首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
To investigate the characteristics of the uptake within hypothalamic tissue of the Ca2+-channel blocker, verapamil, push-pull canulae were implanted bilaterally above the anterior hypothalamic-preoptic area (AH/POA) and posterior hypothalamus (PH) of the cat. The functional reactivity of these two anatomical regions was verified in the unrestrained cat, prior to a push-pull perfusion, by a microinjection of either 5–7 g norepinephrine (NE) into AH/POA, or by perfusion of 50 mM Ca2+ within the PH, both of which induce a transient decline in the cat's core temperature. Verapamil was perfused in a concentration of 0.4, 2.0 or 4.0 g/l for successive 10 and 20 min intervals within these NE and Ca2+-sensitive sites. A quantitative analysis of verapamil in each sample of perfusate was performed double-blind by HPLC-spectrophotometric detection. The results showed that the percent recovery of verapamil after the 10 min interval was always less than that after the next 20 min period of perfusion. These recovery values were independent of the site of perfusion and the concentration of verapamil. However, the mean uptake of verapamil into tissue after 10 min was significantly greater than that after the 20 min period for all concentrations tested. These results demonstrate that the hypothalamus has a time-dependent characteristic to incorporate a Ca2+-channel blocker into the parenchyma. Once the point of tissue saturation is reached, a steady-state level of verapamil uptake is established.  相似文献   

2.
The role of Ca2+-stimulated adenosine 5-triphosphatase (Ca2+-ATPase) in Ca2+ sequestering of rat liver nuclei was investigated. Ca2+-ATPase activity was calculated by subtracting Mg2+-ATPase activity from (Ca2+–Mg2+)-ATPase activity. Ca2+ uptake and release were determined with a Ca2+ electrode. Nuclear Ca2+-ATPase activity increased linearly in the range of 10–40 M Ca2+ addition. With those concentrations, Ca2+ was completely taken up by the nuclei dependently on ATP (2 mM). Nuclear Ca2+-ATPase activity was decreased significantly by the presence of arachidonic acid (25 and 50 M), nicotinamide-adenine dinucleotide (NAD+; 2 mM) and zinc sulfate (2.5 and 5.0 M). These reagents caused a significant decrease in the nuclear Ca2+ uptake and a corresponding elevation in Ca2+ release from the nuclei. Moreover, calmodulin (10 g/ml) increased significantly nuclear Ca2+-ATPase activity, and this increase was not seen in the presence of trifluoperazine (10 M), an antogonist of calmodulin. The present findings suggest that Ca2+-ATPase plays a role in Ca2+ sequestering by rat liver nuclei, and that calmodulin is an activator. Moreover, the inhibition of Ca2+-ATPase may evoke Ca2+ release from the Ca2+-loaded nuclei.  相似文献   

3.
The Ca2+-pumping activity of skeletal sarcoplasmic reticulum vesicles is half-maximallyinhibited by 120 M clomipramine, 250 M desipramine, and 500 M imipramine or trimipramine.The inhibition is attributed to the dihydrodibenzazepine moiety, since3-(dimethylamino)propionitrile, reproducing the aliphatic amine chain, has no inhibitory action. The inhibitionis shown as a marked decrease of Ca2+ binding at equilibrium in theabsence of ATP and asa reduction of phosphorylation of the Ca2+-free conformation byinorganic phosphate. Therefore,the drug effect is consistent with preferential interaction of tricyclic antidepressants withthe Ca2+-free conformation of the nonphosphorylated enzyme. An additional decrease in theapparent rate constant of enzyme dephosphorylation, i.e., in the release of phosphate fromATP during enzyme cycling was also noticed.  相似文献   

