首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
All species should invest in systems that enhance longevity; however, a fundamental adult life‐history trade‐off exists between the metabolic resources allocated to maintenance and those allocated to reproduction. Long‐lived species will invest more in reproduction than in somatic maintenance as they age. We investigated this trade‐off by analyzing correlations among telomere length, reproductive effort and output, and basal corticosterone in Magellanic penguins (Spheniscus magellanicus). Telomeres shorten with age in most species studied to date, and may affect adult survival. High basal corticosterone is indicative of stressful conditions. Corticosterone, and stress, has been linked to telomere shortening in other species. Magellanic penguins are a particularly good model organism for this question as they are an unusually long‐lived species, exceeding their mass‐adjusted predicted lifespan by 26%. Contrary to our hypothesis, we found adults aged 5 years to over 24 years of age had similar telomere lengths. Telomeres of adults did not shorten over a 3‐year period, regardless of the age of the individual. Neither telomere length, nor the rate at which the telomeres changed over these 3 years, correlated with breeding frequency or investment. Older females also produced larger volume clutches until approximately 15 years old and larger eggs produced heavier fledglings. Furthermore, reproductive success (chicks fledged/eggs laid) is maintained as females aged. Basal corticosterone, however, was not correlated with telomere length in adults and suggests that low basal corticosterone may play a role in the telomere maintenance we observed. Basal corticosterone also declined during the breeding season and was positively correlated with the age of adult penguins. This higher basal corticosterone in older individuals, and consistent reproductive success, supports the prediction that Magellanic penguins invest more in reproduction as they age. Our results demonstrate that telomere maintenance may be a component of longevity even with increased reproductive effort, investment, and basal corticosterone.  相似文献   

2.
Identifying mechanisms that underlie variation in adult survivorship provide insight into the evolution of life history strategies and phenotypic variation in longevity. There is accumulating evidence that shortening telomeres, the protective caps at the ends of chromosomes, play an important role in individual variation in longevity. Given that telomeres generally shorten with age, it was surprising to find that in a population of a long-lived seabird, Leach's storm petrel, telomeres appear to lengthen with age. This unique finding suggested that the longest lived individuals are able to elongate telomeres, an interpretation we call the "elongation hypothesis." Alternatively, the "selection hypothesis" states that the longest lived individuals start with the longest telomeres and variation in telomere length decreases with age due to the selective disappearance of individuals with short telomeres. In the same population in which evidence supporting both hypotheses was uncovered, we tested mutually exclusive predictions from the elongation and selection hypotheses by measuring telomere length with the telomere restriction fragment assay in hatchling and old, adult storm petrels. As previously found, adult birds had longer telomeres on average compared with hatchlings. We also found that 3 hatchlings had mean telomere lengths exceeding that of the most extreme old bird, old birds on average had longer initial telomere lengths than hatchlings, and the variance in mean telomere length was significantly greater for hatchlings than for old birds, all predicted by the selection hypothesis. Perhaps more surprisingly, the oldest adults also show little or no accumulation of short telomeres over time, a pattern unknown in other species. Long telomeres are thought to provide a buffer against cellular senescence and be generally indicative of genome stability and overall cell health. In storm petrels, because the progressive accumulation of short telomeres appears negligible, variation in telomere length at birth may be linked to individual variation in longevity.  相似文献   

3.
A larger body size confers many benefits, such as increased reproductive success, ability to evade predators and increased competitive ability and social status. However, individuals rarely maximize their growth rates, suggesting that this carries costs. One such cost could be faster attrition of the telomeres that cap the ends of eukaryotic chromosomes and play an important role in chromosome protection. A relatively short telomere length is indicative of poor biological state, including poorer tissue and organ performance, reduced potential longevity and increased disease susceptibility. Telomere loss during growth may also be accelerated by environmental factors, but these have rarely been subjected to experimental manipulation in the natural environment. Using a wild system involving experimental manipulations of juvenile Atlantic salmon Salmo salar in Scottish streams, we found that telomere length in juvenile fish was influenced by parental traits and by direct environmental effects. We found that faster‐growing fish had shorter telomeres and there was a greater cost (in terms of reduced telomere length) if the growth occurred in a harsher environment. We also found a positive association between offspring telomere length and the growth history of their fathers (but not mothers), represented by the number of years fathers had spent at sea. This suggests that there may be long‐term consequences of growth conditions and parental life history for individual longevity.  相似文献   

