首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was generally accepted that plants, algae, and phototrophic bacteria use adenosine 5'-phosphosulfate (APS) for assimilatory sulfate reduction, whereas bacteria and fungi use phosphoadenosine 5'-phosphosulfate (PAPS). The corresponding enzymes, APS and PAPS reductase, share 25-30% identical amino acids. Phylogenetic analysis of APS and PAPS reductase amino acid sequences from different organisms, which were retrieved from the GenBank(TM), revealed two clusters. The first cluster comprised known PAPS reductases from enteric bacteria, cyanobacteria, and yeast. On the other hand, plant APS reductase sequences were clustered together with many bacterial ones, including those from Pseudomonas and Rhizobium. The gene for APS reductase cloned from the APS-reducing cyanobacterium Plectonema also clustered together with the plant sequences, confirming that the two classes of sequences represent PAPS and APS reductases, respectively. Compared with the PAPS reductase, all sequences of the APS reductase cluster contained two additional cysteine pairs homologous to the cysteine residues involved in binding an iron-sulfur cluster in plants. M?ssbauer analysis revealed that the recombinant APS reductase from Pseudomonas aeruginosa contains a [4Fe-4S] cluster with the same characteristics as the plant enzyme. We conclude, therefore, that the presence of an iron-sulfur cluster determines the APS specificity of the sulfate-reducing enzymes and thus separates the APS- and PAPS-dependent assimilatory sulfate reduction pathways.  相似文献   

2.
Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron-sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron-sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 Angstroms for one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron-sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended alpha-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron-sulfur cofactor at its active site, and thus a new activity and mechanism of action.  相似文献   

3.
Agnihotri G  Liu YN  Paschal BM  Liu HW 《Biochemistry》2004,43(44):14265-14274
CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase (E(1)) catalyzes the C-3 deoxygenation in the biosynthesis of 3,6-dideoxyhexoses in Yersinia pseudotuberculosis. E(1) is a pyridoxamine 5'-phosphate (PMP)-dependent enzyme that also contains a [2Fe-2S] center. This iron-sulfur cluster is catalytically essential, since removal of the [2Fe-2S] center leads to inactive enzyme. To identify the [2Fe-2S] core in E(1) and to study the effect of impairing the iron-sulfur cluster on the activity of E(1), a series of E(1) cysteine mutants were constructed and their catalytic properties were characterized. Our results show that E(1) displays a cluster-binding motif (C-X(57)-C-X(1)-C-X(7)-C) that has not been observed previously for [2Fe-2S] proteins. The presence of such an unusual iron-sulfur cluster in E(1), along with the replacement of the active site lysine by a histidine residue (H220), reflects a distinct evolutionary path for this enzyme. The cysteine residues (C193, C251, C253, C261) implicated in the binding of the iron-sulfur cluster in E(1) are conserved in the sequences of its homologues. It is likely that E(1) and its homologues constitute a new subclass in the family of iron-sulfur proteins, which are distinguished not only by their cluster ligation patterns but also by the chemistry used in catalyzing a simple, albeit mechanistically challenging, reaction.  相似文献   

4.
The iron-sulfur flavoenzyme adenylylsulfate (adenosine 5'-phosphosulfate, APS) reductase catalyzes reversibly the 2-electron reduction of APS to sulfite and AMP, a key step in the biological sulfur cycle. APS reductase from one archaea and three different bacteria has been purified, and the molecular and catalytic properties have been characterized. The EPR parameters and redox potentials (-60 and -520 mV versus NHE) have been assigned to the two [4Fe-4S] clusters I and II observed in the three-dimensional structure of the enzyme from Archaeoglobus fulgidus (Fritz, G., Roth, A., Schiffer, A., Büchert, T., Bourenkov, G., Bartunik, H. D., Huber, H., Stetter, K. O., Kroneck, P. M. H., and Ermler, U. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 1836-1841). Sulfite binds to FAD to form a covalent FAD N(5)-sulfite adduct with characteristic UV/visible spectra, in accordance with the three-dimensional structure of crystalline enzyme soaked with APS. UV/visible monitored titrations reveal that the substrates AMP and APS dock closely to the FAD cofactor. These results clearly document that FAD is the site of the 2-electron reduction of APS to sulfite and AMP. Reaction of APS reductase enzyme with sulfite and AMP leads to partial reduction of the [4Fe-4S] centers and formation of the anionic FAD semiquinone. Thus, both [4Fe-4S] clusters function in electron transfer and guide two single electrons from the protein surface to the FAD catalytic site.  相似文献   

