首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Elevation of intracellular Ca2+ concentration ([Ca2+]i) triggers exocytosis of secretory granules in pancreatic duct epithelia. In this study, we find that the signal also controls granule movement. Motions of fluorescently labeled granules stopped abruptly after a [Ca2+]i increase, kinetically coincident with formation of filamentous actin (F-actin) in the whole cytoplasm. At high resolution, the new F-actin meshwork was so dense that cellular structures of granule size appeared physically trapped in it. Depolymerization of F-actin with latrunculin B blocked both the F-actin formation and the arrest of granules. Interestingly, when monitored with total internal reflection fluorescence microscopy, the immobilized granules still moved slowly and concertedly toward the plasma membrane. This group translocation was abolished by blockers of myosin. Exocytosis measured by microamperometry suggested that formation of a dense F-actin meshwork inhibited exocytosis at small Ca2+ rises <1 μ m . Larger [Ca2+]i rises increased exocytosis because of the co-ordinate translocation of granules and fusion to the membrane. We propose that the Ca2+-dependent freezing of granules filters out weak inputs but allows exocytosis under stronger inputs by controlling granule movements.  相似文献   

2.
Abstract: Calcium signaling in fura-2 acetoxymethyl ester-loaded enteric glia was investigated in response to neuroligands; responses to ATP were studied in detail. Carbachol (1 m M ), glutamate (100 µ M ), norepinephrine (10 µ M ), and substance P (1 µ M ) did not increase the intracellular calcium concentration ([Ca2+]i) in cultured enteric glia. An increasing percentage of glia responded to serotonin (4%; 100 µ M ), bradykinin (11%; 10 µ M ), and histamine (31%; 100 µ M ), whereas 100% of glia responded to ATP (100 µ M ). ATP-evoked calcium signaling was concentration dependent in terms of the percentage of glia responding and the peak [Ca2+]i achieved; responses were pertussis toxin insensitive. Based on responsiveness of enteric glia to purinergic agonists and peak [Ca2+]i evoked, ATP = UTP > ADP > β,γ-methyleneadenosine 5'-triphosphate ≫ 2-methylthioadenosine 5'-triphosphate = α,β-methyleneadenosine 5'-triphosphate = AMP = adenosine, suggesting a glial P2U receptor. Depletion of d - myo -inositol 1,4,5-trisphosphate-sensitive calcium stores by thapsigargin (10 µ M ) abolished glial responses to ATP. Similarly, calcium responses were decreased 92% by U-73122 (10 µ M ), an inhibitor of phospholipase C, and 93% by the phorbol ester phorbol 12-myristate 13-acetate (100 n M ), an activator of protein kinase C. Thus, cultured enteric glia can respond to neurotransmitters with increases in [Ca2+]i. Our data suggest that glial responses to ATP are mediated by a P2U receptor coupled to activation of phospholipase C and release of intracellular calcium stores.  相似文献   

3.
Abstract: Hypoxia (5% O2) enhanced catecholamine release in cultured rat adrenal chromaffin cells. Also, the intracellular free Ca2+ concentration ([Ca2+]i) increased within 3 min in ∼50% of the chromaffin cells under hypoxic stimulation. The increase depended on the presence of extracellular Ca2+. Nifedipine and ω-conotoxin decreased the population of the cells that showed the hypoxia-induced [Ca2+]i increase, showing that the Ca2+ influx was attributable to L- and N-type voltage-dependent Ca2+ channels. The membrane potential was depolarized during the perfusion with the hypoxic solution and returned to the basal level following the change to the normoxic solution (20% O2). Membrane resistance increased twofold under the hypoxic condition. The current-voltage relationship showed a hypoxia-induced decrease in the outward K+ current. Among the K+ channel openers tested, cromakalim and levcromakalim, both of which interact with ATP-sensitive K+ channels, inhibited the hypoxia-induced [Ca2+]i increase and catecholamine release. The inhibitory effects of cromakalim and levcromakalim were reversed by glibenclamide and tolbutamide, potent blockers of ATP-sensitive K+ channels. These results suggest that some fractions of adrenal chromaffin cells are reactive to hypoxia and that K+ channels sensitive to cromakalim and glibenclamide might have a crucial role in hypoxia-induced responses. Adrenal chromaffin cells could thus be a useful model for the study of oxygen-sensing mechanisms.  相似文献   