4.
Telomeres have emerged as important biomarkers of health and senescence as they predict chances of survival in various species. Tropical birds live in more benign environments with lower extrinsic mortality and higher juvenile and adult survival than temperate birds. Therefore, telomere biology may play a more important role in tropical compared to temperate birds. We measured mean telomere length of male stonechats (Saxicola spp.) at four age classes from tropical African and temperate European breeding regions. Tropical and temperate stonechats had similarly long telomeres as nestlings. However, while in tropical stonechats pre‐breeding first‐years had longer telomeres than nestlings, in temperate stonechats pre‐breeding first‐years had shorter telomeres than nestlings. During their first breeding season, telomere length was again similar between tropical and temperate stonechats. These patterns may indicate differential survival of high‐quality juveniles in tropical environments. Alternatively, more favorable environmental conditions, that is, extended parental care, may enable tropical juveniles to minimize telomere shortening. As suggested by previous studies, our results imply that variation in life history and life span may be reflected in different patterns of telomere shortening rather than telomere length. Our data provide first evidence that distinct selective pressures in tropical and temperate environments may be reflected in diverging patterns of telomere loss in birds.  相似文献   

5.
6.
Individual variation in survival probability due to differential responses to early‐life environmental conditions is important in the evolution of life histories and senescence. A biomarker allowing quantification of such individual variation, and which links early‐life environmental conditions with survival by providing a measure of conditions experienced, is telomere length. Here, we examined telomere dynamics among 24 cohorts of European badgers (Meles meles). We found a complex cross‐sectional relationship between telomere length and age, with no apparent loss over the first 29 months, but with both decreases and increases in telomere length at older ages. Overall, we found low within‐individual consistency in telomere length across individual lifetimes. Importantly, we also observed increases in telomere length within individuals, which could not be explained by measurement error alone. We found no significant sex differences in telomere length, and provide evidence that early‐life telomere length predicts lifespan. However, while early‐life telomere length predicted survival to adulthood (≥1 year old), early‐life telomere length did not predict adult survival probability. Furthermore, adult telomere length did not predict survival to the subsequent year. These results show that the relationship between early‐life telomere length and lifespan was driven by conditions in early‐life, where early‐life telomere length varied strongly among cohorts. Our data provide evidence for associations between early‐life telomere length and individual life history, and highlight the dynamics of telomere length across individual lifetimes due to individuals experiencing different early‐life environments.  相似文献   

7.
Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes.   总被引:39,自引:4,他引:35  
The telomere hypothesis of cellular aging proposes that loss of telomeric DNA (TTAGGG) from human chromosomes may ultimately cause cell-cycle exit during replicative senescence. Since lymphocytes have a limited replicative capacity and since blood cells were previously shown to lose telomeric DNA during aging in vivo, we wished to determine: (a) whether accelerated telomere loss is associated with the premature immunosenescence of lymphocytes in individuals with Down syndrome (DS) and (b) whether telomeric DNA is also lost during aging of lymphocytes in vitro. To investigate the effects of aging and trisomy 21 on telomere loss in vivo, genomic DNA was isolated from peripheral blood lymphocytes of 140 individuals (age 0-107 years), including 21 DS patients (age 0-45 years). Digestion with restriction enzymes HinfI and RsaI generated terminal restriction fragments (TRFs), which were detected by Southern analysis using a telomere-specific probe (32P-(C3TA2)3). The rate of telomere loss was calculated from the decrease in mean TRF length, as a function of donor age. DS patients showed a significantly higher rate of telomere loss with donor age (133 +/- 15 bp/year) compared with age-matched controls (41 +/- 7.7 bp/year) (P < .0005), suggesting that accelerated telomere loss is a biomarker of premature immunosenescence of DS patients and that it may play a role in this process. Telomere loss during aging in vitro was calculated for lymphocytes from four normal individuals, grown in culture for 10-30 population doublings. The rate of telomere loss was approximately 120 bp/cell doubling, comparable to that seen in other somatic cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Explaining variation in life expectancy between individuals of the same age is fundamental to our understanding of population ecology and life history evolution. Variation in the length and rate of loss of the protective telomere chromosome caps has been linked to cellular lifespan. Yet, the extent to which telomere length and dynamics predict organismal lifespan in nature is still contentious. Using longitudinal samples taken from a closed population of Acrocephalus sechellensis (Seychelles warblers) studied for over 20 years, we describe the first study into life‐long adult telomere dynamics (1–17 years) and their relationship to mortality under natural conditions (= 204 individuals). We show that telomeres shorten with increasing age and body mass, and that shorter telomeres and greater rates of telomere shortening predicted future mortality. Our results provide the first clear and unambiguous evidence of a relationship between telomere length and mortality in the wild, and substantiate the prediction that telomere length and shortening rate can act as an indicator of biological age further to chronological age when exploring life history questions in natural conditions.  相似文献   