4.
Polymyxin B, a cyclic peptide antibiotic, inhibits Ca2+-ATPase, p-nitrophenyl phosphatase and phosphorylase kinase activities associated with rabbit skeletal muscle sarcoplasmic reticulum membranes; 50% inhibition is induced by 100 M, 130M and 550 M of polymyxin respectively. The fluorescence intensity of fluorescein isothiocyanate-labeled Ca2+-ATPase, decreases in the presence of polymyxin (50% of the total decrease at 70 M polymyxin). On the other hand, the polypeptide inhibits calmodulin-dependent endogenous phosphorylation of 60 kDa, 20 kDa and 14 kDa membrane proteins, while an increase of calmodulin-dependent phosphorylation is observed in 132 kDa and 86 kDa proteins.  相似文献   

5.
The ATP dependent Ca2+ uptake of platelet vesicles was inhibited by the two hydrophobic drugs trifluoperazine (TFP) and propranolol (PROP). Inhibition was significantly lowered when Pi was used instead of oxalate as a precipitant agent. When the ATPase ligands substrate (Mg2+ and Pi) were absent of the efflux medium, a slow release of Ca2+ which did not couple with ATP synthesis (passive Ca2+ efflux) was observed. Both, TFP and PROP enhanced the passive Ca2+ efflux. This enhanced efflux was partially inhibited only when Mg2+ and Pi were added together to the efflux reaction media, but it was not affected by spermidine, ruthenium red or thapsigargin (TG). The Ca2+ ionophores A23187 and ionomycin, also enhanced passive Ca2+ efflux. However, in this case, Ca2+ efflux was inhibited just by inclusion of Mg2+ to the medium. Ca2+ efflux promoted by Triton X-100 was not affected by either Mg2+ or Pi, included together or separately into the efflux medium. The ATP Pi measured in the presence of Triton X-100 and millimolar Ca2+ concentrations was inhibited by both TFP and PROP, but not by Ca2+ ionophores up to 4 M. The data suggest that the observed enhancement of passive Ca2+ efflux promoted by TFP and PROP could be attributed to a direct effect of these drugs over the platelet Ca2+ pump isoforms (Sarco Endoplasmic Reticulum Calcium ATPase, SERCA2b and SERCA3) themselves, as it was reported for the sarcoplasmic reticulum Ca2+ ATPase (SERCA1).  相似文献   

6.
Summary The influence of the asymmetric addition of various divalent cations and protons on the properties of active Ca2+ transport have been examined in intact human red blood cells. Active Ca2+ efflux was determined from the initial rate of45Ca2+ loss after CoCl2 was added to block Ca2+ loading via the ionophore A23187. Ca2+-ATPase activity was measured as phosphate production over 5 min in cells equilibrated with EGTA-buffered free Ca2+ in the presence of A23187. The apparent Ca affinity of active Ca2+ efflux (K 0.5=30–40 mol/liter cells) was significantly lower than that measured by the Ca2+-ATPase assay (K 0.5=0.4 m). Possible reasons for this apparent difference are considered. Both active Ca2+ efflux and Ca2+-ATPase activity were reduced to less than 5% of maximal levels (20 mmol/liter cells · hr) in Mg2+-depleted cells, and completely restored by reintroduction of intracellular Mg2+. Active Ca2+ efflux was inhibited almost completely by raising external CaCl2 (but not MgCl2) to 20mm, probably by interaction of Ca2+ at the externally oriented E2P conformation of the pump. Cd2+ was more potent than Ca2+ in this inhibition, while Mn2+ was less potent and 10mm Ba2+ was without effect. A Ca2+: proton exchange mechanism for active Ca2+ efflux was supported by the results, as external protons (pH 6–6.5) stimulated active Ca2+ efflux at least twofold above the efflux rate at pH 7.8 Ca2+ transport was not affected by decreasing the membrane potential across the red cell.  相似文献   