4.
Abstract: Bradykinin (BK) receptor and P2-purinergic receptor are known to be coupled to phospholipase C (PLC) in PC12 cells. To study the interaction between these two PLC-linked receptors, the presence of both receptors on individual cells was demonstrated by sequential Ca2+ spikes caused by BK and ATP in a single fura-2-loaded cell. BK- and ATP-induced catecholamine (CA) secretions were desensitized within 5 min. However, in the sequential experiment, the BK-induced homologous desensitization of CA secretion did not block the ATP-induced secretion, and vice versa. Each agonist-induced an increase in inositol 1,4,5-trisphosphate (IP3) production and intracellular free Ca2+ concentration also led to homologous desensitization. However, there was no heterologous desensitization between the two agonists. When the cells were treated with both BK and ATP simultaneously, the amounts of CA secretion, IP3 production, internal Ca2+ mobilization, and Ca2+ influx were all additive. We also found that both IP3-induced Ca2+ release from intracellular Ca2+ stores and Ca2+ influx from extracellular space were able to release [3H]norepinephrine, and the secretion induced by both agonists was exactly additive in the absence or presence of extracellular Ca2+. The data suggest that the CA secretions caused by BK or ATP may have separate secretory pathways even though they activate identical second messenger pathways.  相似文献   

5.
Abstract: The systems responsible for phosphorylating tyrosine hydroxylase, the rate-limiting enzyme of catecholamine biosynthesis, were investigated in situ in adrenal medullary cells made permeable to solutes of up to 1,000 dalton by exposure to brief intense electric fields. Two different phosphorylation systems were found. One is dependent on Ca2+, the other on cyclic AMP. The Ca2+-dependent system is half-maximally activated by 1-2 μ M Ca2+ and 0.5 m M ATP, and follows a time course similar to that of secretion of catecholamines. Trifluoperazine (0.1 m M ) does not inhibit significantly Ca2+-dependent phosphorylation of tyrosine hydroxylase in situ. The cyclic AMP-dependent system is half-maximally activated by addition of 0.5 μ M cyclic AMP and about 0.3 m M ATP. Ca2+-dependent and cyclic AMP-dependent phosphorylations of tyrosine hydroxylase have roughly the same time course and are additive under conditions where one system is already saturated. Peptide maps of immunoprecipitated tyrosine hydroxylase, after in situ phosphorylation of the enzyme either in the presence of 10−8 M Ca2+ plus 2 × 10−5 M cyclic AMP or of 10−5 M Ca2+, show a marked difference indicating that the enzyme contains several phosphorylation sites. At least one of these sites is phosphorylated only by the Ca2+-dependent system, whereas the other site(s) are phosphorylated by both the Ca2+- and cyclic AMP-dependent systems. The effect of in situ phosphorylation of tyrosine hydroxylase on its enzymatic activity was also investigated.  相似文献   

6.
Abstract: The role of the Na+/Ca2+ exchanger and intracellular nonmitochondrial Ca2+ pool in the regulation of cytosolic free calcium concentration ([Ca2+]i) during catecholamine secretion was investigated. Catecholamine secretion and [Ca2+]i were simultaneously monitored in a single chromaffin cell. After high-K+ stimulation, control cells and cells in which the Na+/Ca2+ exchange activity was inhibited showed similar rates of [Ca2+]i elevation. However, the recovery of [Ca2+]i to resting levels was slower in the inhibited cells. Inhibition of the exchanger increased the total catecholamine secretion by prolonging the secretion. Inhibition of the Ca2+ pump of the intracellular Ca2+ pool with thapsigargin caused a significant delay in the recovery of [Ca2+]i and greatly enhanced the secretory events. These data suggest that both the Na+/Ca2+ exchanger and the thapsigargin-sensitive Ca2+ pool are important in the regulation of [Ca2+]i and, by modulating the time course of secretion, are important in determining the extent of secretion.  相似文献   