9.
A major interest has recently emerged in understanding how telomere shortening, mechanism triggering cell senescence, is linked to organism ageing and life history traits in wild species. However, the links between telomere length and key history traits such as reproductive performances have received little attention and remain unclear to date. The leatherback turtle Dermochelys coriacea is a long-lived species showing rapid growth at early stages of life, one of the highest reproductive outputs observed in vertebrates and a dichotomised reproductive pattern related to migrations lasting 2 or 3 years, supposedly associated with different environmental conditions. Here we tested the prediction of blood telomere shortening with age in this species and investigated the relationship between blood telomere length and reproductive performances in leatherback turtles nesting in French Guiana. We found that blood telomere length did not differ between hatchlings and adults. The absence of blood telomere shortening with age may be related to an early high telomerase activity. This telomere-restoring enzyme was formerly suggested to be involved in preventing early telomere attrition in early fast-growing and long-lived species, including squamate reptiles. We found that within one nesting cycle, adult females having performed shorter migrations prior to the considered nesting season had shorter blood telomeres and lower reproductive output. We propose that shorter blood telomeres may result from higher oxidative stress in individuals breeding more frequently (i.e., higher costs of reproduction) and/or restoring more quickly their body reserves in cooler feeding areas during preceding migration (i.e., higher foraging costs). This first study on telomeres in the giant leatherback turtle suggests that blood telomere length predicts not only survival chances, but also reproductive performances. Telomeres may therefore be a promising new tool to evaluate individual reproductive quality which could be useful in such species of conservation concern.  相似文献   

10.
At a cellular level, oxidative stress is known to increase telomere attrition, and hence cellular senescence and risk of disease. It has been proposed that dietary micronutrients play an important role in telomere protection due to their antioxidant properties. We experimentally manipulated dietary micronutrients during early life in zebra finches (Taeniopygia guttata). We found no effects of micronutrient intake on telomere loss during chick growth. However, females given a diet high in micronutrients during sexual maturation showed reduced telomere loss; there was no such effect in males. These results suggest that micronutrients may influence rates of cellular senescence, but differences in micronutrient requirement and allocation strategies, probably linked to the development of sexual coloration, may underlie sex differences in response.  相似文献   

11.
Trisomies 18 and 21 are genetic disorders in which cells possess an extra copy of each of the relevant chromosomes. Individuals with these disorders who survive birth generally have a shortened life expectancy. As telomeres are known to play an important role in the maintenance of genomic integrity by protecting the chromosomal ends, we conducted a study to determine whether there are differences in telomere length at birth between individuals with trisomy and diploidy, and between trisomic chromosomes and normal chromosomes. We examined samples of peripheral blood lymphocytes (PBLs) from 31 live neonates (diploidy: 10, trisomy 18: 10, trisomy 21: 11) and estimated the telomere length of each chromosome arm using Q-FISH. We observed that the telomeres of trisomic chromosomes were neither shorter nor longer than the mean telomere length of chromosomes as a whole among subjects with trisomies 18 and 21 (intra-cell comparison), and we were unable to conclude that there were differences in telomere length between 18 trisomy and diploid subjects, or between 21 trisomy and diploid subjects (inter-individual comparison). Although it has been reported that telomeres are shorter in older individuals with trisomy 21 and show accelerated telomere shortening with age, our data suggest that patients with trisomies 18 and 21 may have comparably sized telomeres. Therefore, it would be advisable for them to avoid lifestyle habits and characteristics such as obesity, cigarette smoking, chronic stress, and alcohol intake, which lead to marked telomere shortening.  相似文献   