7.
Fedirko  N. V.  Klevets  M. Yu.  Kruglikov  I. A.  Voitenko  N. V. 《Neurophysiology》2001,33(4):216-223
Using a Ca2+-sensitive fluorescent indicator, fura-2/AM, we recorded calcium transients in secretory cells of isolated acini of the rat submandibular salivary gland; these transients were induced by hyperpotassium-induced depolarization (after an increase in [K+] e up to 50 mM) of the plasma membrane of the above cells. Calcium transients were significantly suppressed by 50 M nifedipine. Addition of 10 M carbonyl cyanide m-chlorophenylhydrazone to the normal extracellular solution was accompanied by a rise in [Ca2+] i , whereas when hyperpotassium solution is used the effect was less expressed. Blockers of CA2+-ATPase in the cellular membrane and in the endoplasmic reticulum, eosin Y (5 M) and cyclopiazonic acid (CPA, 5 M), respectively, evoked a significant increase in [Ca2+] i and a decrease in the K+-depolarization-induced calcium transient. Extracellular application of caffeine (2, 10, or 30 mM) was accompanied by a concentration-dependent rise in [Ca2+] i . Therefore, potassium depolarization of the plasma membrane of acinar cells of the rat submandibular salivary gland activates both the voltage-dependent Ca2+ influx and Ca2+-induced Ca2+ release from the endoplasmic reticulum; the initial level of [Ca2+] i was restored at the joint involvement of Ca2+-ATPases in the plasma membrane and the membranes of the endoplasmic reticulum and mitochondria.  相似文献   

8.
Summary Micromolar concentrations of silver ion activate large Ca2+ fluxes across the plasma membrane of intact rod outer segments isolated from bovine retinas (intact ROS). The rate of Ag+-induced Ca2+ efflux from intact ROS depended on the Ag+ concentration in a sigmoidal manner suggesting a cooperative mechanism with a Hill coefficient between 2 and 3. At a concentration of 50 m Ag+ the rate of Ca2+ efflux was 7×106 Ca2+/outer segment/sec; this represents a change in total intracellular Ca2+ by 0.7mm/outer segment/sec. Addition of the nonselective ionophore gramicidin in the absence of external alkali cations greatly reduced the Ag+-induced Ca2+ efflux from intact ROS, apparently by enabling internal alkali cations to leak out. Adding back alkali cations to the external medium restored Ag+-induced Ca2+ efflux when gramicidin was present. In the presence of gramicidin, Ag+-induced Ca2+ efflux from intact ROS was blocked by 50 m tetracaine orl-cis diltiazem, whereas without gramicidin both blockers were ineffective. Bothl-cis diltiazem and tetracaine are blockers of one kinetic component of cGMP-induced Ca2+ flux across ROS disk membranes. The ion selectivity of the Ag+-induced pathway proved to be broad with little discrimination between the alkali cations Li+, Na+, K+, and Cs+ or between Ca2+ and Mg2+. The properties of the Ag+-induced pathway(s) suggest that it may reflect the cGMP-dependent conductance opened in the absence of cGMP by silver ions.  相似文献   

9.
The chronic administration of disulfiram (DS) to rats resulted in significant decrease of synaptosomal Ca2+, Mg2+-ATPase activity. In vitro studies indicated that DS (ID50=20 M) produced a dose-dependent inhibition of Ca2+, Mg2+-ATPase. However, diethyldithio-carbamate, a metabolite of DS, failed to modify Ca2+, Mg2+-ATPase activity, implying that the decrease in ATPase activity in DS administered rats was due to the effect of parent compound. The DS-mediated inhibition (48%) of ATPase activity was comparable with a similar degree of inhibition (49%) achieved by treating the synaptosomal membranes with N-ethylmaleimide (ID50=20 M) in vitro. Furthermore, the inhibition by DS was neither altered by washing the membranes with EGTA nor reversed by treatment with sulfhydryl reagents such as GSH or dithiothreitol. About 74% and 68% decrease of synaptosomal Ca2+, Mg2+-ATPase specific activity was observed when treated with DS (30 M) and EGTA (100 M) respectively. The remaining 25–30% of total activity is suggested to be of Mg2+-dependent ATPase activity. This indicates that both these drugs may act on a common target, calmodulin component that represents 70–75% of total Ca2+, Mg2+-ATPase activity. Therefore, DS-mediated modulation of synaptosomal Ca2+, Mg2+-ATPase activity could affect its function of maintaining intracellular Ca2+ concentration. This could contribute to the deleterious effects on CNS.  相似文献   

