of the Na(+)-ATPase activity by the catalytic subunit of PKC (PKC-M). Finally, the phosphorylation of an approx. 100 kDa protein in the BLM (the suggested molecular mass of Na(+)-ATPase [1]) was induced by TPA. Taken together, these findings indicate that PKCs resident in BLM stimulate Na(+)-ATPase activity which could represent an important mechanism of regulation of proximal tubule Na(+) reabsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号