12.
Immunosenescence, the deterioration of immune system capability with age, may play a key role in mediating age-related declines in whole-organism performance, but the mechanisms that underpin immunosenescence are poorly understood. Biomedical research on humans and laboratory models has documented age and disease related declines in the telomere lengths of leukocytes (‘immune cells’), stimulating interest their having a potentially general role in the emergence of immunosenescent phenotypes. However, it is unknown whether such observations generalise to the immune cell populations of wild vertebrates living under ecologically realistic conditions. Here we examine longitudinal changes in the mean telomere lengths of immune cells in wild European badgers (Meles meles). Our findings provide the first evidence of within-individual age-related declines in immune cell telomere lengths in a wild vertebrate. That the rate of age-related decline in telomere length appears to be steeper within individuals than at the overall population level raises the possibility that individuals with short immune cell telomeres and/or higher rates of immune cell telomere attrition may be selectively lost from this population. We also report evidence suggestive of associations between immune cell telomere length and bovine tuberculosis infection status, with individuals detected at the most advanced stage of infection tending to have shorter immune cell telomeres than disease positive individuals. While male European badgers are larger and show higher rates of annual mortality than females, we found no evidence of a sex difference in either mean telomere length or the average rate of within-individual telomere attrition with age. Our findings lend support to the view that age-related declines in the telomere lengths of immune cells may provide one potentially general mechanism underpinning age-related declines in immunocompetence in natural populations.  相似文献   

13.
Paternal age is positively linked to telomere length of children   总被引:2,自引:0,他引:2  
Telomere length is linked to age-associated diseases, with shorter telomeres in blood associated with an increased probability of mortality from infection or heart disease. Little is known about how human telomere length is regulated despite convincing data from twins that telomere length is largely heritable, uniform in various tissues during development until birth and variable between individuals. As sperm cells show increasing telomere length with age, we investigated whether age of fathers at conception correlated with telomere length of their offspring. Telomere length in blood from 125 random subjects was shown to be positively associated with paternal age (+22 bp yr -1, 95% confidence interval 5.2-38.3, P = 0.010), and paternal age was calculated to affect telomere length by up to 20% of average telomere length per generation. Males lose telomeric sequence faster than females (31 bp yr -1, 17.6-43.8, P < 0.0001 vs. 14 bp yr -1, 3.5-24.8, P < 0.01) and the rate of telomere loss slows throughout the human lifespan. These data indicate that paternal age plays a role in the vertical transmission of telomere length and may contribute significantly to the variability of telomere length seen in the human population, particularly if effects are cumulative through generations.  相似文献   

14.
Telomere instability in a human cancer cell line.   总被引:6,自引:0,他引:6  
Telomere maintenance is essential in immortal cancer cells to compensate for DNA lost from the ends of chromosomes, to prevent chromosome fusion, and to facilitate chromosome segregation. However, the high rate of fusion of chromosomes near telomeres, termed telomere association, in many cancer cell lines has led to the proposal that some cancer cells may not efficiently perform telomere maintenance. Deficient telomere maintenance could play an important role in cancer because telomere associations and nondisjunction have been demonstrated to be mechanisms for genomic instability. To investigate this possibility, we have analyzed the telomeres of the human squamous cell carcinoma cell line SQ-9G, which has telomere associations in approximately 75% of the cells in the population. The absence of detectable telomeric repeat sequences at the sites of these telomere associations suggests that they result from telomere loss. The analysis of telomere length by quantitative in situ hybridization demonstrated that, compared to the human squamous cell carcinoma cell line SCC-61 which has few telomere associations, SQ-9G has more extensive heterogeneity in telomere length and more telomeres without detectable telomeric repeat sequences. The dynamics of the changes in telomere length also demonstrated a higher rate of fluctuation in telomere length, both on individual telomeres and coordinately on all telomeres. These results demonstrate that telomere maintenance can play a role in the genomic instability seen in cancer cells.  相似文献   

15.