10.
Summary The Ca2– entry pathways in the basolateral plasma membrane of the isolated, nonperfused proximal straight tubule (PST) of rabbit kidney were investigated using fura-2 fluorescence microscopy. Under isotonic conditions, reduction of bath [Ca2–] from 1 mM to 1 M caused intracellular free calcium concentration ([Ca2+]i) to fall close to zero. Treatment with 10 M verapamil, a calcium channel blocker, had a similar effect. Treatment with verapamil or low Ca2+ also induced fluctuations in cell volume. However, isotonic treatment with 10 M nifedipine, a dihydropyridine (DHP)-type calcium channel blocker, did not affect [Ca2+]i or cell volume, indicating that the endogenous Ca2+ entry pathway is verapamil-sensitive but DHP-insensitive. When cells were exposed to hypotonic solutions in the presence of 1 mM Ca2+, they swelled and underwent normal RVD while [Ca2+]i increased transiently to a peak before decreasing to a late phase plateau level above the baseline level (see McCarty, N.A., O'Neil, R.G. 1991.J. Membrane Biol. 123:149–160). When cells were swollen in the presence of verapamil or low bath [Ca2+], RVD was abolished and [Ca2+]i fell well below the baseline during the late phase response. In contrast, when cells were swollen in the presence of nifedipine, RVD and the late phase rise in [Ca2+]i were abolished, but [Ca2+]i did not fall below the baseline level in the late phase, indicating that nifedipine inhibited the swelling-induced Ca2+ entry but that Ca2+ entry by another pathway was undisturbed. It was concluded that PST cells are characterized by two Ca2+ permeability pathways in the basolateral membrane. Under both isotonic and hypotonic conditions, Ca2+ entry occurs at a slow rate via a verapamil-sensitive, DHP-insensitive baseline Ca2+ entry pathway. Cell swelling activates a separate DHP-sensitive, verapamil-sensitive Ca2+ entry pathway, which is responsible for the supply of Ca ions to the Ca2+-dependent mechanism by which cell volume regulation is achieved.  相似文献   

11.
Isolated embryos ofKarwinskia humboldtiana were cultured in vitro. The growth of embryos and development to plantlets on woody plant medium supplemented with indole-3-acetic acid 6.10-2 mol l–1, gibberellic acid (GA3) 3.10-2 mol l–1, and 6-benzylaminopurine (BA) 2 mol l–1 was obtained. Multiplication of shoots and rooting of excised shoots has been achieved. Callus formation on modified Murashige-Skoog medium supplemented with 1-naphthaleneacetic acid 10 mol l–1, GA3 14 mol l–1, and kinetin 5 mol l–1 on hypocotyls, or on root cultures on medium supplemented with 2.4-dichlorophenoxyacetic acid 10 mol l–1 and BA 10 mol l–1 was induced.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid - TEM transmission electron microscopy  相似文献   

12.
Although the well-known neurotoxic agent bilirubin can induce alterations in neuronal signaling, direct effects on neurotransmitter release have been difficult to demonstrate. In the present study we have used permeabilized nerve terminals (synaptosomes) from rat brain prelabeled with [3H]norepinephrine to examine the effects of bilirubin on transmitter release. Rat cerebrocortical synaptosomes were permeabilized with streptolysin-O (2 U/ml) in the absence or presence of bilirubin (10 M–320 M) and Ca2+ (100 M), and the amount of radiolabeled transmitter released during 5 min to the medium was analysed. Low levels of bilirubin decreased Ca2+-evoked release in a dose-dependent manner, with half-maximal effect at approx 25 M bilirubin. Higher levels of bilirubin (100–320 M) increased [3H]norepinephrine efflux in the absence of Ca2+, suggesting that high bilirubin levels induced leakage of transmitter from vesicles. The nontoxic precursor biliverdin had no effect on Ca2+-dependent exocytosis. Our data indicate that bilirubin directly inhibits both exocytotic release and vesicular storage of brain catecholamines.  相似文献   