5.
Mycobacterium tuberculosis adenosine 5'-phosphosulfate reductase (MtAPR) is an iron-sulfur protein and a validated target to develop new antitubercular agents, particularly for the treatment of latent infection. The enzyme harbors a [4Fe-4S](2+) cluster that is coordinated by four cysteinyl ligands, two of which are adjacent in the amino acid sequence. The iron-sulfur cluster is essential for catalysis; however, the precise role of the [4Fe-4S] cluster in APR remains unknown. Progress in this area has been hampered by the failure to generate a paramagnetic state of the [4Fe-4S] cluster that can be studied by electron paramagnetic resonance spectroscopy. Herein, we overcome this limitation and report the EPR spectra of MtAPR in the [4Fe-4S](+) state. The EPR signal is rhombic and consists of two overlapping S = ½ species. Substrate binding to MtAPR led to a marked increase in the intensity and resolution of the EPR signal and to minor shifts in principle g values that were not observed among a panel of substrate analogs, including adenosine 5'-diphosphate. Using site-directed mutagenesis, in conjunction with kinetic and EPR studies, we have also identified an essential role for the active site residue Lys-144, whose side chain interacts with both the iron-sulfur cluster and the sulfate group of adenosine 5'-phosphosulfate. The implications of these findings are discussed with respect to the role of the iron-sulfur cluster in the catalytic mechanism of APR.  相似文献   

6.
The subunit location of the [2Fe-2S], [3Fe-4S], and [4Fe-4S] clusters in Escherichia coli fumarate reductase has been investigated by EPR studies of whole cells or whole cells extracts of a fumarate reductase deletion mutant with plasmid amplified expression of discrete fumarate reductase subunits or groups of subunits. The results indicate that both the [2Fe-2S] and [3Fe-4S] clusters are located entirely in the iron-sulfur protein subunit. Information concerning the specific cysteine residues that ligate these clusters has been obtained by investigating the EPR characteristics of cells of the deletion mutant amplified with a plasmid coding for the flavoprotein subunit and a truncated iron-sulfur protein subunit. While the results are not definitive with respect to the location of the [4Fe-4S] cluster, they are most readily interpreted in terms of this cluster being entirely in the flavoprotein subunit or bridging between the two catalytic domain subunits. These new results are discussed in light of the amino acid sequences of the two subunits and the sequences of structurally well characterized iron-sulfur proteins containing [2Fe-2S], [3Fe-4S], and [4Fe-4S] centers.  相似文献   

7.
Adenosine 5′-phosphosulfate reductase (APR) is an iron-sulfur enzyme that is vital for survival of Mycobacterium tuberculosis during dormancy and is an attractive target for the treatment of latent tuberculosis (TB) infection. The 4Fe-4S cluster is coordinated to APR by sulfur atoms of four cysteine residues, is proximal to substrate, adenosine 5′-phopsphosulfate (APS), and is essential for catalytic activity. Herein, we present an approach for the development of a new class of APR inhibitors. As an initial step, we have employed an improved solid-phase chemistry method to prepare a series of N6-substituted adenosine analogues and their 5′-phosphates as well as adenosine 5′-phosphate diesters bearing different Fe and S binding groups, such as thiols or carboxylic and hydroxamic acid moieties. Evaluation of the resulting compounds indicates a clearly defined spacing requirement between the Fe-S targeting group and adenosine scaffold and that smaller Fe-S targeting groups are better tolerated. Molecular docking analysis suggests that the S atom of the most potent inhibitor may establish a favorable interaction with an S atom in the cluster. In summary, this study showcases an improved solid-phase method that expedites the preparation of adenosine and related 5′-phosphate derivatives and presents a unique Fe-S targeting strategy for the development of APR inhibitors.  相似文献   