Background

Telomere length is considered as a biomarker of aging, stress, cancer. It has been associated with many chronic diseases such as hypertension and diabetes. Although, telomere shortening due to ionizing radiation has been reported in vitro, no in vivo data is available on natural background radiation and its effect on telomere length.

Methodology/Principal Findings

The present investigation is an attempt to determine the telomere length among human adults residing in high level natural radiation areas (HLNRA) and the adjacent normal level radiation areas (NLNRA) of Kerala coast in Southwest India. Genomic DNA was isolated from the peripheral blood mononuclear cells of 310 individuals (HLNRA: N = 233 and NLNRA: N = 77). Telomere length was determined using real time q-PCR. Both telomere (T) and single copy gene (S) specific primers were used to calculate the relative T/S and expressed as the relative telomere length. The telomere length was determined to be 1.22±0.15, 1.12±0.15, 1.08±0.08, 1.12±0.11, respectively, among the four dose groups (≤1.50, 1.51–3.00, 3.01–5.00 and >5.00 mGy per year), which did not show any dose response. The results suggested that the high level natural chronic radiation did not have significant effect on telomere length among young adult population living in HLNRA, which is indicative of better repair of telomeric ends. No significant difference in telomere length was observed between male and female individuals. In the present investigation, although the determination of telomere length was studied among the adults with an age group between 18 to 40 years (mean maternal age: 26.10±4.49), a negative correlation was observed with respect to age. However, inter-individual variation was (0.81–1.68) was clearly observed.

Conclusions/Significance

In this preliminary investigation, we conclude that elevated level of natural background radiation has no significant effect on telomere length among the adult population residing in HLNRAs of Kerala coast. To our knowledge, this is the first report from HLNRAs of the world where telomere length was determined on human adults. However, more samples from each background dose group and samples from older population need to be studied to derive firm conclusions.  相似文献   

16.
Chromosome aberrations such as loss of chromosome 13 were frequently observed in human endothelial cells from umbilical cord veins (HUVEC). A recent study showed that the length of telomeric single-stranded 3'-overhangs (G-tails) is more important as an essential structure for chromosome maintenance than the net telomere length in telomere t-loop formation. Here, we have examined G-tail length using G-tail telomere HPA in normal and hTERT-transduced HUVECs. We found that forced expression of hTERT in HUVEC induced G-tail as well as total telomere length elongation. G-tail length was well correlated with total telomere length. However, hTERT introduction did not prevent chromosome aberrations such as loss of chromosome 13. Normal characteristics such as morphology, up-regulation of vWF, and tube formation were observed in hTERT-HUVEC as in young normal HUVEC. These results show that chromosome aberrations in HUVEC are independent of telomere G-tail and total telomere attrition.  相似文献   

17.
Telomeres are emerging as a biomarker for ageing and survival, and are likely important in shaping life-history trade-offs. In particular, telomere length with which one starts in life has been linked to lifelong survival, suggesting that early telomere dynamics are somehow related to life-history trajectories. This result highlights the importance of determining the extent to which telomere length is inherited, as a crucial factor determining early life telomere length. Given the scarcity of species for which telomere length inheritance has been studied, it is pressing to assess the generality of telomere length inheritance patterns. Further, information on how this pattern changes over the course of growth in individuals living under natural conditions should provide some insight on the extent to which environmental constraints also shape telomere dynamics. To fill this gap partly, we followed telomere inheritance in a population of king penguins (Aptenodytes patagonicus). We tested for paternal and maternal influence on chick initial telomere length (10 days old after hatching), and how these relationships changed with chick age (at 70, 200 and 300 days old). Based on a correlative approach, offspring telomere length was positively associated with maternal telomere length early in life (at 10 days old). However, this relationship was not significant at older ages. These data suggest that telomere length in birds is maternally inherited. Nonetheless, the influence of environmental conditions during growth remained an important factor shaping telomere length, as the maternal link disappeared with chicks'' age.  相似文献   