7.
Abstract: The effect of ascorbic acid on Ca2+ uptake in cultured rat astrocytes was examined in the presence of ouabain and monensin, which are considered to drive the Na+-Ca2+ exchanger in the reverse mode. Ascorbic acid at 0.1–1 m M inhibited Na+-dependent Ca2+ uptake significantly but not Na+-dependent glutamate uptake in the cells, although the inhibition required pretreatment for more than 30 min. The effect of ascorbic acid on the Ca2+ uptake was blocked by simultaneous addition of ascorbate oxidase (10 U/ml). Na+-dependent Ca2+ uptake was also inhibited by isoascorbate at 1 m M but not by ascorbate 2-sulfate, dehydroascorbate, and sulfhydryl-reducing reagents such as glutathione and 2-mercaptoethanol. The inhibitory effect of ascorbic acid was observed even in the presence of an inhibitor of lipid peroxidation, o -phenanthroline, or a radical scavenger, mannitol, and the degrading enzymes such as catalase and superoxide dismutase. On the other hand, the inhibitory effect was not observed under the Na+-free conditions that inhibited the uptake of ascorbic acid in astrocytes. When astrocytes were cultured for 2 weeks in a medium containing ascorbic acid, the content of ascorbic acid in the cells was increased and conversely Na+-dependent Ca2+ uptake was decreased. These results suggest that an increase in intracellular ascorbic acid results in a decrease of Na+-Ca2+ exchange activity in cultured astrocytes and the mechanism is not related to lipid peroxidation.  相似文献   

8.
Abstract: ATP, an established neurotransmitter, causes elevation of cytosolic Ca2+ and catecholamine secretion when applied to chromaffin cells in the intact adrenal gland. The ATP-induced rise in Ca2+ is due both to release from internal stores and to entry across the plasma membrane. The latter source of Ca2+ causes secretion; the primary role of Ca2+ released from internal stores remains undetermined. In this article, we have studied the nucleotide specificity for activating the two types of Ca2+ increases. The agonist potency order for the increase in fluorescence from fura-2-loaded chromaffin cells due to release of Ca2+ from internal stores is ATP = UTP > ADP > 2-methylthio-ATP, α,β-methylene ATP, identifying the receptor as a P2U purinoceptor. The potency order for secretion is 2-methylthio-ATP > ATP > α,β-methylene ATP, ADP, UTP, placing the receptor in the P2Y subtype. Thus, two distinct receptors are responsible for Ca2+ release and secretion. Agonists were more effective in the absence of extracellular Mg2+, suggesting that ATP uncomplexed with divalent cations binds preferentially to both receptors. The low response of both receptors to ADP distinguishes them from the ATP receptor on these cells that inhibits voltage-dependent Ca2+ current and secretion.  相似文献   

9.
Abstract: A continuous enzyme-linked fluorometric assay was used for determining the characteristics for glutamate exocytosis from guinea-pig cerebrocortical synaptosomes. Ca2+-dependent release can be induced not only by K+, but also by the Na+ channel activator veratridine and the Ca2+ ionophore ionomycin. K+-induced release can be inhibited by the Ca2+ channel inhibitor verapamil. Sr2+ and Ba2+ substitute for Ca2+ in promoting K+-induced release. Agents that would be predicted to transform the transvesicular pH gradient into a membrane potential are without effect on glutamate release. However, the protonophore carbonylcy-anide p -trifluoromethoxyphenylhydrazone causes a time-dependent loss of exocytosis that is oligomycin insensitive and may be due to depletion of vesicular glutamate. The Ca2+-independent release of glutamate from the cytosol on depolarization is unchanged or promoted by metabolic inhibitors that lower the ATP/ADP ratio. In contrast, Ca2+-dependent release is ATP dependent and is blocked by the combined inhibition of oxidative phosphorylation and glycolysis.  相似文献   