8.
CysH1 from Bacillus subtilis encodes a 3'-phospho/adenosine-phosphosulfate-sulfonucleotide reductase (SNR) of 27 kDa. Recombinant B. subtilis SNR is a homodimer, which is bispecific and reduces adenylylsulfate (APS) and 3'-phosphoadenylylsulfate (PAPS) alike with thioredoxin 1 or with glutaredoxin 1 as reductants. The enzyme has a higher affinity for PAPS (K(m)PAPS 6.4 microm Trx-saturating, 10.7 microm Grx-saturating) than for APS (K(m) APS 28.7 microm Trx-saturating, 105 microm Grx-saturating) at a V(max) ranging from 280 to 780 nmol sulfite mg(-1) min(-1). The catalytic efficiency with PAPS as substrate is higher by a factor of 10 (K(cat)/K(m) 2.7 x 10(4)-3.6 x 10(4) liter mol(-1) s(-1). B. subtilis SNR contains one 4Fe-4S cluster per polypeptide chain. SNR activity and color were lost rapidly upon exposure to air or upon dilution. M?ssbauer and absorption spectroscopy revealed that the enzyme contained a 4Fe-4S cluster when isolated, but degradation of the 4Fe-4S cluster produced an inactive intermediate with spectral properties of a 2Fe-2S cluster. Activity and spectral properties of the 4Fe-4S cluster were restored by preincubation of SNR with the iron-sulfur cluster-assembling proteins IscA1 and IscS. Reconstitution of the 4Fe-4S cluster of SNR did not affect the reductive capacity for PAPS or APS. The interconversion of the clusters is thought to serve as oxygen-sensitive switch that suppresses SO(3) formation under aerobiosis.  相似文献   

9.
Protein MM0632 from the methanogenic archaeon Methanosarcina mazei showed strong superoxide reductase activity and rapidly decomposed superoxide radicals to peroxides. The superoxide reductase activity of the heterologously produced enzyme was determined by a cytochrome c assay and in a test system with NADPH, ferredoxin:NADP(+) reductase, and rubredoxin. Furthermore, EPR spectroscopy showed that MM0632 is the first superoxide reductase that possesses an iron-sulfur cluster instead of a second mononuclear iron center. We propose the name methanoferrodoxin for this new class of superoxide reductase with an [Fe(NHis)(4)(SCys)] site as the catalytic center and a [4Fe-4S] cluster as second prosthetic group that is probably involved in electron transfer to the catalytic center. Methanosarcina mazei grows only under anaerobic conditions, but is one of the most aerotolerant methanogens. It is tempting to speculate that methanoferrodoxin contributes to the protection of cells from oxygen radicals formed by flavoproteins during periodic exposure to oxygen in natural environments.  相似文献   

10.
The essential P-loop NTPases Cfd1 and Nbp35 of the cytosolic iron-sulfur (Fe-S) protein assembly machinery perform a scaffold function for Fe-S cluster synthesis. Both proteins contain a nucleotide binding motif of unknown function and a C-terminal motif with four conserved cysteine residues. The latter motif defines the Mrp/Nbp35 subclass of P-loop NTPases and is suspected to be involved in transient Fe-S cluster binding. To elucidate the function of these two motifs, we first created cysteine mutant proteins of Cfd1 and Nbp35 and investigated the consequences of these mutations by genetic, cell biological, biochemical, and spectroscopic approaches. The two central cysteine residues (CPXC) of the C-terminal motif were found to be crucial for cell viability, protein function, coordination of a labile [4Fe-4S] cluster, and Cfd1-Nbp35 hetero-tetramer formation. Surprisingly, the two proximal cysteine residues were dispensable for all these functions, despite their strict evolutionary conservation. Several lines of evidence suggest that the C-terminal CPXC motifs of Cfd1-Nbp35 coordinate a bridging [4Fe-4S] cluster. Upon mutation of the nucleotide binding motifs Fe-S clusters could no longer be assembled on these proteins unless wild-type copies of Cfd1 and Nbp35 were present in trans. This result indicated that Fe-S cluster loading on these scaffold proteins is a nucleotide-dependent step. We propose that the bridging coordination of the C-terminal Fe-S cluster may be ideal for its facile assembly, labile binding, and efficient transfer to target Fe-S apoproteins, a step facilitated by the cytosolic iron-sulfur (Fe-S) protein assembly proteins Nar1 and Cia1 in vivo.  相似文献   