18.
端粒是真核生物染色体末端的多功能特异性DNA-蛋白结构,覆盖在染色体末端,保护基因组的稳定性。端粒在减数分裂过程中起到了十分重要的作用,协助染色体配对、联会、同源重组和分离。精子中的端粒可能在精子的受精能力和胚胎发育中起到重要作用。近年来,端粒与生殖的相关性研究成为一个新的热点,但精子端粒与男性不育间的相关性并不明确。本文采用实时荧光定量PCR方法检测中国特发性男性不育人群(126例)和正常可育男性人群(138例)的精子相对端粒长度,结果发现,特发性男性不育病例的精子平均相对端粒长度(2.894±0.115)低于正常对照组(4.016±0.603),差异具有统计学意义(P=5.097×10-5);并且精子相对端粒长度与精子密度、精子总数和精子活力都有显著的相关性:精子数量较多和/或精子活力较高,精子相对端粒长度较长。研究结果提示,在中国人群中,精子端粒长度与特发性男性不育具有相关性,精子的端粒长度可能影响精子发生和精子的功能,精子端粒的缩短导致精子数目及活力的降低从而导致男性不育。  相似文献   

19.
Several lines of evidence indicate that telomere shortening during in vitro aging of human somatic cells plays a causal role in cellular senescence. A critical telomere length seems to be associated with the replicative block characterizing senescent cells. In this paper we analyzed the mean length of the terminal restriction fragments (TRF) in fibroblast strains from 4 healthy centenarians, that is, in cells aged in vivo, and from 11 individuals of different ages. No correlation between mean TRF length and donor age was found. As expected, telomere shortening was detected during in vitro propagation of centenarian fibroblasts, suggesting that in fibroblasts aged in vivo telomeres can be far from reaching a critical length. Accordingly, chromosome analysis did not show the presence of telomeric associations in early passage centenarian fibroblasts. In blood cells from various individuals, the expected inverse correlation between mean TRF length and donor age was found. In particular, a substantial difference (about 2 kb) between telomere length in the two cell types was observed in the same centenarian. Expression analysis of three senescence-induced genes, i.e., fibronectin, apolipoprotein J, and p21, revealed for only the fibronectin expression levels a clear positive correlation with donor age. Our results suggest that (1) telomere shortening could play a different role in the aging of different cell types and (2) the characteristics of fibroblasts aged in vitro might not be representative of what occurs in vivo.  相似文献   

20.

Background

Telomeres–the terminal caps of chromosomes–become shorter as individuals age, and there is much interest in determining what causes telomere attrition since this process may play a role in biological aging. The leading hypothesis is that telomere attrition is due to inflammation, exposure to infectious agents, and other types of oxidative stress, which damage telomeres and impair their repair mechanisms. Several lines of evidence support this hypothesis, including observational findings that people exposed to infectious diseases have shorter telomeres. Experimental tests are still needed, however, to distinguish whether infectious diseases actually cause telomere attrition or whether telomere attrition increases susceptibility to infection. Experiments are also needed to determine whether telomere erosion reduces longevity.

Methodology/Principal Findings

We experimentally tested whether repeated exposure to an infectious agent, Salmonella enterica, causes telomere attrition in wild-derived house mice (Mus musculus musculus). We repeatedly infected mice with a genetically diverse cocktail of five different S. enterica strains over seven months, and compared changes in telomere length with sham-infected sibling controls. We measured changes in telomere length of white blood cells (WBC) after five infections using a real-time PCR method. Our results show that repeated Salmonella infections cause telomere attrition in WBCs, and particularly for males, which appeared less disease resistant than females. Interestingly, we also found that individuals having long WBC telomeres at early age were relatively disease resistant during later life. Finally, we found evidence that more rapid telomere attrition increases mortality risk, although this trend was not significant.

Conclusions/Significance

Our results indicate that infectious diseases can cause telomere attrition, and support the idea that telomere length could provide a molecular biomarker for assessing exposure and ability to cope with infectious diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号