13.
In order to examine the mechanisms of the beneficial effects of vanadate on cardiac dysfunction in chronic diabetes, rat hearts were perfused with xanthine plus xanthine oxidase, an oxyradical generating system in the absence or presence of vanadate. The heart failed to generate contractile force and increased the resting tension markedly within 5 min of perfusion with xanthine plus xanthine oxidase. These changes were prevented by the addition of 4 M vanadate in the perfusion medium. The protective effects of vanadate on the loss of developed tension and increased resting tension due to xanthine plus xanthine oxidase were dose-dependent (0.1–5 M). Perfusion of the hearts with glucose-free medium did not abolish the protective actions of vanadate. The sarcolemmal Ca2+-pump (ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase) and Na+-dependent Ca2+ uptake activities were decreased upon perfusing the hearts with a medium containing xanthine plus xanthine oxidase for 5 min; these effects were prevented by the addition of 2–4 M vanadate in the perfusion medium. The signals for superoxide radicals produced by xanthine plus xanthine oxidase, as detected by electron paramagnetic resonance spectroscopic technique, were inhibited by 5–100 M vanadate. These results suggest that vanadate is an oxyradical scavenger and thus may prevent heart dysfunction under some pathological conditions by its antioxidant action.  相似文献   

14.
Synaptosomal membranes accumulate 3–6 times more Ca2+ in the presence of ATP (50–1000 M) than basal Ca2+ accumulation (-ATP). The location of this Ca2+ accumulation appears to reside on the cytosolic face of the synaptosome since lysed synaptosomes accumulate 4-times more Ca2+ than intact synaptosomes. The inclusion of mitochondrial inhibitors, oligomycin (0.7 g/ml), sodium azide (100 M) and dinitrophenol (100 M) differentiate mitochondrial from nonmitochondrial Ca2+ accumulation under conditions that are [Ca2+]- and ATP-dependent. In the presence of low concentrations of ATP (<150 M) and Ca free 2+ (2.5 or 6.8 M), Ca2+ accumulation occurs as one process in both lysed synaptosomal membranes and purified synaptic plasma membranes in the presence and/or absence of MI. When ATP levels are increased (>200 M), the Ca2+ accumulation process remains independent of the presence of mitochondrial inhibitors when Ca free 2+ =2.5 M. When Ca free 2+ is increased to 6.8 M, mitochondrial inhibitors differentiate mitochondrial from nonmitochondrial accumulation. These studies suggest that optimal conditions for the measurement of Ca2+ accumulating mechanisms in synaptosomal membranes depend on both [Ca2+] and ATP. Use of these assay conditions provide evidence that ATP-dependent Ca2+ uptake may be a viable mechanism for the regulation of synaptosomal Ca2+ levels.  相似文献   

15.
Rat hippocampal slices preloaded withd-[3H]aspartate, a non metabolizable analogue ofl-glutamate, were superfused with artifical CSF. Depolarization was induced by 53.5 mM K+, in the presence of Ca2+ (1.3 mM) or Mg2+ (5 mM) to determine the Ca2+ dependent release. Haloperidol added in the superfusion medium at 100 M reduced by about 60% the Ca2+ dependent release ofd-[3H]aspartate. This drug at 20 M or 100 M inhibited the non-activated glutamate dehydrogenase (GDH) but had no effect on GDH activated by ADP (2 mM) or leucine (5 mM). In addition no effect was observed on phosphate activated glutaminase (PAG) in the presence either of 20 mM or 5 mM phosphate. These results indicate that the effect of haloperidol is exerted on presynaptic mechanisms regulating neurotransmitter release.  相似文献   