11.
The human proteins MOCS1A and MOCS1B catalyze the conversion of a guanosine derivative to precursor Z during molybdenum cofactor biosynthesis. MOCS1A shares homology with S-adenosylmethionine (AdoMet)-dependent radical enzymes, which catalyze the formation of protein and/or substrate radicals by reductive cleavage of AdoMet through a [4Fe-4S] cluster. Sequence analysis of MOCS1A showed two highly conserved cysteine motifs, one near the N terminus and one near the C terminus. MOCS1A was heterologously expressed in Escherichia coli and purified under aerobic and anaerobic conditions. Individual mutations of the conserved cysteines to serine revealed that all are essential for synthesis of precursor Z in vivo. The type and properties of the iron-sulfur (FeS) clusters were investigated using a combination of UV-visible absorption, variable temperature magnetic circular dichroism, resonance Raman, M?ssbauer, and EPR spectroscopies coupled with iron and acid-labile sulfide analyses. The results indicated that anaerobically purified MOCS1A is a monomeric protein containing two oxygen-sensitive FeS clusters, each coordinated by only three cysteine residues. A redox-active [4Fe-4S](2+,+) cluster is ligated by an N-terminal CX(3)CX(2)C motif as is the case with all other AdoMet-dependent radical enzymes investigated thus far. A C-terminal CX(2)CX(13)C motif that is unique to MOCS1A and its orthologs primarily ligates a [3Fe-4S](0) cluster. However, MOCS1A could be reconstituted in vitro under anaerobic conditions to yield a form containing two [4Fe-4S](2+) clusters. The N-terminal [4Fe-4S](2+) cluster was rapidly degraded by oxygen via a semistable [2Fe-2S](2+) cluster intermediate, and the C-terminal [4Fe-4S](2+) cluster was rapidly degraded by oxygen to yield a semistable [3Fe-4S](0) cluster intermediate.  相似文献   

12.
The 5'-adenylyl sulfate (APS) reductase from the marine macrophytic green alga Enteromorpha intestinalis uses reduced glutathione as the electron donor for the reduction of APS to 5'-AMP and sulfite. The E. intestinalis enzyme (EiAPR) is composed of a reductase domain and a glutaredoxin-like C-terminal domain. The enzyme contains a single [4Fe-4S] cluster as its sole prosthetic group. Three of the enzyme's eight cysteine residues (Cys166, Cys257, and Cys260) serve as ligands to the iron-sulfur cluster. Site-directed mutagenesis experiments and resonance Raman spectroscopy are consistent with the presence of a cluster in which only three of the four ligands to the cluster irons contributed by the protein are cysteine residues. Site-directed mutagenesis experiments suggest that the thiol group of Cys250, a residue found only in algal APS reductases, is not an absolute requirement for activity. The other four cysteines that do not serve as cluster ligands, all of which are required for activity, are involved in the formation of two redox-active disulfide/dithiol couples. The couple involving Cys342 and Cys345 has an E(m) value at pH 7.0 of -140 mV, and the one involving Cys165 and Cys285 has an E(m) value at pH 7.0 of -290 mV. The C-terminal portion of EiAPR, expressed separately, exhibits the cystine reductase activity characteristic of glutaredoxins. It is proposed that the Cys342-Cys345 disulfide provides the site for entry of electrons from reduced glutathione and that the Cys166-Cys285 disulfide may serve as a structural element that is essential for keeping the enzyme in the catalytically active conformation.  相似文献   