10.
We show here that, within 1–2 min of application, systemin triggers a transient increase of cytoplasmic free calcium concentration ([Ca2+]c) in cells from Lycopersicon esculentum mesophyll. The systemin-induced Ca2+ increase was slightly but not significantly reduced by L-type Ca2+ channel blockers (nifedipine, verapamil and diltiazem) and the Ca2+ chelator [ethylene glycol tetraacetic acid (EGTA)], whereas inorganic Ca2+ channel blockers (LaCl3, CdCl2 and GdCl3) and compounds affecting the release of intracellular Ca2+ from the vacuole (ruthenium red, LiCl, neomycin) strongly reduced the systemin-induced [Ca2+]c increase. By contrast, no inhibitory effect was seen with the potassium and chloride channel blockers tested. Unlike systemin, other inducers of proteinase inhibitor (PI) and of wound-induced protein synthesis, such as jasmonic acid (JA) and bestatin, did not trigger an increase of cytoplasmic Ca2+. The systemin-induced elevation of cytoplasmic Ca2+ which might be an early step in the systemin signalling pathway, appears to involve an influx of extracellular Ca2+ simultaneously through several types of Ca2+ permeable channels, and a release of Ca2+ from intracellular stores sensitive to blockers of inositol 1,4,5-triphosphate (IP3)- and cyclic adenasine 5'-diphosphoribose (cADPR)-mediated Ca2+ release.  相似文献   

11.
Abstract: In adrenal chromaffin cells, depolarization-evoked Ca2+ influx and catecholamine release are partially blocked by blockers of L-type voltage-sensitive Ca2+ channels. We have now evaluated the sensitivity of the dihydropyridine-resistant components of Ca2+ influx and catecholamine release to a toxin fraction (FTX) from the funnel-web spider poison, which is known to block P-type channels in mammalian neurons. FTX (1:4,000 dilution, with respect to the original fraction) inhibited K+-depolarization-induced Ca2+ influx by 50%, as monitored with fura-2, whereas nitrendipine (0.1–1 μ M ) and FTX (3:3), a synthetic FTX analogue (1 m M ), blocked the [Ca2+]i transients by 35 and 30%, respectively. When tested together, FTX and nitrendipine reduced the [Ca2+]i transients by 70%. FTX or nitrendipine reduced adrenaline and noradrenaline release by ∼80 and 70%, respectively, but both substances together abolished the K+-evoked catecholamine release, as measured by HPLC. The ω-conotoxin GVIA (0.5 μ M ) was without effect on K+-stimulated 45Ca2+ uptake. Our results indicate that FTX blocks dihydropyridine- and ω-conotoxin-insensitive Ca2+ channels that, together with L-type voltage-sensitive Ca2+ channels, are coupled to catecholamine release.  相似文献   

12.
Abstract: In the present communication we report that Ca2+-dependent acetylcholine release from K+-depolarized Torpedo electric organ synaptosomes is inhibited by morphine, and that this effect is blocked by the opiate antagonist naloxone. This finding suggests that the purely cholinergic Torpedo electric organ neurons contain pre-synaptic opiate receptors whose activation inhibits acetylcholine release. The mechanisms underlying this opiate inhibition were investigated by comparing the effects of morphine on acetylcholine release induced by K+ depolarization and by the Ca2+ ionophore A23187 and by examining the effect of morphine on 45Ca2+ influx into Torpedo nerve terminals. These experiments revealed that morphine inhibits 45Ca2+ influx into K+-depolarized Torpedo synaptosomes and that this effect is blocked by naloxone. The effects of morphine on K+ depolarization-mediated 45Ca2+ influx and on acetylcholine release have similar dose dependencies (half-maximal inhibition at 0.5–1 μ M ), suggesting that opiate inhibition of release is due to blockage of the presynaptic voltage-dependent Ca2+ channel. This conclusion is supported by the finding that morphine does not inhibit acetylcholine release when the Ca2+ channel is bypassed by introducing Ca2+ into the Torpedo nerve terminals via the Ca2+ ionophore.  相似文献   

13.
Several pathological studies have revealed a prominent involvement of the cerebral cortex in patients with multiple sclerosis (MS). In order to better understand the events that lead to the progressive neuronal dysfunction in MS, herein we explore the contribution of the glutamatergic release in cerebral cortex synaptosomes isolated from rats with experimental autoimmune encephalomyelitis, an animal model reproducing many features of MS. We found that the Ca2+-dependent but not the Ca2+-independent glutamate release induced by KCl and 4-aminopyridine was significantly decreased during the acute stage of the disease. This inhibited release coincides with the onset of the clinical signs and after 24 h tends to recover the level of the control animals. The results also showed an inhibition of the glutamate release stimulated by ionomycin. When the animals were totally recovered from clinical signs, the neurotransmitter release stimulated by the different inductors was similar to the controls. Examination of the cytosolic Ca2+ using fura-2-acetoxymethyl ester revealed that the inhibition of glutamate release could not be attributed to a reduction in voltage-dependent Ca2+ influx. However, this inhibition was concomitant with a lower phosphorylation of synapsin I at P-site1. Our results show that the inhibition observed on the Ca2+-dependent neurotransmitter release from cerebral cortex synaptosomes in experimental autoimmune encephalomyelitis is specific and correlates with the beginning of the clinical disease. Moreover, they suggest an alteration in the metabolism of proteins involved in the vesicular glutamate release more than a deregulation in the influx of cytosolic Ca2+.  相似文献   