16.
The regulatory role of Ca2+-stimulated adenosine 5-triphosphatase (Ca2+-ATPase) in Ca2+ transport system of rat liver nuclei was investigated. Ca2+ uptake and release were determined with a Ca2+ electrode. Ca2+-ATPase activity was calculated by subtracting Mg2+-ATPase activity from (Ca2+–Mg2+)-ATPase activity. The release of Ca2+ from the Ca2+-loaded nuclei was evoked progressively after Ca2+ uptake with 1.0 mM ATP addition, while it was only slightly in the case of 2.0 mM ATP addition, indicating that the consumption of ATP causes a leak of Ca2+ from the Ca2+-loaded nuclei. The presence of N-ethylmaleimide (NEM; 0.1 mM) caused an inhibition of nuclear Ca2+ uptake and induced a promotion of Ca2+ release from the Ca2+-loaded nuclei. NEM (0.1 and 0.2 mM) markedly inhibited nuclear Ca2+-ATPase activity. This inhibition was completely blocked by the presence of dithiothreitol (DTT; 0.1 and 0.5 mM). Also, DTT inhibited the effect of NEM (0.1 mM) on nuclear Ca2+ uptake and release. Meanwhile, verapamil and diltiazem (10 M), a blocker of Ca2+ channels, did not prevent the NAD+ (1.0 and 2.0 mM), zinc sulfate (1.0 and 2.5 M) and arachidonic acid (10 M)-induced increase in nuclear Ca2+ release, suggesting that Ca2+ channels do not involve on Ca2+ release from the nuclei. These results indicates that an inhibition of nuclear Ca2+-ATPase activity causes the decrease in nuclear Ca2+ uptake and the release of Ca2+ from the Ca2+-loaded nuclei. The present finding suggests that Ca2+-ATPase plays a critical role in the regulatory mechanism of Ca2+ uptake and release in rat liver nuclei.  相似文献   

17.
Many non-muscle cells including chromaffin cells contain actin and myosin. The 20,000 dalton light chain subunits of myosin can be phosphorylated by a Ca2+/calmodulin-dependent enzyme, myosin light chain kinase. In tissues other than striated muscle, light chain phosphorylation is required for actin-induced myosin ATPase activity. The possibility that actin and myosin are involved in catecholamine secretion was investigated by determining whether increased phosphorylation in the presence of [-32P]ATP of myosin light chain by myosin light chain kinase enhances secretion from digitonin-treated chromaffin cells. In the absence of exogenous myosin light chain kinase, 1 M Ca2+ caused a 30–40% enhancement of the phosphorylation of a 20 kDa protein. This protein was identified on 2-dimensional gels as myosin light chain by its comigration with purified myosin light chain. Purified myosin light chain kinase (400 g/ml) in the presence of calmodulin (10 M) caused little or no enhancement of myosin light chain phosphorylation in the absence of Ca2+ in digitonin-treated cells. In the presence of 1 M Ca2+, myosin light chain kinase (400 g/ml) caused an approximately two-fold increase in myosin light chain phosphorylation in digitonin-treated cells in 5 min. The phosphorylation required permeabilization of the cells by digitonin and occurred within the cells rather than in the medium. Myosin light chain kinase-induced phosphorylation of myosin light chain was maximal at 1 M. Ca2+. Under identical conditions to those of the phosphorylation experiments, secretion was unaltered by myosin light chain kinase. The experiments indicate that the phosphorylation of myosin light chain by myosin light chain kinase is not a limiting factor in secretion in digitonin-treated chromaffin cells and suggest that the activation of myosin is not directly involved in secretion from the cells. The experiments also demonstrate the feasibility of investigation of effects of exogenously added proteins on secretion in digitonin-treated cells.Abbreviations EGTA ethyleneglycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - KGEPM solution containing potassium glutamate, EGTA, PIPES and MgCl2 - NE norepinephrine - PIPES piperazine-N,-N-bis-(2-ethanesulfonic acid) - PSS physiological salt solution  相似文献   