13.
APS reductase from Pseudomonas aeruginosa has been shown to form a disulfide-linked adduct with mono-cysteine variants of Escherichia coli thioredoxin and Chlamydomonas reinhardtii thioredoxin h1. These adducts presumably represent trapped versions of the intermediates formed during the catalytic cycle of this thioredoxin-dependent enzyme. The oxidation-reduction midpoint potential of the disulfide bond in the P. aeruginosa APS reductase/C. reinhardtii thioredoxin h1 adduct is -280 mV. Site-directed mutagenesis and mass spectrometry have identified Cys256 as the P. aeruginosa APS reductase residue that forms a disulfide bond with Cys36 of C. reinhardtii TRX h1 and Cys32 of E. coli thioredoxin in these adducts. Spectral perturbation measurements indicate that P. aeruginosa APS reductase can also form a non-covalent complex with E. coli thioredoxin and with C. reinhardtii thioredoxin h1. Perturbation of the resonance Raman and visible-region absorbance spectra of the APS reductase [4Fe-4S] center by either APS or the competitive inhibitor 5'-AMP indicates that both the substrate and product bind in close proximity to the cluster. These results have been interpreted in terms of a scheme in which one of the redox-active cysteine residues serves as the initial reductant for APS bound at or in close proximity to the [4Fe-4S] cluster.  相似文献   

14.
Wybutosine and its derivatives are found in position 37 of tRNA encoding Phe in eukaryotes and archaea. They are believed to play a key role in the decoding function of the ribosome. The second step in the biosynthesis of wybutosine is catalyzed by TYW1 protein, which is a member of the well established class of metalloenzymes called “Radical-SAM.” These enzymes use a [4Fe-4S] cluster, chelated by three cysteines in a CX3CX2C motif, and S-adenosyl-l-methionine (SAM) to generate a 5′-deoxyadenosyl radical that initiates various chemically challenging reactions. Sequence analysis of TYW1 proteins revealed, in the N-terminal half of the enzyme beside the Radical-SAM cysteine triad, an additional highly conserved cysteine motif. In this study we show by combining analytical and spectroscopic methods including UV-visible absorption, Mössbauer, EPR, and HYSCORE spectroscopies that these additional cysteines are involved in the coordination of a second [4Fe-4S] cluster displaying a free coordination site that interacts with pyruvate, the second substrate of the reaction. The presence of two distinct iron-sulfur clusters on TYW1 is reminiscent of MiaB, another tRNA-modifying metalloenzyme whose active form was shown to bind two iron-sulfur clusters. A possible role for the second [4Fe-4S] cluster in the enzyme activity is discussed.  相似文献   

15.
APS reductase from Pseudomonas aeruginosa has been shown to contain a [4Fe-4S] cluster. Thiol determinations and site-directed mutagenesis studies indicate that the single [4Fe-4S] cluster contains only three cysteine ligands, instead of the more typical arrangement in which clusters are bound to the protein by four cysteines. Resonance Raman studies in the Fe-S stretching region are also consistent with the presence of a redox-inert [4Fe-4S](2+) cluster with three cysteinate ligands and indicate that the fourth ligand is likely to be an oxygen-containing species. This conclusion is supported by resonance Raman and electron paramagnetic resonance (EPR) evidence for near stoichiometric conversion of the cluster to a [3Fe-4S](+) form by treatment with a 3-fold excess of ferricyanide. Site-directed mutagenesis experiments have identified Cys139, Cys228, and Cys231 as ligands to the cluster. The remaining two cysteines present in the enzyme, Cys140 and Cys256, form a redox-active disulfide/dithiol couple (E(m) = -300 mV at pH 7.0) that appears to play a role in the catalytic mechanism of the enzyme.  相似文献   