14.
ABSTRACT. Inhibitors of SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-dependent ATPase) calcium pumps were used to investigate the involvement of internal Ca2+ stores in the GTP response in Paramecium . External application of these inhibitors was found to dramatically alter the typical behavioral and electrophysiological responses of Paramecium to extracellular chemical stimulation. In particular, 2.5-di-tert-butylhydroquinone (BHQ) strongly inhibited the backward swimming response of paramecia to externally applied GTP, though it did not inhibit the associated whirling response. BHQ also prolonged the normally brief electrophysiological response of these cells to GTP. BHQ completely blocked the behavioral and electrophysiological responses of Paramecium to extracellular Ba2+, but had no measurable effect on the behavioral or electrophysiological responses of these cells to another depolarizing stimulus, elevated external K+ concentration. These results suggest the involvement of nonciliary Ca2+ ions in the GTP and Ba2+ responses.  相似文献   

15.
Abstract: We studied effects of Ca2+ in the incubation medium on [3H]dopamine ([3H]DA) uptake by rat striatal synaptosomes. Both the duration of the preincubation period with Ca2+ (0–30 min) and Ca2+ concentration (0–10 m M ) in Krebs-Ringer medium affected [3H]DA uptake by the synaptosomes. The increase was maximal at a concentration of 1 m M Ca2+ after a 10-min preincubation (2.4 times larger than the uptake measured without preincubation), which reflected an increase in V max of the [3H]DA uptake process. On the other hand, [3H]DA uptake decreased rapidly after addition of ionomycin in the presence of 1 m M Ca2+. The Ca2+-dependent enhancement of the uptake was still maintained after washing synaptosomes with Ca2+-free medium following preincubation with 1 m M Ca2+. Protein kinase C inhibitors did not affect apparently Ca2+-dependent enhancement of the uptake, whereas 1-[ N,O -bis(1,5-isoquinolinesulfonyl)- N -methyl- l -tyrosyl]-4-phenylpiperazine (KN-62; a Ca2+/calmodulin-dependent kinase II inhibitor) and wortmannin (a myosin light chain kinase inhibitor) significantly reduced it. Inhibitory effects of KN-62 and wortmannin appeared to be additive. N -(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7; a calmodulin antagonist) also remarkably inhibited the enhancement. These results suggest that Ca2+-dependent enhancement of [3H]DA uptake is mediated by activation of calmodulin-dependent protein kinases.  相似文献   

16.
Abstract: Tyrosine hydroxylase (TOH), the rate-limiting enzyme in catecholamine biosynthesis, is regulated by phosphorylation. Activation of histaminergic H1 receptors on cultured bovine adrenal chromaffin cells stimulated a rapid increase in TOH phosphorylation (within 5 s) that was sustained for at least 5 min. The initial increase in TOH phosphorylation (up to 1 min) was essentially unchanged by the removal of extracellular Ca2+. In contrast, the H1-mediated response was abolished by preloading the cells with BAPTA acetoxymethyl ester (50 µ M ) and significantly reduced by prior exposure to caffeine (10 m M for 10 min) to deplete intracellular Ca2+. Trypticphosphopeptide analysis by HPLC revealed that the H1 response in the presence or absence of extracellular Ca2+ resulted in a major increase in the phosphorylation of Ser19 with smaller increases in that of Ser40 and Ser31. In contrast, although a brief stimulation with nicotine (30 µ M for 60 s) also resulted in a major increase in Ser19 phosphorylation, this response was abolished in the absence of extracellular Ca2+. These data indicate that the mobilization of intracellular Ca2+ plays a crucial role in supporting H1-mediated TOH phosphorylation and may thus have a potentially important role in regulating catecholamine synthesis.  相似文献   