18.
The effect of regucalcin, a regulatory protein of Ca2+ signaling, on guanosine-5-triphosphatase (GTPase) activity in isolated rat liver plasma membranes was investigated. GTPase activity was significantly increased by the addition of Ca2+ (25–100 M) in the enzyme reaction mixture. Such an increase was not seen by other metals (Mg, Co, Zn, Cu, Ni, and Mn) with 50 M. The activatory effect of calcium (50 M) was significantly decreased by calmodulin (2.5 and 5 g/ml), indicating that it does not depend on calmodulin. The presence of regucalcin (0.1–0.5 M) in the enzyme reaction mixture caused a significant increase in GTPase activity. This increase was not significantly enhanced by calcium (50 M). GTPase activity was significantly increased by dithiothreitol (DTT; 5 mM), a protecting reagent of thiol (SH)-groups, while it was decreased by N-ethylmaleimide (NEM; 5 mM), a modifying reagent of SH-groups. The effect of calcium or regucalcin in increasing GTPase activity was not seen in the presence of NEM. Also, the activatory effect of calcium or regucalcin on GTPase was not seen in the presence of vanadate, an inhibitor of protein phosphorylation, which could inhibit GTPase activity. Moreover, the effect of regucalcin was not seen in the presence of digitonin (0.01%), a solubilizing reagent of membranous lipids, while the effect of calcium was not inhibited by digitonin. The present study demonstrates that regucalcin has an activatory effect on GTPase activity independently of Ca2+ in rat liver plasma membranes.  相似文献   

19.
[3H]Purine release from rat striatum astrocyte cultures was studied at 14 days in vitro (DIV). Superfusion of cultures with a Ca2+-free medium +0.5 mM ethylene glycol-bis(-aminoethylether)N,N,N,N-tetracetic acid (EGTA) reduced the electrically evoked [3H]purine release. Nimodipine only at the concentration of 10 M modified [3H]purine outflow whereas 0.1 M -conotoxin and 0.03–0.1 M nitrendipine reduced the evoked one. Superfusion of cultures with 0.1 M -conotoxin +0.1 M nitrendipine antagonized the evoked [3H]purine release similarly to each drug given alone. Neither nitrendipine nor -conotoxin influenced the uptake of45Ca2+ by the cultures. The treatment of cells with the Ca2+ agonist Bay K 8644 did not affect [3H]purine release or the45Ca2+ uptake. The drug did not either alter [Ca2+]i, evaluated by loading the cells with 3 M Fura-2/AM. 10–30 M 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester (TMB-8), a blocker of intracellular Ca2+ discharge, significantly reduced the evoked [3H]purine release. On the other hand, 2 M thapsigargin, an inhibitor of the ion store Ca2+ ATPase, was able to increase either the culture [3H]purine release or the [Ca2+]i. Together, the findings indicate that voltage-sensitive calcium channels (VSCCs) of the neuronal N and L-types are not involved in the modulation of [3H]purine release from rat cultured astrocytes whereas Ca2+ coming from intracytoplasmic stores seems to play a prevailing role. Moreover, agents which block VSCCs seem to be able to affect [3H]purine outflow with mechanisms other than VSCC gating.  相似文献   

20.
Summary The effects of hormonal agonists (norepinephrine, angiotensin, and histamine) on45Ca efflux from the rabbit aorta were studied using a Ca-EGTA buffered efflux medium. Each caused a transient stimulation of efflux rate which probably reflected the release of an intracellular45Ca store. The size of the stimulation of efflux correlated with the size of the initial rapid phase of contraction. The norepinephrine-sensitive intracellular Ca fraction was estimated to be greater than 21 moles/Kg wet tissue weight. This fraction is separate from intracellular Ca which is accumulated during relaxation. Evidence is presented for the lack of cyclic nucleotide involvement in the release of Ca2+, and possible alternative modes of coupling are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号