16.
Heterodisulfide reductase (HDR) of methanogenic archaea with its active-site [4Fe-4S] cluster catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) of the methanogenic coenzyme M (CoM-SH) and coenzyme B (CoB-SH). CoM-HDR, a mechanistic-based paramagnetic intermediate generated upon half-reaction of the oxidized enzyme with CoM-SH, is a novel type of [4Fe-4S]3+ cluster with CoM-SH as a ligand. Subunit HdrB of the Methanothermobacter marburgensis HdrABC holoenzyme contains two cysteine-rich sequence motifs (CX31-39CCX35-36CXXC), designated as CCG domain in the Pfam database and conserved in many proteins. Here we present experimental evidence that the C-terminal CCG domain of HdrB binds this unusual [4Fe-4S] cluster. HdrB was produced in Escherichia coli, and an iron-sulfur cluster was subsequently inserted by in vitro reconstitution. In the oxidized state the cluster without the substrate exhibited a rhombic EPR signal (gzyx = 2.015, 1.995, and 1.950) reminiscent of the CoM-HDR signal. 57Fe ENDOR spectroscopy revealed that this paramagnetic species is a [4Fe-4S] cluster with 57Fe hyperfine couplings very similar to that of CoM-HDR. CoM-33SH resulted in a broadening of the EPR signal, and upon addition of CoM-SH the midpoint potential of the cluster was shifted to values observed for CoM-HDR, both indicating binding of CoM-SH to the cluster. Site-directed mutagenesis of all 12 cysteine residues in HdrB identified four cysteines of the C-terminal CCG domain as cluster ligands. Combined with the previous detection of CoM-HDR-like EPR signals in other CCG domain-containing proteins our data indicate a general role of the C-terminal CCG domain in coordination of this novel [4Fe-4S] cluster. In addition, Zn K-edge X-ray absorption spectroscopy identified an isolated Zn site with an S3(O/N)1 geometry in HdrB and the HDR holoenzyme. The N-terminal CCG domain is suggested to provide ligands to the Zn site.  相似文献   

17.
Adenosine 5'-phosphosulfate reductase (APR) catalyzes the two-electron reduction of adenosine 5'-phosphosulfate to sulfite and AMP, which represents the key step of sulfate assimilation in higher plants. Recombinant APRs from both Lemna minor and Arabidopsis thaliana were overexpressed in Escherichia coli and isolated as yellow-brown proteins. UV-visible spectra of these recombinant proteins indicated the presence of iron-sulfur centers, whereas flavin was absent. This result was confirmed by quantitative analysis of iron and acid-labile sulfide, suggesting a [4Fe-4S] cluster as the cofactor. EPR spectroscopy of freshly purified enzyme showed, however, only a minor signal at g = 2.01. Therefore, M?ssbauer spectra of (57)Fe-enriched APR were obtained at 4.2 K in magnetic fields of up to 7 tesla, which were assigned to a diamagnetic [4Fe-4S](2+) cluster. This cluster was unusual because only three of the iron sites exhibited the same M?ssbauer parameters. The fourth iron site gave, because of the bistability of the fit, a significantly smaller isomer shift or larger quadrupole splitting than the other three sites. Thus, plant assimilatory APR represents a novel type of adenosine 5'-phosphosulfate reductase with a [4Fe-4S] center as the sole cofactor, which is clearly different from the dissimilatory adenosine 5'-phosphosulfate reductases found in sulfate reducing bacteria.  相似文献   