17.
Abstract— 45Ca2+ uptake by cerebral cortex synaptosomes was determined by gel filtration, glass fibre disc filtration under suction and by centrifugation with EGTA present. The filtration methods gave comparable results which were higher than values obtained by the centrifugation method. Uptake was increased by 25mM-K+ at all times investigated. The accumulated 45Ca2+ was bound within the synaptosome. 45Ca2+-ionophore A23187 stimulated uptake only during the first min; levels of intra-synaptosomal 45Ca2+ then returned to control values. A23187 also increased intra-synaptosomal Na+ and Cl contents. Botulinum toxin inhibits the K.+-stimulated release of [14C]ACh from synaptosomes but the ionophore released [14C]ACh from both normal and botulinum-treated preparations in a Ca2+-dependent manner. However, it also elicited Ca2+-dependent release of [choline. Increased extracellular Ca2+ (10 mM and 20 mM) released [14C]ACh (but not [14C]choline) from both normal and botulinum-treated synaptosomes. It is concluded that botulinum toxin interferes with the provision of Ca2+ essential for the mechanism of ACh release.  相似文献   

18.
Abstract: Arachidonic acid and oleoylacetylglycerol enhance depolarization-evoked glutamate release from hippocampal mossy fiber nerve endings. It was proposed this is a Ca2+-dependent effect and that protein kinase C is involved. Here we report that arachidonic acid and oleoylacetylglycerol synergistically potentiate the glutamate release induced by the Ca2+ ionophore ionomycin. The Ca2+ dependence of this effect was established, as removal of Ca2+ eliminated evoked release and the lipid-dependent potentiation. Also, Ca2+ channel blockers attenuated ionomycin- and KCI-evoked exocytosis, as well as the facilitating effects of the lipid mediators. Although facilitation required Ca2+, it may not involve an enhancement of evoked Ca2+ accumulation, because ionomycin-dependent glutamate release was potentiated under conditions that did not increase ionomycin-induced Ca2+ accumulation. Also, the facilitation may not depend on inhibition of K+ efflux, because enhanced release was observed in the presence of increasing concentrations of 4-aminopyridine and diazoxide did not reduce the lipid-dependent potentiation of exocytosis. In contrast, disruption of cytoskeleton organization with cytochalasin D occluded the lipid-dependent facilitations of both KCI- and ionomycin-evoked glutamate release. In addition, arachidonic acid plus glutamatergic or cholinergic agonists enhanced glutamate release, whereas a role for protein kinase C in the potentiation of exocytosis was substantiated using kinase inhibitors. It appears that the lipid-dependent facilitation of glutamate release from mossy fiber nerve endings requires Ca2+ and involves multiple presynaptic effects, some of which depend on protein kinase C.  相似文献   

19.
The correct spatial and temporal control of Ca2+ signaling is essential for such cellular activities as fertilization, secretion, motility, and cell division. There has been a long-standing interest in the role of caveolae in regulating intracellular Ca2+ concentration. In this review we provide an updated view of how caveolae may regulate both Ca2+ entry into cells and Ca2+-dependent signal transduction  相似文献   

20.
Abstract: Accumulation of intracellular Ca2+ is known to be critically important for the expression of NMDA receptor-mediated glutamate neurotoxicity. We have observed, however, that glutamate can also increase the neuronal intracellular Mg2+ concentration on activation of NMDA receptors. Here, we used conditions that elevate intracellular Mg2+ content independently of Ca2+ to investigate the potential role of Mg2+ in excitotoxicity in rat cortical neurons in vitro. In Ca2+-free solutions in which the Na+ was replaced by N -methyl- d -glucamine or Tris (but not choline), which also contained 9 m M Mg2+, exposure to 100 µ M glutamate or 200 µ M NMDA for 20 min produced delayed neuronal cell death. Neurotoxicity was correlated to the extracellular Mg2+ concentration and could be blocked by addition of NMDA receptor antagonists during, but not immediately following, agonist exposure. Finally, we observed that rat cortical neurons grown under different serum conditions develop an altered sensitivity to Mg2+-dependent NMDA receptor-mediated toxicity. Thus, the increase in intracellular Mg2+ concentration following NMDA receptor stimulation may be an underestimated component critical for the expression of certain forms of excitotoxic injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号