18.
Yu Z  Lemongello D  Segel IH  Fisher AJ 《Biochemistry》2008,47(48):12777-12786
Most assimilatory bacteria, fungi, and plants species reduce sulfate (in the activated form of APS or PAPS) to produce reduced sulfur. In yeast, PAPS reductase reduces PAPS to sulfite and PAP. Despite the difference in substrate specificity and catalytic cofactor, PAPS reductase is homologous to APS reductase in both sequence and structure, and they are suggested to share the same catalytic mechanism. Metazoans do not possess the sulfate reduction pathway, which makes APS/PAPS reductases potential drug targets for human pathogens. Here, we present the 2.05 A resolution crystal structure of the yeast PAPS reductase binary complex with product PAP bound. The N-terminal region mediates dimeric interactions resulting in a unique homodimer assembly not seen in previous APS/PAPS reductase structures. The "pyrophosphate-binding" sequence (47)TTAFGLTG(54) defines the substrate 3'-phosphate binding pocket. In yeast, Gly54 replaces a conserved aspartate found in APS reductases vacating space and charge to accommodate the 3'-phosphate of PAPS, thus regulating substrate specificity. Also, for the first time, the complete C-terminal catalytic motif (244)ECGIH(248) is revealed in the active site. The catalytic residue Cys245 is ideally positioned for an in-line attack on the beta-sulfate of PAPS. In addition, the side chain of His248 is only 4.2 A from the Sgamma of Cys245 and may serve as a catalytic base to deprotonate the active site cysteine. A hydrophobic sequence (252)RFAQFL(257) at the end of the C-terminus may provide anchoring interactions preventing the tail from swinging away from the active site as seen in other APS/PAPS reductases.  相似文献   

19.
Quinolinate synthase (NadA) catalyzes a unique condensation reaction between iminoaspartate and dihydroxyacetone phosphate, affording quinolinic acid, a central intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD). Iminoaspartate is generated via the action of l-aspartate oxidase (NadB), which catalyzes the first step in the biosynthesis of NAD in most prokaryotes. NadA from Escherichia coli was hypothesized to contain an iron-sulfur cluster as early as 1991, because of its observed labile activity, especially in the presence of hyperbaric oxygen, and because its primary structure contained a CXXCXXC motif, which is commonly found in the [4Fe-4S] ferredoxin class of iron-sulfur (Fe/S) proteins. Indeed, using analytical methods in concert with Mossbauer and electron paramagnetic resonance spectroscopies, the protein was later shown to harbor a [4Fe-4S] cluster. Recently, the X-ray structure of NadA from Pyrococcus horikoshii was solved to 2.0 A resolution [Sakuraba, H., Tsuge, H.,Yoneda, K., Katunuma, N., and Ohshima, T. (2005) J. Biol. Chem. 280, 26645-26648]. This protein does not contain a CXXCXXC motif, and no Fe/S cluster was observed in the structure or even mentioned in the report. Moreover, rates of quinolinic acid production were reported to be 2.2 micromol min (-1) mg (-1), significantly greater than that of E. coli NadA containing an Fe/S cluster (0.10 micromol min (-1) mg (-1)), suggesting that the [4Fe-4S] cluster of E. coli NadA may not be necessary for catalysis. In the study described herein, nadA genes from both Mycobacterium tuberculosis and Pyrococcus horikoshii were cloned, and their protein products shown to contain [4Fe-4S] clusters that are absolutely required for activity despite the absence of a CXXCXXC motif in their primary structures. Moreover, E. coli NadA, which contains nine cysteine residues, is shown to require only three for turnover (C113, C200, and C297), of which only C297 resides in the CXXCXXC motif. These results are consistent with a bioinformatics analysis of NadA sequences, which indicates that three cysteines are strictly conserved across all species. This study concludes that all currently annotated quinolinate synthases harbor a [4Fe-4S] cluster, that the crystal structure reported by Sakuraba et al. does not accurately represent the active site of the protein, and that the "activity" reported does not correspond to quinolinate formation.  相似文献   

20.
Hewitson KS  Baldwin JE  Shaw NM  Roach PL 《FEBS letters》2000,466(2-3):372-376
Biotin synthase (BioB) is a member of a family of enzymes that includes anaerobic ribonucleotide reductase and pyruvate formate lyase activating enzyme. These enzymes all use S-adenosylmethionine during turnover and contain three highly conserved cysteine residues that may act as ligands to an iron-sulfur cluster required for activity. Three mutant enzymes of BioB have been made, each with one cysteine residue (C53, 57, 60) mutated to alanine. All three mutant enzymes were inactive, but they still exhibited the characteristic UV-visible spectrum of a [2Fe-2S]2+ cluster similar to that of the wild-type enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号